Loading [MathJax]/extensions/tex2jax.js

0

4
2

文字

分享

0
4
2

「不要被人潮推著走」—清大動機系、台大電機所,現為德州儀器技術專家的他想對思索職涯中的學弟妹說……

鄭國威 Portnoy_96
・2020/06/11 ・4050字 ・閱讀時間約 8 分鐘 ・SR值 486 ・五年級

-----廣告,請繼續往下閱讀-----

張峯鳴 (FM Chang) 一定很想知道,這篇訪問的 ROI (投資報酬率) 好不好?能不能真的幫上學弟妹?

身為跨國半導體大廠德州儀器 (Texas Instruments, 簡稱 TI) 產品測試部門經理,擔任管理職同時又具有 “Technical Ladder” 身份 (也就是德儀認定之技術專家) 的張峯鳴,看起來十分年輕,剛成為新手爸爸的他,研究所畢業後已經在德儀任職近八年,但採訪此刻看起來被認成大學生也不奇怪。在這泛科學一年一度的職涯專題中,我們邀請跟泛科學許多讀者背景相似的他來聊聊自己的求學經歷與職涯探索過程。

從研究所畢業後便加入德州儀器的張峯鳴 (FM Chang) 現為德州儀器 Tech Ladder 技術專家

理科集大成:太空人的夢、會計師的腦、物理人的心

「說來有點好笑,我小時候很想當太空人。」張峯鳴還記得上小學前最初的職涯想像。他說,除了覺得太空人穿著「機械感」十足,很帥以外,印象中小時候常常從電視新聞上注意到跟宇宙天文相關的消息。

「媽媽可能還在幫我擦鼻涕,爸爸看的電視新聞裡大多都是政治人物吵來吵去,但只要有類似哈伯望遠鏡發現了什麼什麼的消息,我就覺得感興趣,認為自己聽得懂。」他說。

-----廣告,請繼續往下閱讀-----

到了國中,媽媽送他去參加成功大學的航太營,由航太系學生帶領,接觸各類機械、構造。僅管其他學員年紀比他大,有點邊緣的他還是覺得「超好玩」。他說在營隊裡,能將學校教的牛頓力學實作展現,各種水火箭炫技玩法讓他不亦樂乎,大學生哥哥姊姊們示範的高空落「蛋」,也讓他躍躍欲試。

儘管高中時對天文太空依舊興趣滿滿,他說「可能是 ROI 的概念在我心中萌芽了,就越來越實際了。」他很清楚自己對理工科感興趣,但也納悶:熱門的志願怎麼都沒有航太、天文?他發現相關的知識領域在物理系裡都有,所以升大學填志願時選了多所大學的物理系,最後則在熱門跟理想志願之間折衷,成為清大動力機械工程學系的新生。

峯鳴在德州儀器輪調期間,把握機會體驗美國當地風情,增廣見聞。圖為他與同事一起至野外露營過夜。

為何不選出路看似更明確的電機系?其實原本是三類組的他,家裡長輩也曾勸他選醫科,但他很有主見,想把物理學好,他記得高中時心裡想:「難道唸電機未來就是修手機、念機械就是修車嗎?還是不要先決定修什麼好了,先念物理!」

上大學後,張峯鳴視野大開,認識的人一下子多了起來。同學關心的事情不只是學業、還關心環境議題、社會服務等,享受且渴望新刺激的他,便找機會出國交換。到美國密西根州立大學那段時間,更讓他看到台美兩地學習方式的差異。

-----廣告,請繼續往下閱讀-----

「他們看待跟處理事情的方式跟台灣很不一樣。他們很歡迎多元人才,所以入學不難,但淘汰不夠格的人卻毫不手軟。」他表示當時他同時選修開給大一到大四的課程,在大一生比較多的課堂上,不少人有來玩玩的感覺,功課討論起來愛做不做;但到了大四為主的課程就超精實,剩下的每個人都很清楚自己要什麼、都想在專業領域上有好成績。「感覺他們在大學每一年越來越強。有種修煉的感覺。」

比較之下,他覺得在台灣念大學,最難的是「考進大學」,很多人有上大學之後被當也沒關係的想法。而在美國不管是不是基礎課程,實作都很多。「會讓你每天都很忙,但很有收穫,所以回台灣之後我就選修這樣的課。」

最划算的選擇:如何出國學經驗、練英文、又不花錢?

