0

3
2

文字

分享

0
3
2

邁向淨零排碳的未來:去碳燃氫技術!

研之有物│中央研究院_96
・2022/12/10 ・6194字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|廖英凱
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

高排碳發電方式的轉型

氣候變遷是全球議題,為了降低碳排放,發展低碳電力相當重要。臺灣目前主要使用天然氣發電,雖然排碳量較燃煤發電低,仍屬高碳排的發電方式,若未來要達到 2050 淨零排放,勢必要開發更多的低碳電力。

中央研究院「研之有物」專訪院內物理研究所陳洋元研究員,他與團隊應用天然氣催化裂解的理論,突破各種技術限制,打造出「去碳燃氫」(methane pyrolysis)裝置,使得燃氣發電可以更進一步減少碳排放,目前成果已接近歐盟需求,並預計陸續擴大運用至商用發電機組。

陳洋元向研之有物團隊介紹「去碳燃氫」技術。
圖|研之有物

因人類工業活動排放的二氧化碳而導致的氣候變遷問題,已是當代人類亟欲解決的難題。近幾年,國際組織與科學機構也不斷地強調減少碳排放的必要,以及調整減碳標準。2014 年聯合國政府間氣候變化專門委員會(IPCC)的綜合評估報告指出,人類應在 2100 年以前削減 90% 的碳排。

-----廣告,請繼續往下閱讀-----

但到了 2018 年的全球暖化特別報告時,IPCC 則將標準加嚴,人類需在 2050 年時達到「淨零排放」,亦即「人為溫室氣體的排放量,扣除透過碳匯碳捕等移除量後為零」。2021 年下半年,世界各大工業國也陸續提出在 2050 年前後達到該國淨零排放的政策目標和政策路徑。

在世界潮流的推動下,2021 年 4 月總統蔡英文在世界地球日的活動,宣示臺灣將努力在 2050 年達到淨零排放。同年中研院在廖俊智院長的主導下,啟動了「Alpha 去碳計畫」,院內物理所的陳洋元研究員與研究團隊也開始為臺灣的「去碳燃氫」技術建立基礎。

把天然氣變成氫氣,真的可能嗎?先來看看過去科學家怎麼做吧!

降低天然氣碳排的方法

為能達到降低碳排的能源轉型,又需兼顧產業發展的用電需求,臺灣目前的能源規劃,預估在 2025 年時,再生能源發電量佔比約 15.2%,其餘則為 45% ~60% 的燃氣發電與 25% ~40% 的燃煤發電所組成,到 2050 年時,樂觀理想情境中再生能源發電量佔比可逾 60%,剩下則以燃氣發電為主。

-----廣告,請繼續往下閱讀-----

儘管燃燒天然氣(甲烷)的理論排碳量,約只有燃燒煤炭的一半,但每燃燒 1 噸的甲烷,仍會產生 2.75 噸的二氧化碳排放,這與淨零排放的目標,仍有相當大的差異。因此,當代天然氣的運用,必須回應如何有效降低碳排放。

大抵來說,降低天然氣的碳排可以分成兩種不同方向的策略,其一是「碳捕捉、再利用與封存carbon capture, utilisation and storage, CCUS)」,方式是將燃燒後的二氧化碳,捕捉下來再利用,如應用於綠藻養殖、水泥製造等,或是將二氧化碳壓縮後封存於耗竭油氣庫這種地質結構上的特殊封閉構造,或是封存於海底富含鹽水的地層構造。

碳捕捉、再利用與封存(CCUS),就是將燃燒產生的二氧化碳,收集與分離出來,拿去工廠再利用或是封存於特殊地層。
圖|研之有物(資料來源|聯合國歐洲經濟委員會

然而碳捕存的技術與概念新穎且須有特定地質條件配合,要能達到具規模的運用仍有相當技術門檻需突破,且碳捕存在臺灣多年來也持續面臨政治及環保爭議,發展進度緩慢。

另一種策略方向,則是「燃料轉換」,將化石能源的天然氣,全部或部分替換為零碳的能源,例如利用微生物分解利用農業等方式生產的有機物質來產生「生質甲烷」(註1)作為燃料;利用大量的無碳電力,電解水後分解為氫氣和氧氣,再將氫氣做為燃料;或是再利用無碳電力將二氧化碳與氫氣合成為甲醇、甲烷、氨等「載氫劑(hydrogen carrier)」以利運送和利用。

-----廣告,請繼續往下閱讀-----

還有一種備受矚目的燃料轉換方式,是直接將甲烷裂解為氣態的氫氣和固態的碳黑(carbon black):

只要有足夠的能量,甲烷就能裂解為固態碳和氫氣。
圖|研之有物

其核心原理為,若能提供甲烷分子每莫耳 74 千焦耳的能量,就能把碳原子與氫原子的鍵結打斷,而關鍵在於如何提供能量以及如何提升使用能量的效率。

1999 年,M. Steinberg 發現當溫度夠高時,甲烷鍵結被打斷的效率隨之提升,而提出「甲烷熱裂解」(thermal decomposition of methane, TDM)技術,該技術是將甲烷處於高於 700°C 的高溫環境,使甲烷裂解為氫氣與固體的碳。固體碳可以穩定的儲存,不會增加大氣中的二氧化碳,也可以做為工業生產的原物料使用。

