Loading [MathJax]/extensions/tex2jax.js

0

2
2

文字

分享

0
2
2

你被暗示了嗎?是什麼偷偷影響了我們決策?——《超越直覺》

一起來
・2024/04/30 ・2133字 ・閱讀時間約 4 分鐘

數十年來,多數心理學家和新興的行為經濟學家在可控制的實驗情境中,不斷研究人類的決策過程。這些研究結果不僅動搖關於人類理性的基本假設,甚至迫使大家用一種截然不同的觀點來思考人類行為。

例如,心理學家已經藉由無數個實驗證明,人的選擇和行為會受到特定字詞、聲音等刺激的「促發」(priming)所影響。受試者若在實驗中念到「老」和「虛弱」等字詞,他們離開實驗室在走廊上行走的速度就會變慢。在酒坊裡,如果店家播放的背景音樂是德國音樂,消費者更有可能購買德國葡萄酒,如果是法國音樂,則會傾向購買法國葡萄酒。受訪者在填寫跟運動飲料有關的調查問卷時,如果是用綠色的筆,則更可能會選擇開特力運動飲料(Gatorade)。購物網站的背景圖案如果是蓬鬆的白雲,網路購物者更有可能選擇昂貴、舒適的沙發,如果背景圖案是錢幣,則購物者傾向買較硬、較便宜的沙發。

圖/envato

我們的反應也可能被無關的數字給影響。有一項實驗,要求參與葡萄酒拍賣會的人在競價之前寫下自己社會保險號碼的末兩位數字。儘管數字基本上是隨機的,且絕對與買家對酒的估價無關,但研究人員發現數字越大,買家就更願意出價。心理學家稱這種現象為「錨定效應」。不論是估計非洲聯盟的會員國數量,或是我們認為合理的小費或捐款金額,都可能受到錨定效應的影響。

事實上,當慈善機構的募款單上附有「建議」捐款金額,或帳單上預先寫出小費的比率,你都該懷疑這是利用錨定效應技巧,因為提出一個較高的金額,其實是在錨定你對「公平」的初步估計。就算你覺得 25% 的小費似乎太高了,所以調降你的估計值,但最後給出去的小費或許還是高於沒有被暗示時的金額。

-----廣告,請繼續往下閱讀-----

改變情境呈現的方式也可能強烈影響個人偏好。比方說,在同一個賭局,如果強調輸錢的可能性,就會讓人傾向規避風險,但如果強調贏錢的可能性,則會造成相反的結果。更讓人困惑的是,加入第三種選項,竟然可以逆轉一個人對先前兩種選項的偏好。

舉例來說,A 是一款品質好、價錢昂貴的相機,B 是品質較差,但較便宜的相機。光這樣看可能很難比較與選擇。但假設如下圖所示,加入第三個選項 C1,雖然品質差不多,但顯然比 A 貴。這時要選擇 A 或是 C1 就變得很明確了。三者中選擇 A 的占大多數,這似乎非常合理。但假設加入的第三個選項是價錢跟 B 差不多,但品質較差的 C2,那大家又會如何選擇?這種情況當然會選擇 B。換句話說,即使選項 A 和 B 都沒有改變,只要加入一個不同的選項,就能夠有效逆轉對 A 和 B 的偏好。更奇怪的是,決策者永遠都不會選擇引起偏好逆轉的第三個選項。

心理學家藉由研究這一系列非理性的行為發現,提取或回憶不同類型訊息時,其難易度通常會影響人類的決策與判斷。以搭飛機為例,與其他任何致命因素相比,人們通常會高估死於恐怖攻擊的可能性。因為人們對恐怖攻擊的印象非常鮮明,即便它發生的機率明顯低於任何其他事故。

還有一個矛盾的情況,當人們被要求回憶自己果斷行動的經驗時,通常會認為自己沒那麼果斷。並不是因為這個問題和他們對自己的看法有衝突,而是因為回想的時候很費力。相較於真實情形,人們也傾向於認為自己現在的行為、信念都跟過去差不多。

-----廣告,請繼續往下閱讀-----

此外,在閱讀一份手寫聲明稿時,如果字體容易閱讀,或者之前曾經看過,那這份聲明就會更容易被取信。就算人們上次看這份聲明時,已經明確知道那是假的,結果依然如此。

圖/envato

最後,人們消化新訊息的方式,往往會增強他們既有的想法。某種程度上,這是因為我們偏愛注意「更能證實自己既有信念」的訊息,並忽略不符合自己信念的訊息。

另一方面,我們對於那些不符合自己信念的訊息,也傾向加以質疑或嚴格檢查。這兩種密切相關的傾向,分別稱作「確認偏誤」(confirmation bias)和「動機性推論」(motivated reasoning),會嚴重阻礙我們解決爭端的能力。從家事上的小分歧,到北愛爾蘭或以巴衝突都深受其害。在這些爭端當中,各持己見的雙方看待的明明是同一套「事實」,但對實情的印象卻完全不同。