基於出國交換時的深刻體驗,他本來打算出國讀研究所,也趁機玩一遭,但這想法被自己推翻。他是個在決策前總是會做好一番分析的人,不管是該不該出國讀研究所、或是要不要接受一次採訪。考慮家境與對未來理想人生的想像後,他認為在台灣唸研究所更省時間跟成本,以後想出國玩還有機會。

在台大唸電機研究所時,他參加了校內的就業博覽會,在德州儀器的攤位上,得知這家公司有 New College Graduates 科技菁英培訓計畫,雙眼為之一亮!這是德儀為剛畢業的學士或碩士,或是工作未滿一年的職場新鮮人量身打造的培訓計畫,為期 18-24 個月,涵括七大面向,從產品技術、專案管理、影響力建立、公司文化、處理訂單、報價交貨,到向高階技術主管、各國主管直接學習,並獲得回饋。此外,還能輪調到世界各地,一邊練英文、增加國外經驗,又不花自己的時間跟金錢。這完全擊中了張峯鳴的甜蜜點,於是畢業後就立刻加入德儀。

-----廣告,請繼續往下閱讀-----
峯鳴於美國總部晶圓廠輪調時,與同事一同打球運動,透過團體活動積極拓展人脈。

「當然啦,還是有很多工作要做。」很在乎名實相符的他,雖然受「菁英輪調計畫」吸引加入公司,但也坦言當初蠻不喜歡這計畫的名稱,畢竟當時覺得自己很嫩,不想被戴高帽子,但他後來卻紮實地透過這計畫讓自己成為名實相符的菁英。他每年輪調,接受不同訓練,從測試、品管到美國總部晶圓廠服務,逐步增進對公司與全產業的了解,提高了跨部門合作的能力。2015 年,德儀決定進入高壓電 IC 市場,張峯鳴扛起重任,從無到有,將台灣生產線建立起來,過程中與美國同仁合作開發技術,極為傑出的表現,更讓他受遴選成為公司認可的技術專家 Technical Ladder 一員。

Technical Ladder 直譯為「技術階梯」,其實是德儀為研發人員設計的升遷制度。Technical Ladder 分三層,在不同的層級有不同的競爭。因有比例限制,各廠要派出高手去跟他廠比賽,才能獲得此高榮譽職銜,並獲得薪資加給跟專業認可。「在這裡工作,大家都有企圖心,但不是每個人都適合領導或都有朝管理職發展的想法,因此可以朝技術專家的方向走,薪資跟職位一樣可以繼續提升,不會因為非管理職就停留在原本的位置。」儘管如此,張峯鳴卻身兼 Technical Ladder 一員與部門經理,可見他自己設定的階梯更具挑戰性。「能力跟國際觀的培養真的很扎實。loading 雖然重,但成就感也很強。」他說。

雖然隨著工作年資增加,大學跟研究所時學的專業技術能用上的頻率越來越少,但科學思維卻潛移默化成他的處事邏輯;他十分感謝大學階段時遇見的清大王訓忠教授,讓他在上工程數學跟流體力學時收穫滿滿,更讓他愛上應用理論解決真實問題。「今天遇到一個問題,我會用流體的特性、機械熱應力的狀況去推測,更快找到解決方向。另外,在管理以及跟同仁相處時,我也常從生物跟生態學思考,如何讓大家能各取所需,讓每個人待在適合的區位,他們也比較有安全感。」他說。

科技一點也不難:在德州儀器,溝通和多元並進

許多人無法跟領域外的人「科普」自己的工作在幹嘛,包括對自己的爸媽。張峯鳴對此倒不覺得難,他說:「德州儀器就是做 IC,做得非常非常小,放在手機裡、車子裡、冷氣裡。像是你手機的放電跟充電就有一個 IC 在控制,電快沒了進入省電模式就要放少一點。」他補充,德儀人有一種共同特質,就是想讓人聽懂生冷的技術,而出現此般特質背後有兩個原因,第一是因為德儀規模大,座落在很多國家。第二,他認為,則是因為公司積極倡導合作精神,常需要跨部門合作,溝通成日常工作必備,更需要與財務部、採購部門等非科技背景、非技術部門的同事溝通,若「不講人話」絕對走不通。

-----廣告,請繼續往下閱讀-----
身為籃球迷的峯鳴,透過對籃球的共同熱愛,與外國好友交流,一同前往籃球殿堂–NBA!

許多公司隨著組織擴大,無可避免地染上大組織病,使得創新點子如死水停滯、溝通上下前後到處卡,德儀為了避免這樣的問題,全力倡導分享精神,更希望用組織規模來提高效率。張峯鳴說德儀鼓勵 “Innovate once, Implement everywhere” (一處創新、處處運用):例如在台灣做了嘗試,發現省了成本、增加效率,就要提供方法給其他國家的廠來複製,所以生產端很重視分享知識的方式。此外,「公司內部有論壇,好想法丟出去,就會有人接球。雖然上司在看但不會有壓力,他反而會對你的活躍表現讚譽有加。」

而身為有點典型的理工男,他認為在德儀的女性工程師專業表現不亞於男性,推動團隊往目標前進的能力卻更強,例如當部門間合作比較不順時,女性工程師往往能讓事情破冰。他也發現育嬰留停回來之後的女同事,做事變得更有效率,判斷更準確。「可能是因為家庭讓他們時間控管得更緊。重要的是,其他同事都願意配合。」現實生活中剛成為新手爸爸的他認為:「假若我是新手媽媽,我會繼續工作,至少在德州儀器,大家尊重性別之間的差異,也享受多元帶來的優勢。」

致年輕的自己:多實習,然後不要著急

雖然職涯順利開展,在工作裡獲得高成就感,但如果能夠回到過去,張峯鳴還是有些想修正之處。

他說:「推甄上研究所之後,覺得從小到大一直念書念下來好累,所以那時就保留學籍先當兵,退伍後大腦彷彿掏空,覺得知識好寶貴、很渴望學習。」不過,雖然他對這決定(先去當兵)蠻滿意的,他現在覺得應該要暫停更久一點,先去業界工作個幾年,這樣會更知道自己需要、欠缺什麼,更善加利用研究所的兩年。另外,對做任何事的成本跟效率非常認真看待的他,也強烈建議大學生多到業界實習,他說:「短短兩個月就能夠知道自己以後是不是要花十年在這裡面,非常划算。多去實習,對跨出職場的第一步更有信心。」

-----廣告,請繼續往下閱讀-----
從大學時就參與公益活動、注重環保的峯鳴,在 TI 亦一同參與食物銀行,包米送暖。

他代表過公司到大學招募實習生,他認為一來到德儀實習薪資不錯,二來能會接觸到正職的工作。更重要的是,由於各部門同時招收,同一批實習生會一起籌辦活動,例如計畫結束後的發表會,彼此會很熟悉,這樣一來能認識很多來自不同領域、但都很有熱情的人才,而且德儀若評估是需要的人才,就會直接發 offer,對公司來說也能降低雇用錯人的成本。「真是蠻超值的。」然而,他也強調來申請實習前,要清楚自己的目標,而不是「來看看」。

在訪問結束前,他最後想給現在正在思索職涯的學弟妹一個關鍵建議:「不要急。」

他感同身受地說,看到身邊的人上了什麼研究所、或是拿到了哪間公司 offer,可能會逼自己要趕快往某條路鑽,但其實可以給自己一些時間,好好想自己想做什麼。「不要像在台北車站下了捷運被人群擠著前進到錯誤的出口。」雖然他在這次訪談中給了許多誠懇的建議,但他更希望學弟妹能自己想清楚,這最重要。

既然那麼重視 ROI 的他都這樣說了,肯定是很重要的建議。你說是嗎?

-----廣告,請繼續往下閱讀-----

本文由德州儀器與泛科技共同企劃

-----廣告,請繼續往下閱讀-----
文章難易度
鄭國威 Portnoy_96
247 篇文章 ・ 1298 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。

0

1
0

文字

分享

0
1
0
一顆科技巨星的隕落(下)—英特爾的沒落
賴昭正_96
・2025/03/20 ・4190字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

商業上的成功蘊含著自身毀滅的種子:成功會滋生自滿,自滿會導致失敗。只有偏執狂才能生存。
-Andrew Grove(英特爾首席執行官)

話說英特爾於 1986 年冒著丟掉大客戶百年 IBM 的危險,轉向成立僅 3 年多的小電腦公司推銷其最新微處理器的賭博,得到了回報:康柏電腦公司一炮而紅的成功加速客戶對新 80386 晶片的要求。90 年代中後期英特爾更大力投資新的微處理器設計,促進了個人電腦產業的快速成長,成為市場佔有率高達 90% 的微處理器主要供應商,使其自 1992 年以來一直保持半導體銷售額排名第一的地位,於 1999 年將英特爾推上代表美國 30 主要工業的道瓊指數之一成員。

但到了 2000 年代,特別是 2010 年代末期,英特爾面臨日益激烈的競爭,導致其在 PC 市場的主導地位和市場佔有率下降。儘管如此,截至 2024 年第三季度,英特爾仍以 62% 的市佔率遙遙領先 x86 市場、更是筆記型電腦的明顯贏家(72%)。可是為什麼今天英特爾股價竟然倒退了 28 年,回到 1996 年底的價位呢(註一)?為什麼它已經不能再代表美國主要工業,於 2024 年 11 月 8 日被踢出道瓊工業指數,為英偉達(Nvidia,臺灣與香港譯為「輝達」)取代呢?

是什麼原因讓英特爾失去產業龍頭的位置? 圖/pixabay

英特爾的失足

在回答此問題之前,筆者得先指出:個人電腦到了 2000 年初已不再是一高利潤的高科技,而是一種日用商品。當初將英特爾培養壯大的 IBM 於 2004 年年底完全退出了個人電腦的市場;而避免侵權透過逆向工程、製造出第一台 IBM 個人電腦相容機的康柏公司,也在個人電腦市場的價格競爭日益激烈、及想打入主機電腦市場的錯誤政策下,於 2002 年被惠普 ( Hewlett-Packard ) 收購「消失」了。

冰凍三尺,非一日之寒。Google 的人工智慧謂:「英特爾在晶片產業落後的主要原因是多種因素」,包括:
(1)未能洞悉智慧型手機的崛起,在行動晶片市場明顯落後,錯失創新機會給高通(Qualcomm Inc.)等競爭對手;
(2)依賴過時的製造流程,未能像台積電、AMD、和英偉達(註二)一樣採用更靈活晶片設計和外包製造,來應付快速不斷變化的市場需求,導致失去了高效能運算和人工智慧等關鍵領域的市場;
(3)一些分析師認為英特爾在個人電腦市場長期佔據主導地位可能導致高階主管自滿,不願適應不斷變化的產業動態。

-----廣告,請繼續往下閱讀-----

筆者認為前述的(1)及(2)都是果,真正的原因只有(3)一個。80 年代,當英特爾的晶片和微軟的軟體成為快速發展之個人電腦行業的雙引擎時,公司充滿活力,專注於其在個人電腦和資料中心伺服器的特殊領域。英特爾高層曾半開玩笑地將公司描述為「地球上最大的單細胞有機體」:一個孤立的、獨立的世界。像 IBM 一樣,數十年的成功和高利潤也催生了英特爾目中無人及自大之企業文化!這種開會又開會、討論又討論、開不完的會、討不完的論正是公司成熟的標註。

英特爾企業文化

想當初英特爾剛成立時,諾伊斯只聽了幾秒鐘霍夫有關微處理器的激進想法後,就立即說:「做吧」!真是不可同日而語。又如到了 1983 年,其主要記憶體晶片業務受到日本半導體製造商加劇競爭而大大降低獲利能力時,格羅夫立即迅速地不怕「…微處理器是個非常大的麻煩」,脫胎換骨成為微處理器主要供應商━又豈是 90 年代不遺餘力地捍衛其微處理器市場地位而與 AMD 鬥爭的英特爾所能比?

事實上英特爾也曾多次嘗試成為人工智慧晶片領域的領導者,但都以失敗告終(註三):專案被創建、持續多年,然後要麼是因為英特爾領導層失去耐心,要麼是技術不足而突然被關閉。為了保護和擴大公司的賺錢支柱(x86 的數代晶片),英特爾對新型晶片設計的投資總是退居二線。史丹佛大學電機工程教授、英特爾前董事普盧默 ( James Plummer ) 曾謂:「這項技術是英特爾皇冠上的寶石——專有且利潤豐厚——他們會盡一切努力來維持這一點的」。英特爾的領導者有時也承認這個問題,例如英特爾前執行長巴雷特 ( Craig Barrett ) 就曾將 x86 晶片業務比作一種毒害周圍競爭植物的雜酚油灌木叢。

微軟 Copilot AI

英特爾能再放光芒嗎?

在一連串的機會錯失,決策錯誤及執行不力下,英特爾於 2021 年任命曾經主導其發展人工智慧晶片、2009 年離職去擔任 EMC 總裁的基辛格(Patrick Gelsinger)回來當執行長,積極嘗試透過其所謂的「五年、四個節點」進程追趕台積電。這位浪子回頭,被請回來拯救公司的基辛格於去年 4 月 25 日宣稱:即將推出的英特爾 3 奈米製程伺服器晶片的需求很高,可以贏得那些轉找競爭對手的客戶,謂『我們正在重建客戶信任。他們現在看著我們說:「哦,英特爾回來了。」』…但半年後,董事會對他的扭虧為盈計畫完全失去了信心,給了他辭職或被解僱的選擇。基辛格於 12 月 1 日辭職,現由領導英特爾全球財務部門和投資者關係的津斯納 ( David Zinsner ) 擔任臨時聯合執行長,正在務色下一任執行長。

-----廣告,請繼續往下閱讀-----

英特爾現在的處境事實上很像 1993 年的 IBM:在官僚體制、大型電腦利潤下滑,及失去個人電腦的主導權後,其股票從 1987 年 7 月的最高點倒退了 26 年!當總裁兼執行長阿克斯(John Ackers ) 於當年元月宣布首次下調股息 55% 及離職後,遴選委員會竟然找不到任何人願意來收拾這個爛攤子━曾幾何時 IBM 執行長還是眾人夢寐以求的職位呀!最後選委會只好推薦自告奮勇、完全外行(註四)、銷售菸草和食品的 RJR Nabisco 公司的首席執行官郭士納(Louis Gerstner Jr.)!郭士納在自傳中回憶說:重振 IBM 所面臨的最嚴峻挑戰是改變其企業文化。現 IBM 雖然不再像以前在科技界一言九鼎,但其股票已「趕上時代」屢創歷史新高,為道瓊工業指數中歷史最悠久的高科技成員(1979 年起);郭士納也被視為美國商界的偶像,IBM 轉型和重拾技術領導地位的救星。

IBM 和英特爾的股價走勢圖。圖/作者提供

股票名嘴克萊默(Jim Cramer)在年初謂:「我們需要將英特爾視為資產負債表非常糟糕的國寶」,因此有必要幫助英特爾公司渡過難關。美國政府顯然也同意,商務部根據 CHIPS 激勵計劃的商業製造設施資助機會,已經給英特爾公司提供高達 78.65 億美元的直接資助。但如前面所提到的 IBM 如何啟動發展個人電腦,錢真的是萬能嗎?英特爾能重新燃燒發光嗎?

英特爾不像 1993 年的 IBM 具有百年的歷史,各方面人才濟濟:多項技術創新和最多的專利,包括自動櫃員機、動態隨機存取記憶體 、軟碟、硬碟、磁條卡、關聯式資料庫、Fortran 和 SQL 程式語言、UPC 條碼、以及本文所提到之個人電腦等;其研究部是世界上最大的工業研究機構,員工因科學研究和發明而獲得了各種認可,包括六項諾貝爾獎和六項圖靈獎(Turing Award,註五)。因此筆者懷疑英特爾能夠重新奪回業界領先地位;CFRA Research 技術分析師齊諾 ( Angelo Zino ) 表示:「目前來看,它們重返輝煌的可能性非常渺茫。」

以目前來看,英特爾技術劣勢難以逆轉,重返業界領導地位機會渺茫。圖/unsplash

結論

這顆科技巨星真的要隕落了嗎?真的是「一失足成千古恨,再回頭已百年身」嗎?英特爾第三任首席執行官(1987-1998)格羅夫真的不幸言中了嗎:「商業上的成功蘊含著自身毀滅的種子」?當然,像英特爾這麼有成就的公司要徹底消失是不太可能,因此最可能的命運應該是分割拍賣或像仙童半導體公司一樣被其它公司收購(註六)。事實上去年高通公司就曾與英特爾洽談收購事宜,但最終放棄了這個想法。

-----廣告,請繼續往下閱讀-----

最後讓我們在這裡以同時被 IBM 培養狀大、在個人電腦上一起嘯吒風雲的微軟公司,其創辦人蓋茨(Bill Gates)元月 8 日的美聯社訪談來結束本文吧。蓋茨聲稱:如果英特爾沒有在 70 年代初期取得技術突破,創造出能夠驅動個人電腦的微型晶片,他的職業道路可能會有所不同。他接著表示:微軟也像英特爾一樣,在 18 年前錯過了從個人電腦到智慧型手機的轉變,但微軟已經恢復元氣,而英特爾的困境卻惡化到需要尋找新執行長的地步(註七),他說:

他們錯過了人工智慧晶片革命,(因為晶片設計和製造方面落後)其製造能力達不到英偉達和高通等公司認為是簡單的標準。我認為基辛格非常勇敢,他敢說:「不,我要解決設計方面的問題,我要解決晶圓廠方面的問題。」我(曾)希望為了他自己、為了國家,他能夠成功。我希望英特爾能夠復甦,但目前看來它們的處境相當艱難。

今天微軟公司已是全美市值最大的前三名公司之一,而英特爾卻淪落至此,能不讓人感嘆造化弄人嗎?

(2025 年 2 月 3 日補註)本文完稿於元月 15 日;英特爾元月 30 日第四季業績報告謂:營收連續三季下滑,較去年同期下降 7%;本季淨虧損總計 1.26 億美元(即每股 3 美分),而去年同期的淨收入為 26.7 億美元(即每股 63 美分)。今年第一季的業績指引令分析師失望!

備註

  • (註一)同一期間道瓊股指上升了 7 倍多。
  • (註二)這三家公司現在全是中國人在主導。在英特爾全盛時期,這三家全是在後者的陰影下求生存;而現今這三家的市值均遠遠超過英特爾!
  • (註三)2005 年,當英特爾的晶片在大多數個人電腦中充當了大腦時,執行長歐德寧( Paul Otellini)就已經意識到了圖形晶片最終可能會在資料中心承擔重要的工作,向董事會提出了一個令人震驚的想法:以高達 200 億美元收購電腦圖形晶片的矽谷新貴英偉達(英偉達的市值現已超過 3 兆美元)。但因英特爾在吸收公司方面的記錄不佳,董事會拒絕了這個提議,歐德寧退縮了!反觀 AMD 於 2006 年收購英偉達對手 Array Technology Inc. 後,現正挑戰英偉達的圖形晶片市場。
  • (註四)在 1993 年三月宣布將擔任執行長的記者招待會上,被問及用什麼牌子的計算機時,新執行長說他有一台筆記本電腦,但不記得是什麼牌子。
  • (註五)公認為計算機科學領域的最高榮譽,被稱為「計算機界的諾貝爾獎」。
  • (註六)仙童半導體公司於 2016 年 9 月被安森美(ON)半導體收購,品牌已不存在。
  • (註七)英特爾於 2025 年 3 月任命陳立武出任新執行長。

延伸閱讀:圖形處理單元與人工智能

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
46 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
晶片生病要手術 該選哪種開刀方式來做切片?
宜特科技_96
・2025/01/11 ・3131字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

晶片結構內部有問題,想要進行切片觀察,但方式有好幾種,該如何針對樣品的屬性,選擇正確分析手法呢?

本文轉載自宜特小學堂〈 哪種 IC 切片手法 最適合我的樣品〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

點擊圖片收看影片版

IC 設計後,在進行後續的產品功能性測試、可靠度測試(Reliability Test)或故障分析除錯(Failure Analysis & Debug)前,必須對待測試的樣品先做樣品製備(Sample preparation),透過 IC 切片方式,進行斷面/橫截面觀察(Cross-section)。此步驟在確認晶片內的金屬接線、晶片各層之間結構(Structure)、錫球接合(Solder Joint)、封裝打線(Wire Bonding)和元件(Device)異常等各種可疑缺陷(Defect),扮演相當關鍵性重要角色。

然而觀察截面的方式有好多種,有傳統機械研磨(Grinding)方式,透過機械手法拋光(Polish)至所需觀察的該層位置;或是透過離子束(Ion Beam)方式來進行切削(Milling);那麼,每一種分析手法到底有那些優勢呢?又該如何選擇哪一種切片手法,才能符合工程師想要觀察的樣品型態呢?本文將帶來四大分析手法,從針對尺寸極小的目標觀測區(如奈米等級的先進製程缺陷),或是大面積結構觀察(如微米等級的矽穿孔 TSV),幫大家快速找到適合的分析手法,進行斷面/橫截面觀察更得心應手!

傳統機械研磨(Grinding):樣品製備時間長,觀測範圍可達 15cm

 傳統機械研磨最大優勢,是可以達到大面積的觀察範圍(<15cm 皆可),跨越整顆晶粒(Die),甚至是封裝品(Package),當需要檢視全面性結構的堆疊或是尺寸量測等等,就適合使用 Grinding 手法(如下圖)。這個手法可透過機械切割、冷埋、研磨、拋光四步驟置備樣品到所需觀察的位置。

-----廣告,請繼續往下閱讀-----
(左):晶粒(Die)剖面研磨;(中)&(右)銅製程剖面研磨。圖/宜特科技

不過傳統研磨也有兩項弱點,除了有機械應力容易產生結構損壞,如變形、刮痕外,此項操作也非常需要依靠操作人員的執行經驗,經驗不足者,恐導致研磨過頭而誤傷到目標觀測區,影響後續分析。

傳統研磨相當依靠操作人員的執行經驗。圖/宜特科技

離子束 Cross-section Polisher(CP):除了截面分析,需要微蝕刻也可靠它

相較於傳統機械研磨(Grinding),Cross-section Polisher(簡稱 CP)的優點在於,是利用離子束做最後的精細切削(Fine milling),可以減低多餘的人為損傷,避免傳統研磨機械應力產生的結構損壞。除了切片外,CP 還有另一延伸應用,就是針對樣品進行表面微蝕刻,能夠解決研磨後造成的金屬延展或變形問題。因此,若是想觀察金屬堆疊型之結構、介金屬化合物 Intermetallic Compound(IMC),CP 是非常適合的分析手法。

CP 的手法,是先利用研磨(Grinding)將樣品磨至目標區前,再使用氬離子 Ar+,切削至目標觀測區,此做法不僅能有效縮短分析時間,後續再搭配掃描式電子顯微鏡(Scanning Electron Microscope,簡稱 SEM)進行拍攝,將能夠呈現較為清晰的層次邊界。

上圖是兩張 SEM 影像。左圖為研磨後的 IC 結構,層次邊界並不清晰;右圖則為 CP 切削後的 IC 結構,層與層之間界線清晰可見,同時也少了許多研磨後的顆粒與髒汙。圖/宜特科技

案例一CP Cross Section 能力,快又有效率!

案例一的待測樣品為 BGA 封裝形式,目標是針對特定的錫球(Solder bump)進行分析。透過 CP,可在 1 小時內完成 1mm 範圍的面積切片。後續搭配 SEM 分析,即可清楚呈現錫球表面材料的分布情況。

-----廣告,請繼續往下閱讀-----

下圖是案例中的 SEM 影像,圖(a)是 CP 後的樣品截面,可將整顆 bump 完整呈現。圖(b)是用傳統機械研磨(Grinding)完成之 BGA,雖然可以看到 bump 的介金屬化合物(IMC),但因研磨延展無法完整呈現。而圖(c)是用 CP 完成之 BGA,bump 下方的IMC對比清晰,可清楚看到材料對比的差異。

圖/宜特科技

案例二:透過 CP milling 解決銅延展變形的狀況

常見的 PCB 板疊孔結構中,若盲孔(Blind Via Hole,簡稱 BVH)與銅層(Cu layer)之間的結合力較弱時,在製程後期的熱處理過程中,容易導致盲孔與銅層拉扯出裂縫(Crack),造成阻值不穩定等異常情形。一般常見是透過傳統機械研磨(Grinding)來檢測此類問題,但這種處理方式往往會造成銅延展變形而影響判斷。我們可以使用 CP 針對 BVH 結構進行 CP milling,有效解決問題,並且處理範圍可達 10mm 以上之寬度。

左圖為傳統機械研磨(Grinding)後之 PCB via,無法看到裂縫(Crack);右圖為 CP milling 後之 PCB via,清楚呈現裂縫(Crack)。圖/宜特科技

Plasma FIB(簡稱PFIB):不想整顆樣品破壞,就選擇它來做局部分析

在 3D-IC 半導體製程技術中,如果擔心研磨(Grinding)在去層(Delayer or Deprocess)過程傷到目標區,或是擔心樣品研磨時均勻性不佳,會影響到觀察重點,這時就可考慮用電漿聚焦離子束顯微鏡(Plasma FIB,簡稱 PFIB)分析手法!

PFIB 結合了電漿離子蝕刻加工與 SEM 觀察功能,適用於分析範圍在 50-500 µm 的距離內,可進行截面分析與去層觀察,並針對特定區域能邊切邊觀察,有效避免因盲目切削而誤傷到目標區的狀況,確保異常結構或特定觀察結構的完整性。(閱讀更多:先進製程晶片局部去層找 Defect 可用何種工具

-----廣告,請繼續往下閱讀-----
PFIB 切削後之 TSV (Through Silicon Via)結構,除了可以清楚量測金屬鍍層厚度外,因為沒有研磨的應力影響,可明確定義 TSV 蝕刻的 CD(Critical Dimension)。圖/宜特科技

Dual Beam FIB(簡稱DB-FIB):適用數奈米小範圍且局部的切片分析

結合鎵離子束與 SEM 的雙束聚焦離子顯微鏡(Dual Beam FIB,簡稱 DB-FIB),可針對樣品中的微細結構進行奈米尺度的定位及觀察,適用於分析範圍在 50µm 以下的結構或異常區域。同時,DB-FIB 還能進行能量散佈 X-ray 能譜儀(Energy Dispersive X-ray Spectroscopy,簡稱 EDX)分析及電子背向散射(Electron Backscatter Diffraction,簡稱 EBSD),以獲得目標區域的成分與晶體結構相關資訊。

此外,當觀察的異常區域或結構過於微小,用 SEM 無法得到足夠資訊時,DB-FIB 也可以執行穿透式電子顯微鏡(Transmission Electron Microscope,簡稱 TEM)的試片製備,後續可供 TEM 進行更高解析度的分析。

DB-FIB 搭配 SEM 與鎵離子槍,可針對異常及微區結構進行定位與分析。圖/宜特科技

若想更認識各種工具的應用,歡迎來信索取宜特精心製作的四大切片分析工具圖表marketing_tw@istgroup.com,希望透過本文能幫助讀者,對IC截面分析手法有更多了解,例如 CP 設備新增了 Milling 功能,使其用途更加多元;而 PFIB 增加了去層功能,為先進製程的異常分析開啟了全新的可能性!

本文出自 www.istgroup.com

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

宜特科技_96
12 篇文章 ・ 4 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

4
0

文字

分享

0
4
0
從半導體到量子晶片:台灣成為全球量子科技的核心力量!
PanSci_96
・2024/10/14 ・2212字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

台灣首台量子電腦誕生:量子時代的到來

2024 年 1 月,台灣自主研發的第一台量子電腦正式於中央研究院誕生,儘管僅具備5個量子位元(qubits),卻為台灣在全球量子電腦競技場上佔據一席之地揭開了序幕。這一具有歷史性意義的事件不僅代表台灣科技能力的進步,也喚醒了人們對量子電腦的未來潛力的無限期待。

量子電腦,不再僅是科幻小說中的幻想,而是實實在在的科技新星,逐漸改變人類面對複雜問題的解決方式。台灣,身為全球半導體製造的重要支柱,正在迎接量子電腦進入量產的時代,而這將與材料學、晶片製程技術緊密相關。當量子技術進一步發展,台灣的製程技術無疑能為這場科技革命提供關鍵助力。

但在我們深入了解量子電腦的潛力之前,必須先理解它的基本運作原理。畢竟,要瞭解該投資哪些量子概念股,或者選擇哪些科系來掌握未來的科技趨勢,我們首先需要清楚量子電腦究竟是如何運作的。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是量子電腦?從電晶體到量子位元

2019 年,Google 推出了 53 量子位元的量子電腦「梧桐」(Sycamore),並宣告達成「量子霸權」,即其量子電腦在短短 200 秒內完成了傳統超級電腦需要 1 萬年才能處理的計算任務。這標誌著量子計算能力的突破,為計算科學開啟了全新的紀元。

-----廣告,請繼續往下閱讀-----

量子電腦之所以強大,是因為它利用了量子力學的「疊加」與「糾纏」現象。傳統電腦使用二進制的「0」和「1」來進行計算,而量子位元可以同時處於「0」和「1」的狀態,這使得量子電腦能在同一時間進行更多複雜的計算,大大提高了運算效率。

這樣的技術突破意味著,我們不再只依賴電子流過電晶體來實現運算,而是可以直接操控單一電子或其他粒子,讓它們同時攜帶 0 與 1 的信息,從而極大地提升了計算能力。

掌握電子的挑戰:從不確定性到操控技術

量子力學的另一個特性——不確定性原理——使得控制電子變得非常困難。電子極其微小,甚至無法用肉眼觀察。當我們試圖「觀察」一顆電子時,光子的介入會改變電子的狀態,這種不確定性使得同時測量電子的位置和動量幾乎不可能。

這種量子現象的捉摸不定,給科學家們帶來了巨大的挑戰。然而,正是這些現象,讓科學家們探索出了全新的計算方式——量子計算。在這一領域,超導體成為了實現量子位元的關鍵技術。

-----廣告,請繼續往下閱讀-----

超導體與量子電腦的結合:解鎖未來的關鍵

2023 年 7 月,韓國科學家宣布發現了一種名為 LK-99 的高溫超導體,這一發現引起了全球的轟動,因為超導體具備零電阻和磁浮現象,與量子力學有著密切的聯繫。超導體是未來量子電腦的潛在材料,它能夠在極低溫下讓電子以「庫柏對」的形式運動,這些電子對能夠在原子之間暢通無阻,產生零電阻效應。

通過利用「約瑟夫森效應」,兩個超導體之間夾入絕緣體,可以讓電子對穿越絕緣體,形成「超導電流」。這種穿隧效應是量子電腦中量子位元的重要基礎,讓我們能夠構建出穩定且有效的量子系統。

然而,現有的超導量子電腦仍面臨兩個主要挑戰。首先,超導現象只能在接近絕對零度的極低溫環境下出現,這意味著要在家庭或企業中大規模應用量子電腦,仍需克服極端溫控的技術難題。其次,超導量子位元非常容易受到外界干擾而失去量子狀態,這使得量子計算的穩定性成為一個尚未解決的問題。

由美國國家標準技術研究所研發的約瑟夫森接面陣列晶片。圖/wikimedia

量子電腦的多元發展:超導不是唯一的答案

儘管超導體被廣泛應用於當前的量子電腦技術中,但它並不是唯一的發展途徑。其他量子計算技術也在不斷進步,包括基於離子阱技術、光子學量子電腦等。

-----廣告,請繼續往下閱讀-----

離子阱技術利用激光操控單一原子來進行計算,這種技術具有極高的精度和穩定性,但也面臨著技術複雜性和成本的問題。而光子學量子電腦則利用光子來承載和傳輸信息,具有快速且易於擴展的潛力,然而,目前的光子學技術還存在一定的技術障礙,尤其是在量子糾纏狀態的穩定性上。

因此,量子計算的未來發展並不會只依賴一種技術,而是可能出現多元化的方案,根據不同的應用場景,選擇最合適的技術路徑。

台灣的量子未來:機遇與挑戰並存

隨著全球對量子技術的關注不斷提升,台灣有望在這一領域佔據重要地位。台灣的半導體技術、材料科學研究和製造實力,無疑為量子電腦的發展提供了堅實的基礎。從傳統的半導體製程轉換到量子晶片製造,台灣擁有豐富的技術積累與創新潛力。

然而,量子電腦技術的發展速度迅猛,台灣必須在全球競爭中不斷推動自主研發能力。未來,量子電腦的應用範圍將涵蓋人工智能、金融運算、材料科學、新藥開發等領域,這將進一步改變現有的產業結構和科技生態。

-----廣告,請繼續往下閱讀-----

對於投資者和學生來說,理解量子電腦的運作原理與未來趨勢,將是未來掌握科技變革的關鍵。而量子電腦的崛起,也標誌著下一場技術革命的序幕已經開啟。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。