為進一步提升甲烷分解的效率與商業價值,近二十餘年來,許多針對 TDM 的研究,引入了各種催化劑,作為熱解甲烷的反應環境。目前常使用特定比例的惰性合金作為催化劑,將合金加熱成熔融態,當甲烷氣體通過液態合金時,即開始分為氫氣與固態碳。

-----廣告,請繼續往下閱讀-----

加熱溫度越高、氣體通過的熔融合金管柱越長,則甲烷熱裂解的程度越高,例如以一公尺長的管柱環境,利用不參與反應的 1175°C 熔融錫金屬,則可轉化 78% 的甲烷;利用具催化性的熔融金屬如 27% Ni–73% Bi 合金,則可在 1065°C 達成 95% 之甲烷轉化

如圖所示,此為天然氣裂解的簡易流程,當天然氣進入管柱時,需要熔融合金 Ni-Bi 作為催化劑,以便在高溫環境下轉化為固態碳(C)和氫氣(H2)。
圖|研之有物(資料來源|Science

為什麼需要催化劑?為了降低化學反應的難度。

化學反應的過程就像冒險者從小鎮(反應物)出發,克服山頂上的巨龍(活化能),並取得山谷寶藏(生成物)。而催化劑就像是幫冒險者開外掛的流浪法師,短暫加入冒險者一伙,開啟原本沒有的秘密通道,讓冒險者不用打龍就輕鬆取得寶藏。
圖|研之有物(資料來源|chemorphesis

實際運用上的限制與問題

以裂解方式生產氫氣的技術,有可能會成為未來氫能發展最主流的方向,歐盟針對氫能發展的預估中,即認為到 2050 年時,歐盟所使用的氫能會有 55% 來自於甲烷裂解,有 30% 來自目前化工產業較成熟使用的天然氣重組,以及 15% 來自於水電解產氫。

因此,2021 年 3 月起,在廖俊智院長的主導下,中研院啟動了「Alpha 去碳計畫」,目的在發展熱催化、電漿裂解等各種技術方法,以達成去碳產氫的發電目標。物理所陳洋元研究員的團隊,也開始在院內建構甲烷熱裂解的裝置,試圖為我國建立起去碳燃氫的技術基礎。

然而,儘管催化性熔融金屬的理論可行,在實務運作上此方法卻有其瓶頸,陳洋元研究員的團隊發現,當裂解後產生的氫氣和碳從熔融金屬表面冒出時,熔融金屬的蒸氣會把碳包住而在金屬表面變成如岩漿般的黏稠流體,必須不斷暫停實驗把岩漿給撈出去,使得學理上雖可高效率地裂解甲烷,但仍難以放大規模至發電機機組或提供給發電業使用。

-----廣告,請繼續往下閱讀-----
上述催化性熔融金屬用在天然氣裂解,理論上可行,但是陳洋元團隊實作發現,熔融金屬的蒸氣會把碳包住,會在金屬表面(如管壁)形成岩漿般的黏稠流體,必須不斷暫停實驗,把廢碳渣撈出去。
圖|研之有物(資料來源|Science、陳洋元)

體認到催化性熔融金屬的限制後,陳洋元研究員開始尋找其他也可具有類似催化效果的材質。其中一種可行的催化劑,就是碳黑本身。過去針對催化反應的研究中,即發現碳本身即是一種理想的催化劑。在甲烷裂解的過程中,研究者可以透過利用不同形式、結構與表面積的碳,來調控碳的催化活性

2013 年,韓國研究者 Seung Chul Lee 等人提出用碳黑作為催化劑的甲烷熱裂解裝置設計,其概念是將高溫管柱中,裝填直徑 30 nm 的碳粒作為催化劑,使甲烷通過高溫碳粒時,被催化裂解為氫氣和碳,再透過集塵器與過濾器捕捉碳黑。

2013 年韓國 Seung Chul Lee 等人提出了利用碳黑作為催化劑的甲烷熱裂解裝置。
圖|Korean Journal of Chemical Engineering

雖然概念裝置已提出逾十年,但至今市面上仍未有成功商業化與量產的設備。由於催化劑和裂解後的碳都是相同的物質,因此隨反應時間增加,實驗裝置中的碳黑會不斷吸附。

因此,該實驗設計若要能用於實務上的燃氣電廠減碳,關鍵就在如何能維持或定時減少高溫管柱中積存的碳;如何能延長集塵設備與濾網的更換週期,以須確保裝置能不間斷的長時間運作;以及如何與既有燃氣機組的系統結合。

-----廣告,請繼續往下閱讀-----

Alpha 去碳計畫:以局部比例的氫氣代替甲烷

面對過去研究的基礎與限制,中研院的團隊已在開發利用碳黑作為催化劑的甲烷熱裂解裝置,且能搭配自動化的清除積碳、與更新集塵、過濾器,使熱裂解裝置能持續性地運作。

熱裂解的裝置設計上,也並非追求極致的甲烷轉換率,由於氫氣比甲烷擁有更劇烈的燃燒反應,如在空氣中的燃燒速度,甲烷為 0.38 公尺/秒,但氫氣則高達 2.9 公尺/秒,這使得氫氣爆燃的衝擊力遠大於甲烷。

