4

6
0

文字

分享

4
6
0

B 肝疫苗及台灣的肝炎聖戰——疫苗科學的里程碑(三)

miss9_96
・2021/05/27 ・4764字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

科學終會勝利。Science will win.

人工蛋白質疫苗是疫苗科學的第四個里程碑。上世紀的八零年代,臺灣的政治家和科學家合作,讓小孩子們遠離了癌症,B 型肝炎疫苗的開發,不僅是疫苗科學的重大里程碑,更挽救了世世代代台灣人的健康。當年一群台灣科學家、政治家的堅持,讓 1986 年後出生的台灣囝仔,遠離肝癌。

自 18 世紀起,牛痘、狂犬病、小兒麻痺病毒等,各種病毒一個個地被做成疫苗。然而,這些疫苗的抗原,都必須「養出整顆病毒」。對於難以培養,或僅在人體內存活的病毒,要開發疫苗,仍無法可解

而科學家也從卡特事件的悲劇了解到,面對高毒性的病毒,若使用整顆病毒做為抗原,仍有相當的風險。然而,抗體並非辨認整顆病毒,而是辨認其表面蛋白質的部分結構。換言之,若能找到可激發抗體的蛋白質,就可做為疫苗抗原,進而避免使用整顆病毒;而這項突破,發生在上世紀 80 年代的 B 型肝炎疫苗。

肝炎患者體內的標誌

讓我們把時間拉回到 1965 年,那時美國科學家巴魯克·布隆伯格(Baruch Blumberg)發現有種蛋白質十分獨特,僅在肝炎患者體內被發現,而不存在健康人體內 [1]。之後它被證實為 B 型肝炎病毒的表面蛋白,也就是 B 型肝炎表面抗原(HBsAg)。

-----廣告,請繼續往下閱讀-----

B 型肝炎病毒感染細胞後,被劫持的細胞不只產生病毒顆粒(直徑約 42 nm)外,也會產出僅由 B 型肝炎表面抗原組成、直徑約 22 nm 的蛋白質顆粒。而 B 型肝炎表面抗原不僅在分佈在病毒表面,更是病毒結合、入侵肝細胞的關鍵蛋白 [2]。換言之,若能用 B 型肝炎表面抗原作為疫苗,訓練白血球產生辨認抗原的抗體;不僅能咬住病毒,更能黏在抗原身上,阻止病毒侵入細胞;因此 B 型肝炎表面抗原可能是肝炎疫苗的最佳設計。

B 型肝炎病毒和 B 型肝炎表面抗原卡通示意圖、電子顯微鏡圖。圖/《Cell》, 《Nature Reviews Disease Primers

1968 年,布隆伯格和歐文·米爾曼(Irving Millman)為了開發 B 型肝炎疫苗,開始著手研究生產純化 HBsAg 的方法 [1],並於七零年代逐步進入臨床試驗。然而,當時生產 HBsAg 的方式,是收集 B 肝患者的血清,經過分離、加熱、化學藥劑消毒後再製成疫苗。而在耗費大量財力、人力的臨床試驗階段,大型藥廠開始接手;法國巴斯德、美國默克藥廠分別在 1975 和 1978 年,針對成人進行臨床試驗。此時飽受 B 肝病毒摧殘的台灣,也正在關注著藥廠的試驗。

試驗的隔年,兩藥廠的疫苗都誘發出驚人的保護力(超過 80%)[3, 4],並在 1981 年,巴斯德和默克藥廠皆獲得母國發出銷售許可,B 型肝炎疫苗成為人類史上第一支蛋白質類型疫苗 [5]。但可惜的是,儘管該技術的 B 肝疫苗在 1981 年上市,但高昂的成本(原料為病患血液,採集、純化、消毒等需大量成本,且血液來源不穩定),加上同時間爆發的愛滋病引起大眾對血液製品的恐慌,已注定此疫苗無法有良好的商業模式。

