0

1
0

文字

分享

0
1
0

沒有結局的比賽:你會選擇合作還是背叛?——《大話題:賽局理論》

大家出版_96
・2023/04/23 ・1525字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

重複賽局中的均衡結果

在 1883 年,法國經濟學家伯特蘭(1822 – 1900)研究了販售相同產品的廠商之間的價格競爭,在他的分析中,廠商面對的誘因問題很類似囚徒困境賽局。

削價競爭是不同廠商間達到均衡的可能。圖/《大話題:賽局理論》

伯特蘭預測在均衡時廠商之間會彼此削價,類似囚徒困境賽局中的{認罪,認罪}結果。但我們在現實中常常看到廠商彼此勾結並訂定高價。西方民主國家多數立有「反壟斷法」禁止這類勾結,以促進競爭。

為了瞭解在囚徒困境之類的處境中,參與者何時會勾結,我們必須跳脫一次性賽局,也就是參與者只進行一次後就結束的賽局。轉而考慮更符合現實的重複互動,也就是參與者會不斷進行同樣賽局。

為避免削價競爭,廠商間可能會想透過合作訂出更好的價格。圖/《大話題:賽局理論》

如果參與者重複互動,我們能夠在囚徒困境中觀察到合作的均衡嗎?

-----廣告,請繼續往下閱讀-----

假設兩位參與者都知道囚徒困境賽局會進行兩次。為了找出重複互動賽局的均衡,我們要先預測最後一回合賽局的均衡,然後倒推第一回合賽局的均衡。這種推理方式稱為逆向歸納法。

預測下一次均衡的賽局來回推這次該採取的行動。圖/《大話題:賽局理論》

如果這就是結局?

在第二回合,參與者知道這是最後一次互動,也就沒有必要嘗試改變未來的結果。因此,最後一局結果就像是一次性囚徒困境:沒人合作。

參與者可以推論,不論第一回合如何,第二回合肯定沒有合作。那麼,從參與者的角度來看,第一回合也跟一次性囚徒困境沒有兩樣。因此,在均衡時兩回合都不會出現合作。

事實上,即使囚徒困境賽局進行多次,只要賽局有個確切的結束回合,我們永遠不會觀察到合作。逆向歸納法從最終回合拆解了整體賽局的結果。

-----廣告,請繼續往下閱讀-----
由於預測到結局,因此人們選擇不再合作了。圖/《大話題:賽局理論》

現實世界沒有真正的「最終回」

以色列裔美國數學家歐曼(1930 年生)在 2005 年與謝林一起獲得諾貝爾經濟學獎。他的研究之一是無限回合賽局均衡下的合作行為。在無限回合中,逆向歸納法無法從最終局拆解合作情形,因為沒有明確的最終局。

合作要能成為均衡的結果,首要條件是參與者的策略能夠處罰過去的壞行為(不合作)。為了避免以後受罰,參與者可能選擇合作。

此刻的合作將影響到未來自我的利益時….圖/《大話題:賽局理論》

試看在無限回合的囚徒困境賽局中所謂的冷酷策略:參與者起初採取合作行動(例如囚徒保持沉默,也可能是室友賽局中的洗碗,或是廠商的勾結高價)。

在接下來的賽局中,只要對方合作,我也一直保持合作。但只要對方背叛了(例如囚徒認罪、室友不再洗碗、廠商用低價搶走市場),我就選擇背叛。

-----廣告,請繼續往下閱讀-----
此時的合作是怕雙方不合作的結果。圖/《大話題:賽局理論》

——本文摘自《大話題:賽局理論》,2023 年 3 月,大家出版出版,未經同意請勿轉載。

文章難易度
大家出版_96
14 篇文章 ・ 11 位粉絲
名為大家,在藝術人文中,指「大師」的作品;在生活旅遊中,指「眾人」的興趣。

0

0
1

文字

分享

0
0
1
Intel® Core™ Ultra AI 處理器:下一代晶片的革命性進展
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/21 ・2364字 ・閱讀時間約 4 分鐘