因此,目前仍未有純氫氣或高比例氫氣的商品化發電機組,而多以在甲烷中混合 10% ~30% 的氫氣,達到局部比例的減碳,因此在裝置設計上,須同步調控所產製氫氣與甲烷的比例,使發電機能持續燃燒固定成分比例的甲烷氫氣混合物。

中研院天然氣熱裂解裝置的實體照片。天然氣高溫裂解系統,包含:控溫電子儀器、高溫爐與流量計。放大區域顯示高溫爐上面的構造,白色為隔熱棉,石英管管壁已經有少許的碳渣附著。
圖|研之有物(資料來源|陳洋元)

從減碳效益來比較傳統天然氣發電和部分比例的去碳燃氫發電,以目前大潭電廠最新燃氣機組的熱效率 60% 來計算,每噸天然氣燃燒,可提供 9300 度的發電量,並排出 2.75 公噸的二氧化碳。

-----廣告,請繼續往下閱讀-----

但若能將其中 30% 的甲烷高溫裂解後,將氫氣與天然氣混燒,因氫氣的燃燒熱較低,且需額外提供裂解所需的能量,此時每噸天然氣則能發出 7400 度的電量,但碳排放降低為 1.92 公噸的二氧化碳,並生產 0.225 公噸的固體純碳。

也就是說,以大潭燃氣電廠為例,若將 30% 的甲烷裂解,產生氫氣與天然氣混燒,最終是以減少 20% 的發電量為代價,換得 30% 的減碳效益,以及具有精密工業、高產值化工業運用潛力的高純度碳黑原料。

目前中研院的 Alpha 去碳計畫已完成了將甲烷熱裂解裝置與 13 kW 天然氣發電機串聯,混燒 10% 氫氣燃料的概念驗證。

預計在 2025 年以前,將陸續擴大至針對建築物規模使用的 65 kW 燃氣渦輪發電機;和針對廠房、工商業用途使用的 1~2 MW 商用燃氣機組;以及與既有大型燃氣電廠使用的 170 MW 燃氣機組結合,以此建立我國去碳燃氫的產業鏈。

中研院將與業界合作,目標在 2025 年以前,推出裂解效率可達 40% 的去碳燃氫裝置,使臺灣天然氣發電的碳排達到歐盟訂定的永續標準。

開闢臺灣淨零排放的路徑

面對氣候變遷的威脅,世界各國無不積極且緊迫地尋找能達到零碳排放的方式,然而多數國家在有限的自然資源條件下,風力與太陽光電等再生能源的發電規模和穩定程度仍遠不及大型發電廠。

因此 2021 年起世界各國,相繼提出了符合淨零與永續精神的天然氣使用規準。2022 年 2 月,歐盟批准了有助實現歐盟環境目標的「永續活動分類法」與「氣候授權補充法案」,其中針對燃氣發電廠的規範,是要求 2035 年以前須完全由天然氣轉向低碳燃料或再生能源燃料;或是 2030 年前施工但每度電少於 270 克二氧化碳排放量,才能獲得永續金融投資的優惠。

以此作為標準來檢驗目前臺灣的燃氣發電,較先進且尚有機組興建中的大潭發電廠,碳排係數約低於每度電 388 克二氧化碳排放,若能順利搭配裂解效率 30% 的去碳燃氫技術,則碳排係數可降為每度電 271.6 克二氧化碳排放,幾乎符合歐盟的標準。

若再能輔以部分比例的生質甲烷混燒,排出二氧化碳又有部分比例利用碳捕存處理,至少就能使我國在未來最主要使用的天然氣,能符合目前歐盟看待永續能源的標準。

目前中研院陳洋元團隊打造的去碳燃氫技術,能利用臺灣既有天然氣和燃氣電廠的基礎建設,維持穩定的基載電力供給,又能達到減碳的效益,預計將是未來幾年內,能有效提供臺灣減碳成果的重要技術方向。

然而,去碳燃氫技術也因減碳目的而降低燃氣的發電量,這會使臺灣已經擴大天然氣使用的政策方向還要更加強化,如增加更多的天然氣進口量,興建更多的天然氣接收站、儲存槽與管線。近年烏俄戰爭帶來世界性天然氣的短缺,以及第三天然氣接收站的興建帶來海岸生態的危害,使用天然氣仍有難以忽視的環境與社會風險。

中研院的去碳燃氫技術,可能不是淨零未來的唯一選項,但傾力推動這項技術,才有機會在邁向淨零未來的過程中,爭取到足以讓永續與潔淨能源普及的時間。

中研院陳洋元團隊打造的「去碳燃氫」技術,利用臺灣既有天然氣和燃氣電廠的基礎建設,維持穩定的電力供給,又能達到減碳的效益,預計將是未來幾年內,能有效提供臺灣減碳成果的重要技術方向。
圖|研之有物

註解

  • 註1:生質甲烷的概念是,透過微生物分解農業生產的有機物質,由此生產甲烷,這種有機物的碳,是來自植物光合作用的固碳反應。因此理論上不會使用到地底下的化石碳,比天然氣還要減碳。

延伸閱讀:

文章難易度
研之有物│中央研究院_96
290 篇文章 ・ 3292 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

6
1

文字

分享

0
6
1
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
194 篇文章 ・ 298 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

2
2

文字

分享

1
2
2
改良天然氣發電技術不會產生二氧化碳?灰氫、藍氫、綠氫分別是什麼?
PanSci_96
・2024/02/11 ・5656字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

用天然氣發電可以完全沒有二氧化碳排放?這怎麼可能?