有鑑於此,構思一種全新技術,讓細胞生產出純粹、乾淨的人工蛋白,是突破的必要手段。此時,逐漸興起的重組 DNA 技術成了希望。

-----廣告,請繼續往下閱讀-----

人類,你渴望抗原嗎?重組 DNA、人工蛋白

1973 年,人類開始學會組合兩種生物的 DNA、塞進細胞,叫它做出人工蛋白。1979 年,威廉·拉特(William Rutter)等成功地將 HBsAg 的雙股 DNA 基因,轉殖塞進大腸桿菌。三年後的 1982 年,同個團隊將 HBsAg 剪輯入酵母菌的質體,並成功地讓酵母菌分泌 HBsAg(選擇酵母菌的原因,可能是酵母菌的生產效率較大腸桿菌高,也可能是酵母菌更接近人體細胞,可進行更複雜的蛋白質修飾)。酵母菌可高產能地分泌出 HBsAg,更重要的是,從電子顯微鏡底下觀察到 HBsAg 自然地形成直徑 22 nm 的蛋白質顆粒,可誘發人體高效的免疫反應 [2]。1986 年是人類疫苗史上重要的里程碑,基因工程製造的 B 型肝炎疫苗正式上市。此類不含 DNA 或 RNA 的蛋白質類型疫苗,是疫苗發展的巨大突破。它幫助人類征服無法培養出病毒的疾病,並且不含 DNA 或 RNA 的特性,更減輕了民眾的接種疑慮。酵母菌製程的 B 型肝炎疫苗可工業化生產的特性,保護了無數的人類,讓他們免於肝炎、肝硬化,甚至肝癌的命運。

對抗「家族的詛咒」——台灣的肝炎聖戰

上個世紀,B 型肝炎在台灣狂妄地肆虐,幾乎所有人都曾被病毒感染、約 20% 終身帶有病毒台灣的 B 肝傳染有家族群聚性,父母極易傳染給子女 [6],一代傳給一代,B 肝→肝硬化→肝癌的詛咒纏繞家族、仿彿永無止境。

B 型肝炎是獨特的傳染病,僅在東亞、非洲諸國擁有高盛行率,主要是由帶病毒的父母傳染給嬰兒;因此若要募集高風險的嬰幼兒,進行 B 型肝炎疫苗的臨床試驗,不可能在低盛行率的歐美地區執行,僅能在台灣等國尋找願意合作的家庭。

因此當藥廠尚在進行成人的臨床試驗時(1980年),在台研究 B 型肝炎的畢思理博士(R. Palmer Beasley)團隊和默克藥廠接觸,準備在台灣進行嬰幼兒的 B 肝疫苗試驗。然而,卻遭到輿論和媒體莫大的阻礙。

-----廣告,請繼續往下閱讀-----

當年台灣的醫藥法規不成熟,並沒有訂立臨床試驗法規,因此畢思理團隊只能在幼稚園向父母諮詢,尋求同意後對兒童施打。未料消息曝光後,媒體開始指責研究團隊拿台灣小孩當天竺鼠、為何讓洋人在台灣做試驗等,甚至衛生署也扛不住輿論、擋下了試驗用的疫苗,畢思理團隊只得暫停了計畫 [5]

各國慢性B型肝炎的盛行率,圖中英文字為病毒的亞型。圖/《Nature Reviews Disease Primers

為了根絕 B 肝而四處奔走的先輩們

當時畢思理博士在台深耕已久、對台灣 B 肝有卓越貢獻(陳建仁、涂醒哲博士皆曾加入其團隊)。透過牽線,他向當時李國鼎政務委員介紹 B 肝疫苗;李國鼎認定此疫苗對台灣未來極為重要,即安排團隊再向最高決策者-孫運璿行政院院長說明。簡報之後,孫運璿大受震撼,認同對台灣之重要性。

而李國鼎亦將當時仍在 WHO(世界衛生組織)任職的許子秋挖角回來,在 1981 年接任衛生署長。許子秋熟稔疫苗政策,早在 1965 年就透過私人情誼,從日本募得 50 萬份的小兒麻痺疫苗捐贈給台灣民眾(另一趣聞:傳聞許子秋聽到女兒正在彈《給愛麗絲》與《少女的祈禱》,因此用此兩曲做為垃圾車的音樂)。就此,B 肝疫苗在台灣政治面的障礙漸被移除 [5]。1983 年,台灣的嬰兒 B 肝疫苗臨床結果發佈在頂級醫學期刊《柳葉刀(The Lancet)》,疫苗保護效果超過九成,而無疫苗的嬰兒,幾乎全都被病毒感染 [5]。有了本土兒童的臨床結果,全面接種的政策價值更漸鮮明。

