科學終會勝利。Science will win.
佐劑的發現,要從一個故意把麵包屑打進馬體內、故意讓傷口化膿的科學家說起。佐劑是疫苗科學的第三個里程碑,直至今日,它仍然在許多疫苗中扮演重要的角色。
這一章,我們不只談科學的進展,也談談歷史上的悲劇。近代史上,科學知識飛速發展,政府監管如未同時進步,將導致救命的疫苗變為致命的凶器,引發重大悲劇。
偶然發現的佐劑,為老人小孩帶來大大的便利
有些人的體質,疫苗無法在他們的身體裡產生足夠的免疫力。如:
- 老年人、服用抑制免疫力藥物(如:器官移植者、自體免疫疾病者)、特殊疾病患者(如:HIV感染者/愛滋病患者),他們的T細胞老化,或受到抑制,或受到感染
- 嬰兒,他們的免疫系統尚未成熟
相較於一般人,疫苗在上述族群體內,更難激發出足夠的免疫力。因此需要一種可幫助疫苗效力的物質,也就是佐劑(adjuvant。該詞源於拉丁語 adjuvare,意為「助人為樂」)。
1924 年,法國巴斯德研究所的獸醫-加斯頓·拉蒙 (Gaston Ramon) 正將白喉、破傷風毒素注入馬匹,讓動物產生中和毒素的抗體,再收集抗體,準備治療被白喉或破傷風感染的病人。然而,某日發現,若注射的傷口化膿,馬匹反而會產生更大量的抗體。因此他開始嘗試同時注入麵包屑、木薯粉等,結果發現,能引起局部發炎的物質,也能刺激身體生成更強的抗體 [1, 2]。
純化白喉毒素,找到最有效的佐劑
而在對岸的倫敦,免疫學家亞歷山大·格蘭尼 (Alexander Glenny) 也正在做白喉毒素刺激動物產生抗體的實驗。他在純化白喉毒素時,利用硫酸鋁鹽讓毒素沉澱(因為蛋白質多帶負電,而鋁鹽帶正電且難溶於水。加入鋁鹽後,正負電吸附毒素蛋白質後,即可在底部收集乳狀沉澱物),收集後再打進天竺鼠體內 [3]。格蘭尼驚訝的發現,相較於純粹的毒素,毒素/鋁鹽乳狀物能引起更強的抗體。1932 年,鋁鹽正式成為人類疫苗的佐劑,並且沿用至今;現行二價 HPV 疫苗(保蓓 Cervarix,荷蘭葛蘭素史克)、COVID-19 疫苗(CoronaVac,中國科興。MVC-COV1901,高端疫苗)也用鋁鹽作為佐劑。
佐劑的種類、原理,以及重要性
佐劑在疫苗領域上有高度重要的地位 [3]:
- 疫苗裡增加佐劑,可協助老年人、幼兒等特定體質的族群,在接種後產生和足夠的保護力
- 搭配佐劑,可減少抗原的使用。在緊急、須快速生產疫苗的情況,降低藥廠生產抗原的產線壓力
- 部分疫苗的抗原難以刺激免疫細胞(如:蛋白質類型的疫苗),佐劑的使用可讓抗原發揮效力
而且單一佐劑系統可以搭配多種疫苗,如:美國 Novavax 公司開發的 Matrix-M™ 佐劑系統,同時應用在流感、伊波拉出血熱、新冠肺炎/COVID-19 等疫苗。而最古老的鋁鹽系統,被應用在 HPV 疫苗(預防子宮頸癌,葛蘭素史克二價「保蓓 (Cervarix)」)、新冠肺炎/COVID-19 疫苗(中國科興「CoronaVac」、台灣高端疫苗)等不同藥廠、不同疾病上。
僅管佐劑在上世紀初已被發現,但原理直到近代才比較清晰。人體的免疫系統可分為:
- 先天免疫 (innate immunity):不針對特定病原,只要疑似入侵者就吞噬、清除。反應快速,如:巨噬細胞、嗜中性白血球。
- 後天免疫 (adaptive immunity):只有特定病原體才會啟動。反應較慢,如:產生抗體的 B 細胞、活化其他免疫細胞的 T 細胞。產生的記憶型免疫細胞可維持多年。
雖然疫苗的目標是活化 B 和 T 細胞,但近期研究認為,先天免疫對活化 B 和 T 細胞至關重要。局部發炎吸引巨噬細胞和樹突細胞 (DC, dendritic cell) 等到達現場並活化它們,而吞噬抗原後的樹突細胞,再將抗原傳遞給 B 和 T 細胞並活化後天免疫系統 [3]。因此,鋁鹽等佐劑能引起局部發炎,吸引樹突細胞、巨噬細胞聚集,進而活化後天免疫系統,以達到疫苗產生抗體、記憶型免疫細胞的目的。
而現今的佐劑多樣,可分為三類 [2]:
- 讓局部組織發炎/受損 (Damage-associated molecular patterns-type adjuvants),如:鋁鹽
- 模仿病原體入侵訊號 (Pathogen-associated molecular patterns-type adjuvants),如:未甲基化的 CpG 序列 DNA