2023 年 11 月,台電和中研院共同發表去碳燃氫技術,說是經過處理的天然氣,燃燒後可以不產生二氧化碳。

誒,減碳方式百百種,就是這個聽起來最怪。但仔細研究後,好像還真有這麼一回事。這種能發電,又不產二氧化碳的巫術到底是什麼?大量使用天然氣後,又有哪些隱憂是我們可能沒注意到的?

去碳燃氫是什麼?

去碳燃氫,指的是改良現有的天然氣發電方式,將甲烷天然氣的碳去除,只留下乾淨的氫氣作為燃燒燃料。在介紹去碳燃氫之前,我們想先針對我們的主角天然氣問一個問題。

-----廣告,請繼續往下閱讀-----

最近不論台灣、美國或是許多國家,都提升了天然氣發電的比例,但天然氣發電真的有比較好嗎?

好像還真的有。

根據聯合國底下的政府間氣候變化專門委員會 IPCC 的計算報告,若使用火力發電主要使用的煙煤與亞煙煤作為燃料,並以燃燒率百分之百來計算,燃料每釋放一兆焦耳的能量,就會分別產生 94600 公斤和 96100 公斤的二氧化碳排放。

如果將燃料換成天然氣,則大約會產生 56100 公斤的二氧化碳,大約只有燃燒煤炭的六成。這是因為天然氣在化學反應中,不只有碳元素會提供能量,氫元素也會氧化成水並放出能量。

圖/pexels

除了碳排較低以外,煤炭這類固體燃料往往含有更多雜質,燃燒時又容易產生更多的懸浮顆粒例如 PM 2.5 ,或是溫室效應的另一主力氧化亞氮(N2O)。具體來說,產生同等能量下,燃燒煤炭產生的氧化亞氮是天然氣的 150 倍。

當然,也別高興這麼早,天然氣本身也是個比二氧化碳更可怕的溫室氣體,一但洩漏問題也不小。關於這點,我們放到本集最後面再來討論。

-----廣告,請繼續往下閱讀-----

燃燒天然氣還是會產生二氧化碳?

雖然比較少,但也有燃煤的六成。像是綠能一樣的零碳排發電方式,不才是我們的終極目標嗎?別擔心,為了讓產生的二氧化碳量減到最小,我們可以來改造一下甲烷。

圖/unsplash

在攝氏 700 至 1100 度的高溫下,甲烷就會和水蒸氣反應,變成一氧化碳和氫氣,稱為蒸汽甲烷重組技術。目前全球的氫氣有 9 成以上,都是用此方式製造的,也就是所謂的「灰氫」。

而產物中的一氧化碳,還可以在銅或鐵的催化下,與水蒸氣進一步進行水煤氣反應,變成二氧化碳與氫氣。最後的產物很純,只有氫氣與二氧化碳,因此此時單獨將二氧化碳分離、封存的效率也會提升不少,也就是我們在介紹碳捕捉時介紹的「燃燒前捕捉」技術。

去碳燃氫又是什麼?

圖/pexels

即便我們能將甲烷蒸氣重組,但只要原料中含有碳,那最終還是會產生二氧化碳。那麼,我們把碳去掉不就好了?去碳燃氫,就是要在第一步把甲烷分解為碳和氫氣。這樣氫氣在發電時只會產生水蒸氣,而留下來的碳黑,也就是固態的碳,可以做為其他工業原料使用,提升附加價值。

-----廣告,請繼續往下閱讀-----

在氫氣產業鏈中,我們習慣將氫氣的來源做顏色分類。例如前面提到蒸氣重組後得到的氫氣被稱為灰氫,而搭配碳捕捉技術的氫,則稱為藍氫。完全使用綠能得到的氫,例如搭配太陽能或風力發電,將水電解後得到最潔淨的氫,則稱為綠氫。而介於這兩者之間,利用去碳燃氫技術分解不是水而是甲烷所得到的氫,則稱為藍綠氫。

但先不管它叫什麼氫,重點是如果真的不會產生二氧化碳,那我們就確實多了一種潔淨能源可以選擇。這個將甲烷一分為二的技術,聽起來應該也不會太難吧?畢竟連五◯悟都可以一分為二了,甲烷應該也行吧。

甲烷如何去碳?

甲烷要怎麼變成乾淨的氫氣呢?