在李國鼎支持下,衛生署長許子秋等官員策劃、推動全國性新生兒的保護計畫。時任防疫處科長的許須美,和地方衛生局的科長、承辦員合作,解決在地的問題(如:發現最前線的冰箱內儲存多種藥品。為避免多次開啟、影響冷藏溫度,直接購置 B 肝疫苗專用冰箱),完成徹底的衛教和施行 [5]時任中研院研究員周成功、榮總內科蘇益仁醫師等,透過本土科學雜誌-《科學月刊》撰寫科普文章,正反並陳、簡潔地說明 B 肝疫苗的利弊、國際標準等 [7]。鑽研肝炎多年的學者-宋瑞樓、陳定信醫師,也走出研究室,上遍臺灣大小廣播、電視節目,甚至用台語介紹 B 肝疫苗,透過淺顯易懂的語言,告訴廣大民眾為什麼新生兒要施打 B 型肝炎疫苗 [8]

-----廣告,請繼續往下閱讀-----

公衛政策成效有目共睹,台灣兒童肝癌不再

1984 年,計畫先向高風險孕婦的新生兒接種,在 1986 年,新生兒全面施打;1990 年起,國小一年級以前的兒童,都可以免費施打 B 型肝炎疫苗 [5, 6]。台灣兒童們逐年、計畫地接種 B 肝疫苗,冀望此世代的孩子們長大、成年後,肝癌不再威脅他們。

這場肝炎聖戰,立基於本土學者扎實的研究、歐美科學家的牽線、政治家的遠見、前線官員的落地執行力,再加上無數人的宣導,B 肝疫苗的抗癌威力,終於在十多年後的這群台灣小孩們身上,被證實了。

1997 年,推動新生兒公費接種政策後第 13 年,至高學術地位的《新英格蘭醫學期刊(The New England Journal of Medicine)》,向全球公開了台灣 B 肝疫苗的卓越成效 [9]。如下圖,歸功於宣導和第一線公衛醫療的徹底執行,1986 年的全面施打後,幾乎所有的新生兒都接種疫苗;而 1990 年後開始讓國小一年級以下幼兒免費施打的政策,也讓六歲兒童的疫苗覆蓋率快速拉高到九成以上。而 1990 年以後的六歲兒童(1984 年首批接種疫苗嬰兒,長到六歲)病毒帶原比例,也巨幅地下降。

新生兒接種疫苗、免疫球蛋白之比例(當時的接種策略會搭配免疫球蛋白);6 歲兒童接種疫苗、病毒表面抗原陽性率(應指被父母傳染後,6 歲時體內仍有病毒、緩慢地在小孩肝細胞裡複製)。圖/參考文獻 9

徹底執行疫苗政策、幾近完美的覆蓋率,所帶來的首項成果,是讓台灣兒童遠離了兒童肝癌。如下圖,在 1984 年後出生的小孩,兒童肝癌幾乎被消除殆盡,因幼兒肝癌而心碎的台灣家庭也逐漸不再 [9]

-----廣告,請繼續往下閱讀-----
1984 年(B 肝疫苗接種政策)之前、之後的 6~9 歲兒童,每十萬人的肝癌發生率。圖/參考文獻 9

政策推動的二十多年後,成人族群也逐漸看到成效。肝癌發生率在近年開始看到下降的趨勢,而慢性肝炎、肝硬化,也漸漸地退出國人十大死因 [10](註:各項數據下降之因,包含新療法、健康意識提升等,無法完全歸因於單一策略)。

到了今天,當年站在 B 肝疫苗風口的台灣學者、政治家們,已陸續離世。他們著眼於台灣未來,即使早知道不可能活著看見堅持的成果,依然秉持著科學和對台灣未來的熱愛,推動 B 肝疫苗。因為他們對科學的堅持,纏繞台灣家庭的 B 肝詛咒已經解開;在可見的未來裡,肝癌也許真的會因為他們的貢獻、變成罕見疾病。