即便是在科學領域,確認偏誤與動機性推論也時常扮演有害的角色。基本上,科學家應該遵循基於證據的真相,即使該證據與自己既有的信念或理論相抵觸,但是更多時候,科學家反而質疑證據。

-----廣告,請繼續往下閱讀-----

結果正如量子力學創始者馬克斯.普朗克(Max Planck)的至理名言:「一個新的科學真理之所以能勝出,不是因為它說服了反對者,讓那些人接受——而是因為反對者死光了。」

——本文摘自《超越直覺》,2024 年 01 月,一起來出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

一起來
5 篇文章 ・ 2 位粉絲

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
預測市場?預測股票?如何讓預測有更高的準確率?——《超越直覺》
一起來
・2024/05/04 ・1635字 ・閱讀時間約 3 分鐘

我們發現在足球賽中,只要知道一個簡單的訊息(主隊過去的獲勝機率超過一半),預測力就會明顯好過隨便亂猜。如果再加上第二個簡單的訊息(勝負紀錄較佳的隊伍會略占優勢),可以再進一步提升預測力。除此之外,你可能還想收集其他訊息,像是四分衛最近的表現、球隊有沒有傷兵、明星跑衛的花邊新聞,但這些資訊對預測的幫助不大。換句話說,預測複雜系統這件事依循著「收益遞減定律」:第一個訊息很有幫助,但很快就找不到有幫助的其他訊息。

對於某些事件,我們當然會非常計較預測的準確性,像是投放線上廣告或投資高頻交易(HFT),可能一天內就要預測數百萬、數十億次,而且金額相當龐大。投入極大心力與費用、運用最精細的運算模型來開發複雜的預測方式,在那種情況下或許值得。但在其他商業領域,例如製作電影、出版書籍到發展新技術,只需要一年預測數十次、頂多數百次,而且這不過是整個決策過程中的一部分。這時,我們只要借助相對簡單的方式,就可以讓預測臻至完善。

預測時,不該只根據一人的意見就做決定——尤其是你自己的意見。雖然人們善於察覺與特定問題相關的因素,卻往往不會評估因素之間的相對重要性。譬如,預測電影的首映週末票房時,你可能會認為一些變項都是高度相關,例如製作費、宣傳費、上映廳數、試映會評價。沒錯。但我們要如何權衡「評價不優」與「額外行銷預算:一千萬美元」之間的比重?這沒有一定答案。同樣,在決定分配行銷預算的方法時,要如何判斷多少人會受到網路或雜誌廣告影響,又有多少人會從親朋好友那邊聽到產品訊息?我們也不清楚。唯一知道的是,這些因素都可能相關。

圖/envato

你可能會以為,精準判斷應該是專家的強項。但正如泰特洛克的試驗結果,專家在量化預測上的表現,其實跟普通人一樣糟糕,甚至可能更糟。然而,我們依賴專家之所以會成效不彰,不是因為專家的預測力跟一般人沒兩樣。問題在於,我們通常一次只會諮詢一位專家(否則何必找專家)。但我們應該要綜合多人的意見(無論是專家或非專家)再取平均值。至於要如何達成?這其實沒那麼重要。

-----廣告,請繼續往下閱讀-----

儘管預測市場有各種花俏的噱頭與技術,表現也比民調這類簡單方式好一點,但這種微小差異,還不如採用某種方式簡單綜合許多觀點再取平均。或者,我們也可以直接根據歷史數據,評估各項因素的相對重要性——這實際上就是統計模型在做的事。我必須再強調一次,雖然複雜模型可能會比簡單模型好一點,但兩者的差異小到幾乎沒有差別。到頭來,模型跟群眾所能達到的預測目的都一樣。第一,這兩種預測方式都要靠人為判斷,確認哪些因素與預測相關。第二,兩者皆需要估計、權衡那些因素的相對重要性。正如心理學家羅賓.道斯所言:「訣竅在於,找到要注意的變項,然後知道如何加入它們。」

只要一直使用這個訣竅,一段時間後,就會知道哪一些預測的失誤率較小,哪一些較大。舉例來說,當你要預測一個事件的結果,假如其他條件都相同,那越早做預測的失誤率就越大。不管你用什麼方法預測電影票房,在「剛開拍」時會比「上映前幾週」時要難得多。同樣,如果你想預測尚未上市的新產品銷量,那準確度可能不會高過預測已上市的產品。

你無法解決這個問題,唯一能做的只有:使用其中一種方式,或甚至結合幾種方式,就像我們研究預測市場時的方法,然後隨時觀察、記錄預測的表現。我在第 6 章開頭也提過,一般人通常不習慣追蹤自己的預測。我們做了大量預測,卻很少回頭檢視自己對了幾次。然而,留意並記錄預測成效或許才是最重要的事,唯有如此,你才能知道準確度是多少,進而知道自己預測的可信度。

——本文摘自《超越直覺》,2024 年 01 月,一起來出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
3

文字

分享

0
2
3
大家都認為自己值得更多的薪水!給你更多錢會提升工作表現嗎?——《超越直覺》
一起來
・2024/05/02 ・1949字 ・閱讀時間約 4 分鐘

框架問題理應提醒我們,我們只要自動腦補就一定會犯錯。我們確實向來如此。不過「人類」這個對象不同於 AI 研究人員開發的機器人或電腦,並不會讓我們訝異到必須被迫改寫思考時的整個心智模式。相反地,一旦我們知道答案,就似乎總能找出先前被忽略、後來明顯相關的面向,就像拉扎斯菲爾德假想的《美國士兵》讀者——他們在事後發現,每一個對立的結果都同樣理所當然。

也許我們原本預期自己中了樂透之後會超級開心,結果中獎之後,卻發現自己很鬱悶,這個預測顯然很糟糕。但當我們意識到自己預測錯誤時,同時也獲得新的資訊,例如那些突然出現要借錢的親戚。於是我們會心想,如果早點知道這些資訊,就可以正確預測未來的幸福狀態,也許就不會去買樂透彩了。

因此,我們沒有質疑自己預測未來幸福程度的能力,反而只是認為我們漏掉了一些重要的東西,並且確保自己不再犯相同錯誤。然而我們卻一錯再錯。事實上,無論對於他人行為的預測失準了多少次,我們總是可以用當時未知的事情做為辯解。透過這種方式,我們掩蓋了框架問題,一再說服自己下次會做好,卻永遠都不明白我們真正錯在哪裡。

圖/envato

這種行為模式在動機與金錢報酬的關係中最為明顯,也最難消除。例如,實施金錢獎勵制度顯然能提升員工表現,而且數十年來,職場上大幅出現以績效為基礎的薪資制度,最具代表性的就是高階主管薪酬與股價掛鉤。

-----廣告,請繼續往下閱讀-----

當然,員工在意的顯然不只薪水,還有內在的愉悅感、認同感,以及在個人職涯上的成長與晉升等因素,這些都會影響工作表現。

在其他條件都相同的情況下,適當的金錢獎勵可以提升個人表現——這似乎理所當然。然而,多年來有多項研究顯示,薪酬與工作表現之間的關係,實際上的複雜程度讓人難以想像。

舉個例子,最近我跟雅虎(Yahoo!)的同事梅森(Winter Mason)進行了一系列網路實驗。我們給予受試者不同的薪資,並要求他們執行各種簡單的重複性工作,例如:按照正確的時間順序排列一組車流照片,或是在矩形網格上,找出隱藏在一堆英文字母中的英文單字。

所有受試者都是在亞馬遜土耳其機器人(Amazon’s Mechanical Turk)這個外包網站上招募而來,這個網站是亞馬遜公司於二○○五年推出,原先是用來找出重複的庫存商品。現在有數百家企業使用土耳其機器人進行「群眾外包」(crowd-source),處理五花八門的各種任務,像是標示圖片中的物品、描述新聞報導的觀點,或是判斷兩種說法中哪一個比較清楚。這個網站也是招募心理學實驗受試者的一個有效方法,就像心理學家多年來在大學校園裡張貼廣告那樣,不過土耳其機器人網站的「託客」(turkers)完成一件任務的報酬通常只需要幾美分,只占了研究經費的一小部分。

-----廣告,請繼續往下閱讀-----
圖/envato

我們的實驗總共納入數百位受試者,完成了數萬件任務。有些受試者完成一件任務只能得到 1 美分的酬勞,例如整理一組圖片、找出一個單字。但是,有些受試者完成相同任務卻會得到 5 美分或 10 美分。這在工資上是相當大的差異,要知道,美國電腦工程師的平均時薪只有聯邦最低工資的六倍,所以你可以預期這個工資差異會對受試者的行為產生強烈影響。

結果確實如此。我們付的錢越多,受試者離開實驗之前完成的任務就越多。我們還發現,不管工資多少,分配到「簡單」任務(每一組有兩張圖片需要歸類)的人,比分配到中等或困難任務(每一組有三至四張)的人完成更多任務。換句話說,這些都符合常理。

但接下來的問題是:雖然存在上述差異,我們發現這群受試者的工作品質,也就是歸類圖片的準確度,並不會因為工資不同而下降,即使只有正確完成才能拿到酬勞。

該如何解釋這個結果?我們並不十分確定。在受試者完成任務之後,我們問了一些問題,包括他們認為自己的工作該得到多少報酬。有趣的是,他們的回答與工作難度無關,而是取決於獲得的工資。平均而言,每件任務得到 1 美分的受試者,認為自己該得到 5 美分。得到 5 美分的認為自己該得到 8 美分,而得到 10 美分的則認為自己該得到 13 美分。

-----廣告,請繼續往下閱讀-----

換句話說,不論他們實際上得到多少(還記得有些受試者的工資是別人的十倍嗎),每個人都覺得工資過低。大家在直覺上會認為,給予金錢獎勵就能夠提升員工的動機,但這個實驗告訴我們,即使是非常簡單的工作,工作動機也會因爲員工的權利意識提升而大幅減弱。

——本文摘自《超越直覺》,2024 年 01 月,一起來出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。