很簡單,加溫就好了。

圖/giphy

只要加溫到高過攝氏 700 度,甲烷就會開始「熱裂解」,鍵結開始被打斷,變成碳與氫氣。

-----廣告,請繼續往下閱讀-----

等等等等…為了發電還要耗費能源搞高溫熱裂解,划算嗎?

甲烷裂解確實是一個吸熱反應,也就是需要耗費能量來拆散原本的鍵結。根據反應式,一莫耳甲烷要吸收 74 千焦耳的熱量,才會裂解為一莫耳的碳和兩莫耳的氫氣。但是兩莫耳的氫氣燃燒後,會產生 482 千焦耳的熱量。淨能量產出是 408 焦耳。與此相對,直接燃燒甲烷產生的熱量是 891 千焦耳。

而根據現實環境與設備的情況,中研院與台電推估一公噸的天然氣直接燃燒發電,與先去碳再燃氫的方式相比,發電量分別為 7700 度和 4272 度。雖然因為不燃燒碳,發電量下降了,但也省下了燃燒後捕存的成本。

要怎麼幫甲烷去碳呢?

在近二十幾年內,科學家嘗試使用各種材料作為催化劑,來提升反應效率。最常見的方式,是將特定比例的合金,例如鎳鉍合金,加熱為熔融態。並讓甲烷通過液態的合金,與這些高溫的催化劑產生反應。實驗證實,鎳鉍合金可以在攝氏 1065 度的高溫下,轉化 95% 的甲烷。

-----廣告,請繼續往下閱讀-----

中研院在 2021 年 3 月,啟動了「 Alpha 去碳計畫」,進行去碳燃氫的設備開發。但團隊發現,盡管在理論上行得通,但實際上裝置就像是個不受控的火山一樣,熔融金屬與蒸氣挾帶著碳粒形成黏稠流體,不斷從表面冒出,需要不斷暫停實驗來將岩漿撈出去。因此,即便理論上可行,但熔融合金的催化方式,還無法提供給發電機組使用。

去碳燃氫還能有突破嗎?

有趣的是,找了好一大圈,驀然回首,那人卻在燈火闌珊處。

最後大家把目光放到了就在你旁邊,你卻不知道它正在等你的那個催化劑,碳。其實過去就有研究表明碳是一種可行的催化劑。但直到 201 3年,才有韓國團隊,嘗試把碳真的拿來做為去碳燃氫的反應催化劑。

圖/pexels

他們在高溫管柱中,裝填了直徑 30 nm 的碳粒。結果發現,在 1,443 K 的高溫下,能達到幾乎 100 % 的甲烷轉化。而且碳本身就是反應的產物之一,因此整個裝置除了碳鋼容器以外,只有碳與氫參與反應,不僅成本低廉,要回收碳黑也變得容易許多。

-----廣告,請繼續往下閱讀-----

目前這個裝置需要加緊改良的,就是當碳不斷的積蓄,碳粒顆粒變大,反應會跟著下降。如何有效清除或更換濾網與反應材料,會是能否將此設備放大至工業化規模的關鍵。

最後,我們回頭來談談,在去碳燃氫技術逐漸成熟之後,我們可能需要面對的根本問題。

天然氣是救世主,還是雙面刃?

去碳燃氫後的第一階段,還是會以天然氣為主,只混和 10 % 以下的氫氣作為發電燃料。

這是因為甲烷的燃燒速度是每秒 0.38 公尺,氫氣則為每秒 2.9 公尺,有著更劇烈的燃燒反應。因此,目前仍未有高比例氫氣的發電機組,氫氣的最高比例,通常就是 30 % 。

目前除了已成功串連,使用 10 % 氫氣的小型發電機組以外。台電預計明年完成在興達電廠,使用 5 % 氫氣的示範計畫,並逐步提升混和氫氣的比例。根據估計,光是 5 % 的氫氣,就能減少每年 7000 噸的二氧化碳排放。

-----廣告,請繼續往下閱讀-----

但隨著天然氣的使用量逐步提高,我們也應該同時留意另一個問題。

天然氣洩漏導致的溫室效應,是不可忽視的!

根據 IPCC 2021 年的報告,若以 20 年為評估,甲烷產生的溫室效應效果是二氧化碳的 82.5 倍,以 100 年為評估,效果為 29.8 倍,是僅次於二氧化碳,對於溫室效應的貢獻者第二名。這,不可不慎啊。

圖/unsplash

從石油、天然氣井的大量甲烷洩漏,加上運輸時的洩漏,如果沒有嚴格控管,我們所做的努力,很有可能就白費了。

非營利組織「環境保衛基金」曾在 2018 年發表一篇研究,發現從 2012 到 2018 年,全球的甲烷排放量增加了 60 % ,從煤炭轉天然氣帶來的好處,可能因為甲烷洩漏而下修。當然,我們必須相信,當這處漏洞被補上,它還是能作為一個可期待的發電方式。

圖/giphy

另一篇發表在《 Nature Climate Change 》的分析研究就說明,以長期來看,由煤炭轉為天然氣,確實能有效減緩溫室氣體排放。但研究也特別提醒,天然氣應作為綠能發展健全前的過渡能源,千萬別因此放慢對於其他潔淨能源的研究腳步。

去碳燃氫技術看起來如此複雜,為什麼不直接發展綠氫就好了?