上圖:1979-2015 年,肝癌發病率(每 100,000 人)。藍線:男性;紅線:女性;黑線:全體。下圖:台灣十大死因中,慢性肝炎、肝硬化的排名(2001-2015 年);底部數字為接受 B 型肝炎治療患者累計人數(2004-2015 年)。圖/參考文獻 10

系列文章

參考文獻

  1. Farah Huzair, Steve Sturdy (2017) Biotechnology and the transformation of vaccine innovation: The case of the hepatitis B vaccines 1968–2000. Studies in History and Philosophy of Biological and Biomedical Sciences Part C: Studies in History and Philosophy of Biological and Biomedical Sciences. https://doi.org/10.1016/j.shpsc.2017.05.004
  2. Mirella Bucci (2020) First recombinant DNA vaccine for HBV. Nature
  3. P. Maupas, P. Coursaget, A. Goudeau, J. Drucker, P. Bagros (1976) Immunisation against hepatitis B in man. The Lancet. DOI: https://doi.org/10.1016/S0140-6736(76)93023-3
  4. Wolf Szmuness, M.D., Cladd E. Stevens, M.D., Edward J. Harley, M.S., Edith A. Zang, Ph.D., William R. Oleszko, Ph.D., Daniel C. William, M.D., Richard Sadovsky, M.D., John M. Morrison, and Aaron Kellner, M.D. (1980) Hepatitis B Vaccine — Demonstration of Efficacy in a Controlled Clinical Trial in a High-Risk Population in the United States. The New England Journal of Medicine. DOI: 10.1056/NEJM198010093031501
  5. 楊玉齡, 羅時成 (1999) 肝炎聖戰:台灣公共衛生史上的大勝利。天下文化
  6. 許須美 (1998) 台灣B型肝炎疫苗史。疫情報導
  7. 《科學月刊》第135期,台灣地區的肝炎及肝癌。第136期,對肝炎疫苗的幾點看法、乙型肝炎疫苗問題面面觀、世界衛生組織對乙型肝炎疫苗製作標準的建議
  8. 中央研究院院士陳定信專訪。衛福季刊。2018/12
  9. Mei-Hwei Chang, M.D., Chien-Jen Chen, Sc.D., Mei-Shu Lai, M.D., Hsu-Mei Hsu, M.P.H., Tzee-Chung Wu, M.D., Man-Shan Kong, M.D., Der-Cherng Liang, M.D., Wen-Yi Shau, M.D., and Ding-Shinn Chen, M.D. for the Taiwan Childhood Hepatoma Study Group (1997) Universal Hepatitis B Vaccination in Taiwan and the Incidence of Hepatocellular Carcinoma in Children. The New England Journal of Medicine. DOI: 10.1056/NEJM199706263362602
  10. Chun-Jen Liu and Pei-Jer Chen (2020) Elimination of Hepatitis B in Highly Endemic Settings: Lessons Learned in Taiwan and Challenges Ahead. Viruses. https://doi.org/10.3390/v12080815
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 4
miss9_96
170 篇文章 ・ 1109 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

3
1

文字

分享

0
3
1
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
沒有症狀也不能大意!30 歲後女性都該注意的子宮頸癌預警指南
careonline_96
・2025/06/18 ・2608字 ・閱讀時間約 5 分鐘

圖 / 照護線上

「即使完全沒症狀,也一定要接受子宮頸癌篩檢!」隨著羅氏診斷女性健檢週活動開跑,林口長庚婦產部教授張廷彰醫師如此表示。根據衛生福利部國民健康署 111 年癌症登記報告,子宮頸癌長期位居女性癌症死因前十名,儘管政府長年推動篩檢政策,仍有約 20% 至 30% 的患者在確診時已屬中晚期(二期以上)[1]。近年政府積極推動 HPV 疫苗,但許多 30 歲以上女性仍屬「疫苗空窗世代」,未能在黃金施打年齡接種疫苗,此類族群更應建立定期檢查習慣。

「早期發現對子宮頸癌非常重要!」張廷彰強調,若能及時接受標準治療,一期子宮頸癌的五年存活率可超過 90%,如果進展至中晚期子宮頸癌,便可能會需要接受大範圍手術,再搭配放射治療或全身性治療,對工作及生活造成影響,存活率也比較差。