本文由 Intel 委託,泛科學企劃執行。 

在當今快節奏的數位時代,對於處理器性能的需求已經不再僅僅停留在日常應用上。從遊戲到學術,從設計到內容創作,各行各業都需要更快速、更高效的運算能力,而人工智慧(AI)的蓬勃發展更是推動了這一需求的急劇增長。在這樣的背景下,Intel 推出了一款極具潛力的處理器—— Intel® Core™ Ultra,該處理器不僅滿足了對於高性能的追求,更為使用者提供了運行 AI 模型的全新體驗。

先進製程:效能飛躍提升

現在的晶片已不是單純的 CPU 或是 GPU,而是混合在一起。為了延續摩爾定律,也就是讓相同面積的晶片每過 18 個月,效能就提升一倍的目標,整個半導體產業正朝兩個不同方向努力。

其中之一是追求更先進的技術,發展出更小奈米的製程節點,做出體積更小的電晶體。常見的方法包含:引進極紫外光 ( EUV ) 曝光機,來刻出更小的電晶體。又或是從材料結構下手,發展不同構造的電晶體,例如鰭式場效電晶體 ( FinFET )、環繞式閘極 ( GAAFET ) 電晶體及互補式場效電晶體 ( CFET ),讓電晶體可以更小、更快。這種持續挑戰物理極限的方式稱為深度摩爾定律——More Moore。

-----廣告,請繼續往下閱讀-----

另一種則是將含有數億個電晶體的密集晶片重新排列。就像人口密集的都會區都逐漸轉向「垂直城市」的發展模式。對晶片來說,雖然每個電晶體的大小還是一樣大,但是重新排列以後,不僅單位面積上可以堆疊更多的半導體電路,還能縮短這些區塊間資訊傳遞的時間,提升晶片的效能。這種透過晶片設計提高效能的方法,則稱為超越摩爾定律——More than Moore。

而 Intel® Core™ Ultra 處理器便是具備兩者優點的結晶。

圖/PanSci

Tile 架構:釋放多核心潛能

在超越摩爾定律方面,Intel® Core™ Ultra 處理器以其獨特的 Tile 架構而聞名,將 CPU、GPU、以及 AI 加速器(NPU)等不同單元分開,使得這些單元可以根據需求靈活啟用、停用,從而提高了能源效率。這一設計使得處理器可以更好地應對多任務處理,從日常應用到專業任務,都能夠以更高效的方式運行。

CPU Tile 採用了 Intel 最新的 4 奈米製程和 EUV 曝光技術,將鰭式電晶體 FinFET 中的像是魚鰭般阻擋漏電流的鰭片構造減少至三片,降低延遲與功耗,使效能提升了 20%,讓使用者可以更加流暢地執行各種應用程序,提高工作效率。

-----廣告,請繼續往下閱讀-----
鰭式電晶體 FinFET。圖/Intel

Foveros 3D 封裝技術:高效數據傳輸

2017 年,Intel 開發出了新的封裝技術 EMIB 嵌入式多晶片互聯橋,這種封裝技術在各個 Tile 的裸晶之間,搭建了一座「矽橋 ( Silicon Bridge ) 」,達成晶片的橫向連接。

圖/Intel

而 Foveros 3D 封裝技術是基於 EMIB 更進一步改良的封裝技術,它能將處理器、記憶體、IO 單元上下堆疊,垂直方向利用導線串聯,橫向則使用 EMIB 連接,提供高頻寬低延遲的數據傳輸。這種創新的封裝技術不僅使得處理器的整體尺寸更小,更提高了散熱效能,使得處理器可以長期高效運行。

運行 AI 模型的專用筆電——MSI Stealth 16 AI Studio

除了傳統的 CPU 和 GPU 之外,Intel® Core™ Ultra 處理器還整合了多種專用單元,專門用於在本機端高效運行 AI 模型。這使得使用者可以在不連接雲端的情況下,依然可以快速準確地運行各種複雜的 AI 算法,保護了數據隱私,同時節省了連接雲端算力的成本。