確實,綠氫很香。但是,綠氫的來源是電解水,而反應裝置也不可能直接使用雜質混雜的海水,因此若要大規模發展氫能,通常需要搭配水庫或海水淡化等供水設施。另外,綠氫本來就是屬於一種儲能的形式,在台灣自己的綠能還沒有多到有剩之前,當然直接送入電網,還輪不到拿來產綠氫。

圖/unsplash

相比於綠氫,去碳燃氫針對的是降低傳統火力發電的碳排,並且只需要在現有的發電廠旁架設熱裂解設備,就可以完成改造。可以想像成是在綠能、新世代核能發展成熟前的應急策略。

當然,除了今天提到的灰氫、藍氫、綠氫。我們還有用核能產生的粉紅氫、從地底開採出來的白氫等等,都還沒介紹呢!

除了可以回去複習我們這一集的氫能大盤點之外,也可以觀看這個介紹白氫的影片,一個連比爾蓋茲都在今年宣布加碼投資的新能源。它,會是下一個能源救世主嗎?

最後,也想問問大家,你認為未來 10 年內,哪種氫能會是最有潛力的發展方向呢?

  1. 當然是綠:要押當然還是壓最乾淨的綠氫啦,自產之前先進口也行啊。
  2. 肯定投藍:搭配碳捕捉的藍氫應該會是最快成熟的氫能吧。
  3. 絕對選白:連比爾蓋茲也投資的白氫感覺很不一樣。快介紹啊!

什麼?你覺得這幾個選項的顏色好像很熟悉?別太敏感了,下好離手啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 1
PanSci_96
1214 篇文章 ・ 2092 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
1

文字

分享

0
2
1
減碳新招:二氧化碳再利用!光觸媒材料可以把二氧化碳還原成工業化學原料?——專訪中研院原分所陳貴賢特聘研究員
研之有物│中央研究院_96
・2023/11/03 ・5793字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|簡克志
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

降低碳排還不夠,奈米材料幫你直接減少二氧化碳!

氣候變遷問題日益嚴重,2023 年 9 月成為全球有史以來最熱的月份,臺灣夏天飆破 38 ℃ 的頻率逐漸增加。為了避免地表升溫超過工業化前水準的 +1.5 ℃,世界各國訂出 2050 年淨零排放的目標,設法減少大氣中的溫室氣體。減碳解方除了低碳電力之外,直接減少二氧化碳也是一條路徑。中央研究院「研之有物」專訪院內原子與分子科學研究所陳貴賢特聘研究員,他的研究專長是奈米能源材料,我們將介紹一種複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),在太陽光照射下,此材料表面發生的氧化還原反應,會將二氧化碳還原成有用的工業化學原料!

為了避免全球升溫超過工業化前水準的 +1.5 ℃,我們需要減少碳排放與開發負碳技術,並盡量在 2050 年左右達到全球溫室氣體淨零排放量的目標。所謂的「工業化前水準」是指 1850-1900 年的平均溫度。
圖|iStock

地球「保冷」計畫——減碳是關鍵

我們每天排放多少二氧化碳?根據 Our World in Data 的人均二氧化碳排放數據,2021 年全球每人排放的二氧化碳為 4.69 噸,而燃燒 1 公升的汽油大概會產生 2.3 公斤的二氧化碳。換算一下,每人每天排放二氧化碳約為 12.8 公斤,相當於每人每天消耗 5.6 公升的汽油!

根據聯合國政府間氣候變化專門委員會(IPCC)的特別報告「全球暖化 1.5 ℃」,人類活動排放的溫室氣體,已經讓地球表面平均溫度上升了 1 ℃。若以人類目前經濟模式發展下去,碳排放量可預期將不斷上升,大量溫室氣體將讓暖化現象與極端天氣事件更加劇。

氣候科學家警示,地球表面平均溫度需控制在 +1.5 ℃ 以內 註 1,否則將有不可逆的後果,例如生物多樣性大幅度降低的風險。因此,世界各國有了 2050 年淨零排放的共同目標,並不是說都不排碳了,而是要設法讓溫室氣體的碳排放量和碳減少量相互抵消,達到「淨零」的目標。

-----廣告,請繼續往下閱讀-----

要達到淨零的目標,除了尋找與開發減碳電力之外,直接減少二氧化碳也是一個方法。想像一下,如果可以像植物一樣,只要照太陽光,就把二氧化碳變成有價值的碳氫化合物,聽起來不錯吧?但是二氧化碳做為燃燒後的產物已相當穩定,要如何以人工方式讓二氧化碳再次參與反應?

我們可運用「陽光」與「光催化材料」(又稱光觸媒,photocatalyst),不僅可以減碳,還能產生有價值的碳氫化合物,是一種「一舉兩得」的方法!

光觸媒(光催化)材料是什麼?