- 讓白血球更有效地捕獲疫苗 (Particulate adjuvants):製備成奈米等級的顆粒,以利淋巴系統捕捉
儘管科學對佐劑的原理尚未完全理解,但佐劑已在 B 型肝炎、HPV(子宮頸癌相關病毒)等疫苗中,用實戰證明了它的價值。未來面對無法培養的病原體(如:C 型肝炎病毒)、無法誘導免疫力的抗原,相信都會因佐劑的加入而逐步看見曙光。無論是現在或未來,佐劑的出現,都為疫苗科學帶來無窮的潛力。
疫苗科學在研究者的努力下,進步神速,彷彿疫苗即將幫助人民遠離所有惡疾。然而,政府監管卻沒能與時並進,一昧求快的壓力下,一宗慘案在上世紀 50 年代的美國發生了…
小兒麻痺肆虐的美國,急需疫苗來控制疫情
小兒麻痺在 20 世紀中期,仍是嚴重、兇殘的傳染病。病毒 (poliovirus) 透過糞口傳染,在腸道繁殖,藉由排泄物汙染食物和水,尋找新的宿主。少數病毒會侵入神經系統、破壞運動神經元,導致永久殘疾、癱瘓,甚至死亡。光是 1952 年,美國就有近 6 萬人感染,2 萬多人殘廢、數千人死亡。
1951 年,美國科學家喬納斯·沙克 (Jonas Salk) 開始研究小兒麻痺疫苗。他採取死病毒策略,用福馬林/甲醛殺死病毒,試圖在最安全的形式下誘發免疫力。初步結果發現,沙克疫苗 (salk vaccine) 活化了抗體,且安全無虞。不幸的是,暴發的疫情、劇增的死亡人數,讓監管疫苗的政府機關,壓力越來越大 [4]。
政府釀成的悲劇——殺人疫苗,卡特事件 (Cutter incident)
1955 年 4 月 12 日,數十萬人的臨床試驗結果公佈,沙克疫苗可以阻止小兒麻痺,媒體一片歡欣鼓舞。當天下午,美國政府僅花了 2 個半小時,就許可了五家藥廠生產沙克疫苗,其中就包含出事的卡特藥廠 (Cutter Laboratories) [5]。
4 月 26 日,疫苗大規模施打後僅兩週,兒童接種後癱瘓的消息開始湧入。追查發現,癱瘓患者都曾接種卡特藥廠生產的疫苗。政府緊急召回該廠的疫苗,但此時已有 38 萬劑注入孩童的體內。
調查後發現,原本只能有死病毒的疫苗裡,在卡特藥廠的製造下,竟高達 12 萬劑的疫苗裡有活病毒。出問題的疫苗不僅讓孩童染病、更引爆社區大流行,4 萬人發病、近兩百人癱瘓、10 人死亡。原可阻止疫情的疫苗卻導致人民死亡,成了科學史上的大悲劇。事後調查認為,此事件的最大責任為政府監管單位。政府未依照科學組織的建議,嚴格要求藥廠遵守嚴謹的生產規範 [6, 7]。儘管該事件提升了後續保護和監管,但人類應深刻的記住,若科學屈服在政治和輿論的壓力時,悲劇就可能會引爆,人命和公信力將危在旦夕。
系列文章
參考文獻
- Alberta Di Pasquale, Scott Preiss, Fernanda Tavares Da Silva and Nathalie Garçon (2015) Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccine.
- Ian R. Tizard (2021) Adjuvants and adjuvanticity. Vaccines for Veterinarians. DOI: 10.1016/B978-0-323-68299-2.00016-2
- Amos Matsiko (2020) Alum adjuvant discovery and potency. Nature
- The tainted polio vaccine that sickened and fatally paralyzed children in 1955. The Washington Post. 2020/04/14
- Paul A Offit (2005) The Cutter Incident, 50 Years Later. The New England Journal of Medicine. DOI: 10.1056/NEJMp048180.
- Paul-Henri Lambert (2006) A successful vaccine that missed its target. Nature Medicine. DOI: https://doi.org/10.1038/nm0806-879
- 美國歷史系列147:卡特疫苗事件。美國在台協會