預防子宮頸癌
圖 / 照護線上

遠離子宮頸癌威脅,三道防線守護健康

子宮頸癌的發生多與人類乳突病毒(Human Papillomavirus, HPV)的感染有關,主要經由性接觸傳染,或透過接觸帶有病毒的物品造成間接感染。張廷彰指出,多數人感染後沒有明顯症狀,甚至可能自行痊癒,但有部分人感染高風險HPV後,因體質因素無法清除病毒,造成高風險HPV持續感染,持續的定義為達半年以上,進而演變為子宮頸癌前病變或癌症。

由於HPV感染與初期病變通常無明顯症狀,許多女性容易忽略定期篩檢的重要性,若等到出現異常出血等明顯警訊時,多已進展為子宮頸癌,往往已錯過早期治療的最佳時機。因此,張廷彰強調女性應透過「三道健康防線」及早防治:第一,建立安全性行為觀念;第二,接種HPV疫苗;第三,定期接受子宮頸癌篩檢,包括抹片與高危HPV DNA檢測,才能有效攔截疾病於早期,守住自身健康防線。

-----廣告,請繼續往下閱讀-----
子宮頸抹片搭配HPV DNA檢測篩檢更完善
圖 / 照護線上

子宮頸抹片搭配HPV DNA檢測 助精準掌握健康風險

目前子宮頸癌的篩檢方式主要有兩種:子宮頸抹片檢查與高風險HPV DNA檢測。抹片檢查是透過顯微鏡觀察子宮頸細胞型態,檢視是否有可疑性的癌細胞存在;而高危HPV DNA檢測則是利用基因技術分析是否有感染高風險型HPV,能在病變尚未發生前就偵測出潛在風險,讓防線更提前。

張廷彰醫師建議女性可搭配兩種篩檢方式使用,以提升篩檢準確度。若HPV DNA檢測結果為陰性,代表近期感染風險較低,可每五年再進行一次篩檢,不僅能減少不必要的頻繁檢查,也能更早掌握健康風險、規劃後續追蹤。

此外,目前政府亦有相關補助政策,鼓勵女性善加利用公費資源以守護健康:

  • 25至29歲婦女:每三年一次免費子宮頸抹片檢查
  • 30歲以上婦女:每年一次免費子宮頸抹片檢查
  • 當年度年齡為35歲、45歲、65歲女性可接受一次免費HPV DNA檢測

透過這些篩檢工具與政策支持,女性可更有效掌握自身健康,及早防範子宮頸癌風險。

-----廣告,請繼續往下閱讀-----
子宮頸癌高風險族群要注意
圖 / 照護線上

9 大子宮頸癌高風險族群要注意!醫:定期檢查遠離威脅

除了公費補助對象為,高風險族群應每年做一次子宮頸抹片檢查,也建議搭配高危人類乳突病毒 HPV DNA 檢測。高風險族群包括未曾接種過HPV疫苗、較早發生性行為、有多重性伴侶、HIV 感染、接受器官移植、使用免疫抑制劑、有家族病史、反覆陰道感染、抽菸或飲酒者等。即使沒有症狀,也應該定期接受子宮頸癌篩檢,才能及早處理。

張廷彰醫師表示,自 2025 年起國民健康署擴大補助子宮頸癌篩檢,符合公費篩檢條件的女性朋友務必好好把握,若未符合資格也可自費進行篩檢,守住健康防線,也呼籲民眾「挺身而出守護健康」,主動提醒身邊女性來一場健康篩檢約會!

筆記重點整理

  • 早期發現對子宮頸癌非常重要,若能及時接受標準治療,一期子宮頸癌的五年存活率可超過 90%,如果進展至中晚期子宮頸癌,可能會需要接受大範圍手術,再搭配放射治療或全身性治療,對工作及生活造成影響,存活率也比較差。
  • 子宮頸癌的發生大多與人類乳突病毒(HPV)感染有關,HPV 第 16、18 型屬於高危險人類乳突病毒,可能導致子宮頸癌前病變、子宮頸癌以及男女外生殖器癌;低危險人類乳突病毒則可能會引起生殖器疣(菜花)。
  • 預防子宮頸癌有三道關鍵防線,包括安全性行為、接種人類乳突病毒 HPV 疫苗、定期接受子宮頸癌篩檢。過去,子宮頸癌篩檢主要仰賴子宮頸抹片檢查近年來許多國家已開始採用 HPV DNA 檢測,因為HPV DNA 檢測能更準確預測未來罹患癌症的風險。
  • 自 2025 年起衛生福利部國民健康署擴大子宮頸癌篩檢,除了子宮頸抹片檢查,還納入 HPV DNA 檢測。在子宮頸抹片檢查部分,25 歲至 29 歲婦女,每 3 年 1 次子宮頸抹片檢查;30 歲以上婦女,每年 1 次子宮頸抹片檢查。當年度為 35 歲、45 歲、65 歲的女性,可接受 1 次人類乳突病毒 HPV DNA 檢測。

參考資料:

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

1

20
0

文字

分享

1
20
0
不抽菸也會得肺癌?PM2.5 如何「叫醒」沉睡的癌細胞?
PanSci_96
・2024/06/25 ・4403字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

不好意思,你很可能會得這種癌症。其實,我也是。

它就是台灣十大癌症榜首,肺癌。

現在,根據 2023 年 11 月衛福部發布的最新統計數字,肺癌一年的新增病人數已經超越大腸直腸癌,成為台灣每年癌症發生人數之最,堪稱臺灣人的「國民病」。

可怕的是,肺癌在癌症之中有三個之最:死亡率最高、發現時已經是晚期的比例最高、醫藥費也最高。現在再加上發生人數最高,堪稱從癌症四冠王。

-----廣告,請繼續往下閱讀-----

你說肺癌是抽菸的人的事?錯!台灣抽菸人口比例在全球排名 30,比日本、韓國、中國和多數歐洲國家都還低!顯然抽菸並不是肺癌的唯一主因!那難道是二手菸?還是空污惹的禍?還是台灣人的基因天生脆弱?我們到底要怎麼做才能遠離肺癌?

臺灣人的肺癌特別在哪?癌症和基因有關嗎?

根據衛福部國健署的說法,肺癌人數的增加,其實與 2022 年 7 月開始推動肺癌篩檢的政策有關。

隨著篩檢量的上升,近年內肺癌的確診人數預期還會再往上。

原來是因為篩檢量啊,那就不用擔心了。但換個角度想,這才是肺癌最可怕的地方,它可能已經存在在很多人身體裡,而我們卻沒能發現它。肺癌早期幾乎沒有症狀,高達 50% 的患者發現時已經是第 4 期。屆時不只肺部遍布腫瘤,癌細胞可能還轉移到大腦、骨頭等器官,讓治療變得加倍困難。

-----廣告,請繼續往下閱讀-----

對付肺癌,最關鍵點是愈早發現愈好。按照國健署統計,如果第 1 期就發現,5 年存活率可達九成以上,第 2 期發現降為六成,第 3 期存活率大約三成,一旦到第 4 期,僅僅剩下一成。

當然,最好的方法,就是做好預防,打從一開始就不讓癌細胞誕生。

那麼我們就要先了解問題到底是出在環境,還是你、我身體中的基因? 過去關於肺癌的遺傳研究,多半以歐美國家為主,套用到我們身上總有些牛頭不對馬嘴。幸好,我這裡一份以臺灣人為主角的大規模研究報告,將為我們揭露答案。

這份研究是由中央研究院團隊主導,結合臺灣大學、臺北醫學大學、臺中榮總等單位的研究,還登上生物領域頂尖期刊《Cell》2020 年 7 月的封面故事。非常具有權威性,不能不看。

-----廣告,請繼續往下閱讀-----

同時,這也是全球第一次完整剖析東亞地區肺癌的成因。他們的主題很明確:「為什麼不吸菸也會得肺癌?」

在西方,肺癌病人裡面只有 20% 左右的人不吸菸。但是在臺灣,卻有超過一半的肺癌病人都不抽菸,顯示有其他致癌要素潛伏在基因裡作怪。另外,臺灣肺癌病人的男女比例和西方人也大不同,臺灣女性通常更容易罹患肺癌。 為了瞭解肺癌,研究團隊取得肺癌病人的腫瘤和正常組織,解讀 DNA 序列和蛋白質表現量,最後鑑定出 5 種和西方人明顯不同的變異特徵。