在談到光催化材料之前,先複習一下「催化劑」這個概念,催化劑不參與化學反應,但是它讓原先不可能的化學反應變得可行!陳貴賢分享,這就像過去從臺北到宜蘭需要翻過雪山,經過九彎十八拐的北宜公路;但如今有了「雪山隧道」之後,就大大降低臺北到宜蘭的時間與難度。「雪山隧道」就是臺北通往宜蘭的催化劑。

除此之外,催化劑也可以說是推進人類歷史發展的重要角色!在過去,農作物施肥只有天然氮肥可以使用,產量有限。而肥料意味著糧食增加與生產力增加,《巫師與先知》這本書就提到位於秘魯的鳥糞島嶼成為各家跨國公司必爭之地。另一方面,波斯人也在各地建造供鳥類休息的高塔,用來收集當肥料用的鳥糞。

-----廣告,請繼續往下閱讀-----

到了近代,陳貴賢提到在 20 世紀初,德國科學家哈伯(Fritz Haber)透過催化劑,在高溫高壓的條件下,以鐵粉做為催化劑,讓氮氣和氫氣轉換成氨。這讓人工固氮成為可能,人類不用再依賴緩慢的生物固氮反應就可以合成化學氮肥,農作物產量也大幅提昇。

本文主角「光催化材料」,顧名思義就是協助光化學反應的催化劑,但光催化材料與一般催化劑不同的地方在於,其化學反應通常發生在固態的表面環境,目標反應物、光子和電子都有參與反應。

比起光催化材料,你可能更常聽到它的同義詞「光觸媒」,例如某某產品宣稱具有「奈米光觸媒消毒」的功能,其實就是照射足夠的光,讓材料表面的氧化還原反應把細菌分解。而之所以光觸媒需要做到奈米尺寸,這是因為奈米小顆粒可以改變物質的電子能量結構,且大幅增加反應的表面積,讓光催化反應更有效率。

陳貴賢:「一個高表面積的奈米粉末,它的表面積可能是薄膜的一萬倍,甚至於十萬倍。」

給你電子,還你原形!光催化材料上的氧化還原反應是怎麼發生的?

光催化材料之所以能夠減少二氧化碳,是因為照光後材料表面發生「氧化還原反應」,氧化反應會失去電子,還原反應會得到電子。陳貴賢與團隊開發的複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),可以讓二氧化碳還原成甲醇(CH3OH)和乙醛(CH3CHO),這兩種產物都是工業常用的化學原料。反應式如下:

-----廣告,請繼續往下閱讀-----

要持續減少二氧化碳,就要持續發生上述還原反應,持續供給電子。不過,我們要怎麼讓電子快速又順利的補充到材料表面?這裡就開始涉及到半導體的核心問題:電子與電洞的產生、分離和傳輸

陳貴賢與團隊開發的複合光催化材料:ZnS/ZIS,是結合兩種奈米半導體材料,透過水熱法合成,將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,形成 0D-2D 結構的 ZnS/ZIS 複合物,就像製作巧克力豆餅乾,不過要複雜得多。

陳貴賢團隊將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,就好像做巧克力豆餅乾一樣,形成複合的異質半導體,做為光催化材料用途。左圖是示意圖,右圖是電子顯微鏡下的照片,Zn:In 比例為 1:0.46。
圖|研之有物(資料來源|Nano Energy

既然 ZnS/ZIS 是半導體,當受到光照之後,原來的價帶(valence band)電子會被光激發成導帶(conduction band)電子,原本價帶電子佔據的位置則留下一個空位,就是電洞。電子和電洞的遷移,就是半導體形成電流的原因,因此電子和電洞都稱為「載子」(charge carrier)

還記得上面的還原反應嗎?

-----廣告,請繼續往下閱讀-----

對光催化材料來說,為了在光照環境下把二氧化碳還原成乙醛和甲醇,必須獲得穩定的電子來源,材料內部要迅速補充電子到表面,因此:

照光產生的電荷載子數量越多越好;產生的電子和電洞要傾向分離,分得越遠越好;電子和電洞越快移動到表面參與反應越好。

載子輸送要快速穩定,首先照光產生的載子要多,就有更多電子和電洞參與反應。分離載子是為了避免復合,照光產生的電子和電洞很容易復合,一旦復合,等同於減少載子。再來是載子越快移動到表面越好,可以讓每次的氧化還原反應都是最佳效率。

尋找最有效的光催化材料

陳貴賢團隊總共做了 4 種不同比例的 ZnS/ZIS 光催化材料,依照 Zn:In 比例 1:0.12、1:0.26、1:0.46 和 1:0.99,分別標記為 ZnS/ZIS-1、ZnS/ZIS-2、ZnS/ZIS-3 和 ZnS/ZIS-4。其中,ZnS/ZIS-3 的光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇(如下圖)。

水熱法製備的 ZnS/ZIS-3 光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇。最右邊是將 ZnS 和 ZIS 簡單物理混合的對照組,沒有介面效應的輔助,催化效果不佳。
圖|研之有物(資料來源|Nano Energy

為了驗證光催化材料產生有效載子的效率,陳貴賢團隊計算了 ZnS/ZIS-3 的總 AEQ 值(apparent quantum efficiency),用來評估「照到光催化材料上的每顆光子數量,產生了多少實際參與催化反應的電子數」。測量之後,ZnS/ZIS-3 的 AEQ 值為 0.8%,量子效率比單獨的 ZnS 材料提高了將近 200 倍!