MSI 最新推出的筆電 Stealth 16 AI Studio ,搭載了最新的 Intel Core™ Ultra 9 處理器,是一款極具魅力的產品。不僅適合遊戲娛樂,其外觀設計結合了落質感外型與卓越效能,使得使用者在使用時能感受到高品質的工藝。鎂鋁合金質感的沉穩機身設計,僅重 1.99kg,厚度僅有 19.95mm,輕薄便攜,適合需要每天通勤的上班族,與在咖啡廳尋找靈感的創作者。

-----廣告,請繼續往下閱讀-----

除了外觀設計之外, Stealth 16 AI Studio 也擁有出色的散熱性能。搭載了 Cooler Boost 5 強效散熱技術,能夠有效排除廢熱,保持長時間穩定高效能表現。良好的散熱表現不僅能夠確保處理器的效能得到充分發揮,還能幫助使用者在長時間使用下的保持舒適性和穩定性。

Stealth 16 AI Studio 的 Intel Core™ Ultra 處理器,其性能更是一大亮點。除了傳統的 CPU 和 GPU 之外,Intel Core™ Ultra 處理器還整合了多種專用單元,專門針對在本機端高效運行 AI 模型的需求。內建專為加速AI應用而設計的 NPU,更提供強大的效能表現,有助於提升效率並保持長時間的續航力。讓使用者可以在不連接雲端的情況下,依然可以快速準確地運行各種複雜的 AI 算法,保護了數據隱私,同時也節省了連接雲端算力的成本。

軟體方面,Intel 與眾多軟體開發商合作,針對 Intel 架構做了特別最佳化。與 Adobe 等軟體的合作使得使用者在處理影像、圖像等多媒體內容時,能夠以更高效的方式運行 AI 算法,大幅提高創作效率。獨家微星AI 智慧引擎能針對使用情境並自動調整硬體設定,以實現最佳效能表現。再加上獨家 AI Artist,更進一步提升使用者體驗,直接輕鬆生成豐富圖像,實現了更便捷的內容創作。

此外 Intel 也與眾多軟體開發商合作,針對 Intel 架構做了特別最佳化,讓 Intel® Core™ Ultra處理器將AI加速能力充分發揮。例如,與 Adobe 等軟體使得使用者可以在處理影像、圖像等多媒體內容時,能夠以更高效的方式運行 AI 算法,大幅提高創作效率。為各行專業人士提供了更加多元、便捷的工具,成為工作中的一大助力。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
199 篇文章 ・ 305 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
預測市場?預測股票?如何讓預測有更高的準確率?——《超越直覺》
一起來
・2024/05/04 ・1635字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

我們發現在足球賽中,只要知道一個簡單的訊息(主隊過去的獲勝機率超過一半),預測力就會明顯好過隨便亂猜。如果再加上第二個簡單的訊息(勝負紀錄較佳的隊伍會略占優勢),可以再進一步提升預測力。除此之外,你可能還想收集其他訊息,像是四分衛最近的表現、球隊有沒有傷兵、明星跑衛的花邊新聞,但這些資訊對預測的幫助不大。換句話說,預測複雜系統這件事依循著「收益遞減定律」:第一個訊息很有幫助,但很快就找不到有幫助的其他訊息。

對於某些事件,我們當然會非常計較預測的準確性,像是投放線上廣告或投資高頻交易(HFT),可能一天內就要預測數百萬、數十億次,而且金額相當龐大。投入極大心力與費用、運用最精細的運算模型來開發複雜的預測方式,在那種情況下或許值得。但在其他商業領域,例如製作電影、出版書籍到發展新技術,只需要一年預測數十次、頂多數百次,而且這不過是整個決策過程中的一部分。這時,我們只要借助相對簡單的方式,就可以讓預測臻至完善。

預測時,不該只根據一人的意見就做決定——尤其是你自己的意見。雖然人們善於察覺與特定問題相關的因素,卻往往不會評估因素之間的相對重要性。譬如,預測電影的首映週末票房時,你可能會認為一些變項都是高度相關,例如製作費、宣傳費、上映廳數、試映會評價。沒錯。但我們要如何權衡「評價不優」與「額外行銷預算:一千萬美元」之間的比重?這沒有一定答案。同樣,在決定分配行銷預算的方法時,要如何判斷多少人會受到網路或雜誌廣告影響,又有多少人會從親朋好友那邊聽到產品訊息?我們也不清楚。唯一知道的是,這些因素都可能相關。

圖/envato

你可能會以為,精準判斷應該是專家的強項。但正如泰特洛克的試驗結果,專家在量化預測上的表現,其實跟普通人一樣糟糕,甚至可能更糟。然而,我們依賴專家之所以會成效不彰,不是因為專家的預測力跟一般人沒兩樣。問題在於,我們通常一次只會諮詢一位專家(否則何必找專家)。但我們應該要綜合多人的意見(無論是專家或非專家)再取平均值。至於要如何達成?這其實沒那麼重要。

-----廣告,請繼續往下閱讀-----

儘管預測市場有各種花俏的噱頭與技術,表現也比民調這類簡單方式好一點,但這種微小差異,還不如採用某種方式簡單綜合許多觀點再取平均。或者,我們也可以直接根據歷史數據,評估各項因素的相對重要性——這實際上就是統計模型在做的事。我必須再強調一次,雖然複雜模型可能會比簡單模型好一點,但兩者的差異小到幾乎沒有差別。到頭來,模型跟群眾所能達到的預測目的都一樣。第一,這兩種預測方式都要靠人為判斷,確認哪些因素與預測相關。第二,兩者皆需要估計、權衡那些因素的相對重要性。正如心理學家羅賓.道斯所言:「訣竅在於,找到要注意的變項,然後知道如何加入它們。」

只要一直使用這個訣竅,一段時間後,就會知道哪一些預測的失誤率較小,哪一些較大。舉例來說,當你要預測一個事件的結果,假如其他條件都相同,那越早做預測的失誤率就越大。不管你用什麼方法預測電影票房,在「剛開拍」時會比「上映前幾週」時要難得多。同樣,如果你想預測尚未上市的新產品銷量,那準確度可能不會高過預測已上市的產品。

你無法解決這個問題,唯一能做的只有:使用其中一種方式,或甚至結合幾種方式,就像我們研究預測市場時的方法,然後隨時觀察、記錄預測的表現。我在第 6 章開頭也提過,一般人通常不習慣追蹤自己的預測。我們做了大量預測,卻很少回頭檢視自己對了幾次。然而,留意並記錄預測成效或許才是最重要的事,唯有如此,你才能知道準確度是多少,進而知道自己預測的可信度。

——本文摘自《超越直覺》,2024 年 01 月,一起來出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

一起來
5 篇文章 ・ 2 位粉絲

0

2
1

文字

分享

0
2
1
為什麼同伴會出賣你?從「囚徒困境」來看共犯為什麼先招了!——《大話題:賽局理論》
大家出版_96
・2023/04/22 ・1979字 ・閱讀時間約 4 分鐘

合作與私利的權衡:囚徒困境

最廣為人知的賽局理論悖論是囚徒困境,這個賽局由加拿大數學家塔克所命名。塔克教授的囚徒困境賽局就像是好萊塢的犯罪劇情片,有人提供認罪協商給兩名嫌疑犯去供出對方。這個賽局說明了為共同利益而採取聯合行動十分困難,因為人們往往追求私利。

囚徒困境賽局中的誘因屢見不鮮,很適合拿來分析許多領域的問題。從經濟學中公司的競爭,到社會學中的社會規範,到心理學中的決策,到生物學中動物競爭稀缺資源,再到資訊工程中電腦系統競爭頻寬。

囚徒困境是指兩名囚犯陷入「是否要認罪」的心理狀態。圖/《大話題:賽局理論》

阿倫和阿班因為合夥偷車而被捕。警方懷疑他們還涉嫌一起肇事逃逸案件,但沒有足夠的證據起訴他們。兩人被帶到不同的房間分開偵訊。

阿倫和阿班都有兩個可能的行動:保持沉默或認罪。因此,賽局中總共有四種結果。

-----廣告,請繼續往下閱讀-----

阿倫沉默,阿班沉默。阿倫認罪,阿班沉默。阿倫沉默,阿班認罪。阿倫認罪,阿班認罪。

刑期長短受到共犯是否認罪的影響。圖/《大話題:賽局理論》

我們可以用策略型式表達這個囚徒困境。支付矩陣中,列代表阿倫的可能行動,欄代表阿班的可能行動。我們在行與列的相交處填入每位參與者的報酬,在本例中也就是他們各自的刑期。

如果兩人都沉默,兩人都將因偷車而服刑一年。這當然不好,所以報酬是負值(阿倫:-1,阿班:-1)。如果兩人都認罪,兩人都要服刑十年(阿倫:-10,阿班:-10)。

囚徒都知道這個支付矩陣,也都知道彼此面對相同的矩陣。

-----廣告,請繼續往下閱讀-----
考慮到先認罪的人可以免去刑責,將導致四種可能結果。圖/《大話題:賽局理論》

合作或私利考量下的「最佳解」不同

這是一個同步賽局:即使並非字面意義上的同步,但由於兩人身處不同的偵訊室,做決定時也不知道對方的選擇,因此可以視為同步。

請注意,以策略型式表現賽局,並不意味著我們指出了可能會發生什麼事。我們只是列出所有可能結果,無論合理與否,並且把每個結果中參與者的報酬記下來。

現在,寫下囚徒困境賽局的策略型式後,我們可以嘗試分析可能發生的結果。

兩名囚犯就彼此的利益思考,形成「囚犯困境」的心理狀態。圖/《大話題:賽局理論》

很明顯,如果阿倫和阿班可以共同做決定,兩人會選擇一起沉默,只需要坐牢一年。

-----廣告,請繼續往下閱讀-----

但這並非均衡的結果。對阿倫來說,「認罪」的策略絕對優於「沉默」:不管他預期阿班會怎麼做,他的最佳回應都是認罪。

以個人來說,最佳的回應便是「認罪」。圖/《大話題:賽局理論》

同樣地,不管阿班預期阿倫會怎麼做,阿班的最佳回應都是認罪。

在囚徒困境中,納許均衡是兩名參與者都認罪。這個結果的標準寫法是:

{ 認罪,認罪 }

-----廣告,請繼續往下閱讀-----

前者是橫列參與者(阿倫)的行動選擇,後者是直欄參與者(阿班)的行動選擇。在均衡中,雙方都要坐牢十年。

即使雙方最佳利益為「沉默」,但在囚徒困境下卻會選擇「認罪」。圖/《大話題:賽局理論》

這屬於柏雷多效率嗎?

一個有趣的問題是,囚徒困境賽局中的納許均衡是否為柏雷多效率?這個資源分配效率的概念是以義大利經濟學家柏雷多(1848 – 1923)來命名。如果再也沒有其他可能的結果可以使至少一人變得更好,但沒有任何人變糟,這樣的結果就是柏雷多效率。

囚徒困境賽局中的納許均衡並非柏雷多效率,因為如果兩人都沉默,每個囚徒都可以變得更好。這也就是「囚徒困境」名稱的由來。

不過,在多數的賽局中,納許均衡就是柏雷多效率。例如在前面電影檔期的賽局中,沒有其他的結果能使雙方以不損及對方的方式獲得更高利益。

-----廣告,請繼續往下閱讀-----
囚徒困境並非柏雷多效率,因雙方若選擇共同沉默將能有更好的結果。圖/《大話題:賽局理論》

——本文摘自《大話題:賽局理論》,2023 年 3 月,大家出版出版,未經同意請勿轉載。

大家出版_96
14 篇文章 ・ 11 位粉絲
名為大家,在藝術人文中,指「大師」的作品;在生活旅遊中,指「眾人」的興趣。