其中最受關注的,是一種 APOBEC 變異,因為它有可能是臺灣女性為什麼容易罹患肺癌的關鍵。

這種變異特徵屬於內生性的,也就是人體機制自然產生的 bug。

-----廣告,請繼續往下閱讀-----

APOBEC 不是指單一基因,它是細胞內負責編輯 mRNA 的一組酵素,包含 11 個成員。主要功用是把胞嘧啶核苷酸(C)轉變尿嘧啶核苷酸(U)。簡單來說,APOBEC 原本是細胞正常活動的一環。但因為它有改寫核酸序列的能力,在 DNA 修復過程同時活躍時,就很有可能出事。這就像是一個創意豐富的阿嬤,看到破損的古畫,就在沒和別人討論的情況下上去東湊西補,用自己的方式重新修復了這件藝術。一個與原本不同的突變細胞可能就這樣產生了。

APOBEC 變異在臺灣女性病人身上特別明顯,舉例來說,60 歲以下沒有吸菸的女性患者,就有高達四分之三有這種變異特徵。研究團隊認為,APOBEC 出錯造成的基因變異可能是導致女性肺癌的關鍵。 除了內生性變異,另外一個容易導致肺癌發生的,就是周遭環境中的致癌物。

致癌物有哪些?

研究團隊總結出 5 種肺癌危險物質:烷化劑、輻射線、亞硝胺(Nitrosamine)、多環芳香烴(PAHs),還有硝基多環芳香烴(Nitro-PAHs)。

其中,亞硝胺類化合物主要來自食品添加物和防腐劑,多環芳香烴大多來自抽菸和二手菸,硝基多環芳香烴則是透過汽機車廢氣和 PM2.5 等毒害肺部。

-----廣告,請繼續往下閱讀-----
圖/unsplash

他們進一步分析,大略來說,女性在不同年紀,致癌因素也有差異。60 歲以下的女性肺癌病人,APOBEC 特徵的影響比較明顯;70 歲以上的女性患者,和環境致癌物的相關度比較高。 既然找到致癌原因,我們該如何著手預防呢?你知道肺癌,其實有疫苗可打!?

空氣污染和肺癌有關嗎?有沒有癌症疫苗?

想預防肺癌,有 2 種對策,一種是「打疫苗」,一種是「抗發炎」。

是的,你沒聽錯,英國牛津大學、跟佛朗西斯.克里克研究所,還有倫敦大學學院在 2024 年 3 月下旬公布,他們正在研發一款預防性的肺癌疫苗,就叫 LungVax。它所使用的技術,和過往牛津大學協同阿斯特捷利康藥廠製造 COVID-19 AZ 疫苗時的方法相似。

他們已經募到一筆 170 萬英鎊的經費,預計未來兩年資金陸續全數到位,第一批打算先試生產 3000 劑。不過,關於這款肺癌疫苗,目前透露的消息還不多,我們挺健康會持續追蹤這方面研究的進展。

-----廣告,請繼續往下閱讀-----

在疫苗出來之前,我們還有第二個對策:抗發炎。發炎和肺癌有什麼關係呢?這就要先回到一個問題:為什麼空污會提高得肺癌的機率呢?

一個很直觀又有力的推測是,空污會導致肺部細胞 DNA 突變,因此而催生出腫瘤。

圖/unsplash

但是修但幾勒,科學要嚴謹,不能只看結果。科學史上發生過很多次表象和真實截然不同的事件,空污和肺癌會不會也是這樣?

2023 年 4 月《Nature》的一篇封面故事,明確地說:Yes!肺癌真的和我們想的不一樣。

-----廣告,請繼續往下閱讀-----

其實早在 1947 年,就有以色列生化學家貝倫布魯姆(Isaac Berenblum)質疑主流觀點,他提出的新假設是:除了 DNA 突變以外,癌細胞還需要其他條件才能坐大。用白話說,就是肺癌是個會兩段變身的遊戲副本頭目,正常細胞先發生變異,接著再由某個條件「扣下扳機」,突變細胞才會壯大成腫瘤。

也就是説,只要攔住任一個階段,就有機會能防範肺癌。假如這論點正確,全球肺癌防治的方向將會直角轉彎。

《Nature》的研究支持這個假說,扭轉了過去 70 多年來的看法。在這項里程碑研究中,臺灣也是要角。

時間回到 2020 年,《Nature Genetics》上發表了一份針對 20 種致癌物質的研究報告,包括鈷、三氯丙烷和異丙苯等,但注意,這研究指出這些致癌物大多沒有增加實驗鼠的 DNA 變異量。

這個現象實在太違反直覺,過了 3 年,疑團還是懸而未決。直到《Nature》的跨國研究出爐,才解開部分謎底。

英國倫敦佛朗西斯.克利克研究所主導 2023 年的一項研究,他們鎖定對象為肺腺癌。肺腺癌是典型「不吸菸的肺癌」,台灣每 4 個肺癌病人就有 3 人是肺腺癌,尤其是女性肺腺癌患者有高達九成不抽菸。 為了抽絲剝繭探明空污和肺癌的關係,研究團隊聚焦在肺腺癌患者常發生的表皮生長因子受體基因變異,縮寫 EGFR。他們收集英國、加拿大、韓國和臺灣四國大約 3 萬 3 千名帶有 EGFR 突變的病人資料,進行深入分析,並且發現 PM2.5 和肺腺癌發生率有顯著關聯。研究團隊進一步用小鼠做試驗,把小鼠分成吸入和未吸入 PM2.5 兩組,結果發現吸入組更容易長出惡性腫瘤。

圖/pexels

到目前為止都還不算太意外,然而,團隊切下肺部細胞、分析 DNA 以後發現,DNA 的突變量居然沒有明顯增加!但是有另一件事發生了:堆積在肺的 PM2.5 顆粒會吸引免疫細胞從身體各處聚集過來,並分泌一種叫做 IL-1β 的發炎因子,導致肺組織發炎。

這下子有趣了,根據克利克研究所團隊的檢驗結果,估計每 60 萬個肺部細胞有 1 個帶有 EGFR 突變,這些細胞在發炎環境裡會快馬加鞭生長。相反的,當他們給小鼠注射抑制 IL-1β 的抗體,肺癌發病率就跟著下降。 《Nature》一篇評論引述美國加州大學舊金山分校分子腫瘤學專家波曼(Allan Balmain)的看法。他總結說,空污致癌的主要機制,可能不是因為空污誘發了新突變,而是持續發炎會刺激原本已帶有突變的細胞生長。換句話說,本來在熟睡的壞細胞會被發炎反應「叫醒」。

這會給肺癌防治帶來巨大衝擊,這樣一來,問題就從「用公衛或醫療方法防止 DNA 變異」變成了「如何抑制發炎」。

人體的細胞每天不斷分裂,用新細胞替換老舊細胞。但是這就像工廠生產線,良率無法百分百,組裝幾十萬產品難免會做出幾件瑕疵品,也就是帶有基因突變的細胞。換句話說,從自然界角度來看,DNA 變異是一種自發現象,醫療手段實際上幾乎不可能阻止。

但是,降低發炎卻是有可能做到的,例如注射抑制 IL-1β 因子的抗體。不過,就公共衛生來說,要給幾千萬人施打抗發炎因子藥物根本不切實際,因為太花錢,而且也可能造成其他的副作用。 波曼在《Nature》評論裡建議,透過簡易可行的飲食方式來降低體內發炎,或許有機會減少某些癌症的風險。這也就是說,科學家應該重新回來審視,怎樣把每天的生活點滴點石成金變成防癌手段。

圖/unsplash

這也等於預告了肺癌的下一階段研究方向,除了內科、外科醫療科技持續精進,尋求預防惡性疾病的最佳飲食要素,也成為聚焦重點。

也想問問你,關於肺癌,你最看好的下一個突破是什麼呢?

  1. 希望有篩檢技術 2.0,不但百發百中,如果連X光都不必照,只要抽血就能順便驗出有沒有癌細胞,那該多好。
  2. 當然是癌症疫苗,最好是能一勞永逸。
  3. 科學證實有效的抗發炎防癌食物組合,我一定立刻加入菜單,不過還是希望味道要好吃啦。

留言告訴我們你的想法吧,如果你覺得這集的內容特別實用,記得分享給你的親朋好友!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1