-----廣告,請繼續往下閱讀-----

這也是為什麼陳貴賢團隊要使用兩種不同的材料結合,因為單一半導體材料照光產生的電子和電洞有很高的復合機率,選擇兩種不同的半導體材料組合,讓兩種材料形成特殊的「能量階梯」就可以有效分離電子和電洞,並且把電子送到它該去的材料表面。

此外,使用兩種半導體材料的好處還有「二次激發電子到更高能階」,以符合光催化反應的能量門檻,自由電子掙脫 ZnS 的束縛之後,繼續往 ZIS 跑,光的能量會繼續把電子往上送到更高能級的材料表面,還原二氧化碳的反應在此發生。

Z 字形跑比較快!控制材料之間的微應變提升氧化還原效率

關於光催化材料的二次激發,陳貴賢提到:「材料低能階,然後光子進來後,把電子激發到高能階去做反應,太陽能電池也是這樣。但是呢,有時候沒那麼剛好,例如激發後的能階不夠高,雖然激發上去了,但電子沒有辦法跟二氧化碳做反應。那我把兩個材料拼在一起,電子上去以後又下來,然後再吸收第二個光子上去,那就變得很高了,高了以後它的反應效率就提升很多。」

如果我們把光催化材料的二次激發過程畫成示意圖,如下圖所示,電子在 ZnS 束縛區受到第一次光子的激發,變成自由電子,接著經過設計完善的材料介面,先降到較低的 ZIS 束縛區,受到第二次光子的激發,再次變成自由電子,跑到光催化材料的表面,和二氧化碳發生還原反應,將二氧化碳變成可再利用的乙醛和甲醇。

-----廣告,請繼續往下閱讀-----

看看電子走過的路,如果向左歪著頭看,是不是就是一個 Z 字呢?科學家把這個過程稱為「直接 Z 方案」(Direct Z-scheme)。「直接」的意思是,電子從 ZnS 跑到 ZIS 的過程,不需要再經過一個中間地帶,降低電子和電洞復合的機會。

為了將二氧化碳轉換成可用化學原料,電子在材料內部能階走 Z 字路徑,過程中受到光的二次激發,最後到達材料表面。電子參與還原反應,將二氧化碳變成乙醛和甲醇。電洞參與氧化反應,將水變成氧氣。
圖|研之有物(資料來源|Nano Energy

為什麼陳貴賢團隊設計的「直接 Z 方案」光催化材料,電子可以不需要中間的「轉接站」,直接轉移到另一個材料上呢?這裡也有一個巧思:不同材料之間的「微應變」

不同材料的晶體排列規律是不一樣的,當兩種材料接在一起時,接面處會發生「晶格不匹配」,也就是兩種材料的原子會互相卡到、晶格微微變形。但是,如果我們可以控制微應變(Strain)的程度,就可以控制兩種材料「能量階梯」的相對位置,微應變可以讓材料接面自動帶有「轉接站」的功能,進而形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。

總之,陳貴賢團隊開發的這套材料組合,是有微應變誘導的直接 Z 方案光催化材料,可做為未來量產光催化材料的研發設計參考,同時也是減碳的解方之一。

-----廣告,請繼續往下閱讀-----
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy

綠能趨勢——光催化材料未來可期

陳貴賢表示,目前表面科學和材料是中研院原分所的主要研究領域,他的實驗室選擇能源材料作為研究主軸,有太陽能電池和熱電材料,同時團隊也專注研究可還原二氧化碳的光催化材料,以及與燃料電池相關的催化劑。

陳貴賢看好將來能源材料的發展,因為在 2050 淨零排放之前,有愈來愈多企業紛紛加入「RE100 倡議」的行列,企業必須承諾最晚於 2030 年前使用 100% 再生能源。最著名案例是科技巨頭蘋果Google 和微軟等公司都已宣布其全球供應鏈將符合 RE100 的要求。其中,台積電為蘋果主要供應商,2020 年也加入 RE100,目前為臺灣再生能源的主要買家

可以預見,將來風能、太陽能與燃料電池的相關材料有其市場需求,而能夠減少二氧化碳的光催化材料,也將成為全球減碳的利器。陳貴賢提到,當前光催化材料還在基礎研究階段,目前的人工光合作用效率約 1%,接近大自然效率,而團隊希望提升到至少 5% 到 10% 以上,方能有其實用價值。

陳貴賢進一步強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值,不僅轉化後的燃料可以賣錢,處置二氧化碳原料亦可以收取負碳費用,是一種前所未有的概念。

陳貴賢強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值。
圖|研之有物

註解

  1. 根據 IPCC 的資料,如果要將全球暖化幅度控制在 +1.5 °C 以內,必須在 2050 年左右達到二氧化碳的淨零排放目標,同時也要大幅度降低非二氧化碳的溫室氣體排放,特別是甲烷。
研之有物│中央研究院_96
290 篇文章 ・ 3292 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook