0

0
2

文字

分享

0
0
2

羅馬帝國一分為二,對人類文明是件好事?│《電腦簡史》 齒輪時代(六)

張瑞棋_96
・2020/03/30 ・2532字 ・閱讀時間約 5 分鐘 ・SR值 501 ・六年級

一位黎巴嫩人手上幾塊老舊的金屬片,組合成前所未聞的日晷儀,其中竟有安提基瑟拉儀的身影?這是否代表希臘的機械智慧流傳到拜占庭帝國?在歐洲陷入黑暗時代之際,希臘文化因而有個棲息之地,等待傳承……。

本文為系列文章,上一篇請見:亞歷山卓慘遭天災人禍,希臘學術面臨存亡危機?!│《電腦簡史》 齒輪時代(五)

1983年,一個黎巴嫩人走進英國的倫敦科學博物館,拿出幾塊老舊的金屬片,聲稱是他在貝魯特跟路邊小販買來的古物,試圖向館方兜售。館方將金屬片交給研究員邁可·賴特 (Michael T. Wright) 鑑定真偽。他原本是機械工程師,從小就喜歡拆解組裝各種機器,對於歷史上的各種機械裝置如數家珍,由他負責這項任務再適合不過。

賴特很快辨識出其中一塊金屬片是日晷的盤面。日晷是一種很古老的計時裝置,是用影子的變化標示時辰,很早之前就出現東西方的古文明。日晷的構造很簡單,通常就是一塊畫有時辰刻度的盤面,盤面上立著稱為「晷針」的突起物。隨著太陽東昇西落,晷針落在盤面上的影子也跟著移動,看影子落在刻度何處,便知道目前時刻。

-----廣告,請繼續往下閱讀-----

賴特注意到這片日晷盤面上刻著許多古希臘銘文,其中「君士坦丁堡」 (Constantinople) 這個字馬上引起他的注意,這是東羅馬帝國的首都。他再仔細端詳,又認出好幾個銘文,都是當時的城市名稱。他不禁猜想:這幾個金屬片也許真的是出自東羅馬帝國的古物。不過令賴特感到疑惑的是,日晷盤面的背面多了兩個齒輪,還有另外幾塊金屬零件是做什麼用的?如果這些零件也是日晷的一部分,那麼這個齒輪裝置將是某種前所未見的天文儀器。

黎巴嫩人向倫敦科學博物館兜售的金屬零件。圖\Science Museum Group

拜占庭日晷儀成功復原,安提基瑟拉儀技術重現

根據賴特的同事考證,這些金屬片的確是東羅馬帝國的產物,年代約在西元 520 年左右。賴特也成功把它們還原組合成一台儀器;他發表的論文題目就直接道出它的用途:《來自拜占庭的齒輪:一台有日曆齒輪的可攜式日晷》(因為君士坦丁堡以前叫拜占庭,所以東羅馬帝國又稱拜占庭帝國),果然是前所未聞的日晷儀。

這台拜占庭日晷儀除了像一般日晷那樣,以影子顯示目前時辰,使用者還可以轉動把手帶動齒輪,顯示某一日期太陽和月亮在黃道帶的位置、以及月亮的圓缺。這些設計與安提基瑟拉儀有許多相似之處,事實上它也是現存第二古老的齒輪計時裝置,僅次於安提基瑟拉儀。(賴特因為這樣的機緣,而開始埋首於安提基瑟拉儀的重建。如今我們見到的復原模型,多要歸功於他。)

-----廣告,請繼續往下閱讀-----

拜占庭日晷儀與安提基瑟拉儀的關聯性,證明了古希臘的齒輪技術,並未隨著西羅馬帝國滅亡而湮滅,至少有傳承至東羅馬帝國。但是,既然前面說羅馬帝國時期,希臘學術只集中在亞歷山卓這座城市,沒有散布到境內其它地方,那麼東羅馬帝國如何習得齒輪技術?

這得從羅馬帝國分裂成東西兩個帝國說起。

君士坦丁大帝結束羅馬帝國的四帝共治,一統羅馬,並遷都拜占庭。圖\publicdomainpictures

君士坦丁遷都拜占庭,希臘古城變政治中心

西元 324 年,君士坦丁大帝 (Constantine) 成為羅馬帝國皇帝後,決定將首都遷到拜占庭,改名「新羅馬」。這裡位於歐亞交界,比羅馬更接近帝國的地理中心,他認為這樣更能有效管理遼闊的領土。不過到了 395 年,當時的皇帝狄奧多西一世 (Theodosius I) 去世前,卻將帝國切成東西兩半,分給兩個兒子繼承。羅馬帝國從此分裂為東羅馬帝國與西羅馬帝國;西羅馬帝國恢復羅馬為首都,東羅馬帝國的首都則維持在新羅馬,不過將名稱改為君士坦丁堡。

拜占庭在還沒成為首都以前,原本是希臘古城,保有許多希臘典籍。即使改朝換代,名稱改為新羅馬、再變成君士坦丁堡,仍然一直維持希臘文化,而且成為新的政治中心,反而帶來更多學者。自七世紀開始,東羅馬帝國改以希臘語取代拉丁語,作為官方語言,更有助於希臘文明的傳承。

-----廣告,請繼續往下閱讀-----

其實歐洲之所以進入將近千年的「黑暗時代」,也不能完全歸咎於日耳曼蠻族。早在羅馬帝國滅亡之前,希臘學術思想就已經受到基督教會的摧殘了。

前面講過三世紀的天災人禍造成社會動亂,人民生活更加困苦。然而,羅馬貴族卻仍然坐享其成,過著奢豪荒淫的生活。隨著不公不義日益加劇,以平等公義為訴求的基督教大受民眾歡迎,信徒越來越多。到了 393 年,狄奧多西一世宣布基督教為國教,基督教的地位從此定於一尊,原來希臘羅馬的多神信仰反而被視為異端,許多神廟與書籍也遭焚毀。

羅馬教會箝制思想,希臘學術等待傳承

羅馬帝國分裂後,羅馬教會不但沒有隨著西羅馬帝國滅亡而垮台,反而勢力越來越大。這是因為日耳曼蠻族雖然成為新的統治者,但他們畢竟仍是少數的外來異族,為了預防人民起義叛變,必須塑造統治的正當性。因此各個王國的君主便入境隨俗,也都改信大多數民眾信奉的基督教,並且行禮如儀的接受教宗加冕,以象徵自己的王位已經得到上帝的認可。羅馬教會給予君王「君權神授」的認證,君王也回報予以教會更多權力,讓教會更深更廣地掌控人民的生活。

為了鞏固人民的信仰,羅馬教會將聖經的詮釋權抓在手上,任何有違正統教義的思想往往被視為異端,遭受刑罰。於是,原本就已逐漸凋零的希臘學術思想,更沒有生存的空間,最後終於完全失傳,歐洲因此才陷入「黑暗時代」長達千年之久。

-----廣告,請繼續往下閱讀-----
羅馬教會排除異教思想,使希臘文化岌岌可危。圖\publicdomainpictures

相對地,君士坦丁堡的教會對學術思想採取較寬容的態度,東羅馬帝國境內的希臘文化遺產才得以留存。除了拜占庭日晷儀這類的天文儀器,自動機器也在此發揚光大。根據十世紀義大利的一位主教自述,他於 949 年造訪君士坦丁堡時,在皇宮見到皇帝的寶座會自動升降;宮廷內還有一株金屬打造的樹,枝頭上有機器小鳥振翅鳴叫,樹下還有機器雄獅踱步低吼。

只可惜,這些自動機器都已失傳,無論實物或設計圖都沒流傳下來,就連發明者是誰也不可考。從現有的史料也無從得知,君士坦丁堡是否曾像亞歷山卓那樣,培育出傑出的希臘學者。無論這些無名英雄是誰,希臘學術的薪火的確在拜占庭帝國保存下來,等待接棒。而接過這把火炬,將希臘先哲的智慧結晶發揚光大的,將是另一個語言、宗教、文化都大相逕庭的異族——阿拉伯帝國。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1016 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

11
7

文字

分享

0
11
7
改變在一「矽」之間——半導體的誕生│《電腦簡史》數位時代(十六)
張瑞棋_96
・2021/04/05 ・6669字 ・閱讀時間約 13 分鐘 ・SR值 542 ・八年級

本文為系列文章,上一篇請見:邁向商用化——電腦產業的形成│《電腦簡史》數位時代(十五)

真空管的先天缺陷:易報銷

二次大戰後,電腦全面使用真空管後,速度大幅提升,隨著需要大量計算的企業越來越多,電腦前景看似一片光明。不過當電腦上線運作後,真空管的先天缺陷終於曝露出來,嚴重阻礙電腦產業的發展。

真空管是靠加熱極細的燈絲而產生游離電子,電子被吸引至做為正極的金屬片而產生單向電流。由於燈絲與電極都會逐漸耗損,真空管的壽命原本就不長;即使是特別為電腦生產的真空管,在正常狀況下也不過能用兩千個小時。更何況在進行高速運算時,真空管不斷開開關關,燈絲很容易因此燒斷而提早報銷。

真空管二極體的構造。圖:Wikipedia

一部電腦至少有幾千個真空管,只要有一、二個壞掉,就會影響整體電路的運作。以 UNIVAC 為例,平均故障間隔 (MTBF, Mean Time Between Failures) 的時間不超過 24 小時;美軍的 ENIAC 用的真空管超過一萬七千個,MTBF 更是只有 12 小時。而一旦發生問題,要排除故障也相當耗費時間,平均得花幾個小時才能找出損壞的真空管,予以更換。

電腦如果動不動就得停機檢修,不僅效益大打折扣,還會影響正常作業,誰想花大錢購置電腦卻惹來內部抱怨連連。可靠性的問題沒有解決,電腦就難以獲得全面採用,只是真空管的物理特性就是如此,能再改善的空間有限,只能期待全新的電子元件出現。

-----廣告,請繼續往下閱讀-----

如今我們知道,這革命性的電子元件就是電晶體。它不僅解決了可靠性的問題,而且大幅降低成本、縮小體積、提升速度,讓電腦改頭換面,並催生出各種電子產品,人類文明從此邁入新紀元。電晶體之所以能帶來革命性的改變,乃因它是奠基於一種革命性的材料——半導體。要知道電晶體如何發明,得先知道什麼是半導體。

半導電性:導體與絕緣體之間

顧名思義,半導體就是具有半導電性的物體。但何謂半導電性?

我們知道不同元素有不同電子數,以原子核為核心,由內而外分布於不同殼層。越外層的電子能量越高,其中最外層的電子稱為「價電子」,所處的能階稱為「價帶」。價電子仍被束縛在原子內,所以無法導電,必須獲得能量躍遷到「傳導帶」才能導電。傳導帶與價帶的能量差距稱為「能隙」,導電性便取決於能隙的大小。

金屬的能隙非常小,甚至傳導帶與價帶有部分重疊,所以導電性很高;反之,絕緣體的能隙很大,價電子無法跨越,因此無法導電。半導電的能隙則介於金屬與絕緣體之間。

-----廣告,請繼續往下閱讀-----
三種不同導電性。圖:Wikipedia

能隙的大小與價電子的個數有關。每個殼層可容納的電子數都有上限,當價電子殼層越接近填滿狀態,就越穩定,需要越多能量才能激發價電子跳到傳導帶;當價電子越少,就越容易脫離束縛,跑到傳導帶。

金屬的價電子通常不超過 3 個(過渡金屬除外),很容易形成自由電子,到處移動。絕緣體通常有 5 個或以上的價電子。碳、矽、鍺、錫、鉛等 IV 族元素有 4 個價電子,剛好是半滿狀態,導電性介於導體與絕緣體之間,屬於半導體。

IV 族元素如果摻雜其它元素,導電性也會跟著改變。例如把磷摻到矽裡面,因為磷有 5 個價電子,其中 4 個與矽共用後,還多一個價電子,就更容易跑到傳導帶成為自由電子,這種半導體稱為 n 型 (n 代表 negative)。

矽如果摻的是有三個價電子的硼,只差一個價電子就是最穩定的狀態,猶如有個「電洞」讓經過的電子落入陷阱。旁邊的電子掉進這個電洞後又產生一個新的電洞,形成骨牌效應,從另一個角度看,就像是帶正電的電洞會移動一樣,因此稱為 p 型半導體 (p 代表 positive)。

-----廣告,請繼續往下閱讀-----

偶然發現半導體

除了摻雜,化合物也可能形成半導體。半導體最早被發現,就是與 IV 族元素無關的化合物。1833 年,法拉第有一次在做電力實驗時,無意間將燈火靠近硫化銀,結果發現導電能力竟然大增;一旦移走燈火,導電性又隨著溫度下降而降低。一般金屬在高溫時,導電性會變差,硫化銀卻剛好相反,令法拉第大感訝異。

硫化銀就是一種半導體。高溫之所以增加半導體的導電性,是因為熱能會讓更多價電子躍遷到傳導帶,因此增加了導電性。一般金屬原本僅需一點能量就能產生自由電子,集體往正極方向移動。但電子如果吸收太多熱能,反而四處亂竄,原本的定向性受到破壞,導電能力也就隨之下降了。

法拉第雖然發現半導體這個特性,卻無法了解其中原理。畢竟當時距離道爾吞提出原子說還不到 30 年,是否有所謂的基本粒子仍頗受質疑,更無從想像原子內部還有電子與原子核。因此法拉第發表這個奇特的現象後,就不了了之,也沒有人想到在導體與絕緣體之外,還有一種半導體。下次半導體再度躍上檯面,已是四十年之後。

1874 年,才 24 歲的德國物理學家布勞恩 (Ferdinand Braun) 在研究各種硫化物的導電性時,將硫化鉛接上電,卻發現檢流計的指針紋風不動。他試著調換正負極,結果指針馬上就有反應。這實在太奇怪了,一個物體的導電性應該是一致的,怎麼會因為正負極不同接法,一下是絕緣體,一下又是導體?

-----廣告,請繼續往下閱讀-----
發現半導體具有單向導電性的布勞恩。圖:Wikipedia

單向導電性是半導體另一項重要特性。硫有 6 個價電子,所以硫化鉛是 n 型半導體,一般情況下,電子只能從硫化鉛往正極移動,才會從另一個方向測不到電流。同樣地,由於當時仍然不清楚原子的構造(湯姆森於 1897 年才發現電子),不知如何解釋這個奇特現象。

大家毫無頭緒,單向導電性又看不出有何用途,因此布勞恩發表實驗結果後,並沒有激起任何漣漪。半導體再次受到忽視,要等到赫茲於 1888 年發表無線電波的實驗後,硫化鉛這類的半導體礦石才引起大家的興趣。

接收無線電波

赫茲的實驗吸引很多人投入無線電波的研究,印度科學家博斯 (Jagadish Chandra Bose) 也是其中之一。他發現 IV 族元素的礦石不但有單向導電性,而且不遵守歐姆定律:電流與電壓成正比。當施予礦石的電壓小於某個臨界值時,電流微乎其微;一但超過臨界電壓,電流便突然大幅增加。

博斯想到可以利用這個特性偵測微弱的無線電波。只要先對接收裝置施以適當電壓,讓無線電波所產生的感應電壓恰好超過臨界電壓,電流便會出現明顯變化,就能如實呈現無線電波。

-----廣告,請繼續往下閱讀-----

1894 年,博斯將金屬天線的一端與硫化鉛的表面接觸,做成無線電偵測器(也稱「檢波器」),成功接收到一英哩之外的無線電波,這中間還隔了三道磚牆。

博斯發明的無線電收發器。圖:Wikipedia

馬可尼 (Guglielmo Marconi) 也在這一年發明無線電報系統,兩年後他和博斯在倫敦會面,不過博斯對商業應用不感興趣,並未與馬可尼合作。馬可尼也沒有採用博斯這個技術,而是利用感應電流產生的磁場變化,來吸引金屬屑或發出聲響,作為判斷電波的依據。

事實上,博斯自己後來也改用別種技術設計檢波器,因為礦石檢波器的確不是很靈光。礦石中的雜質分布並不均勻,不是每次用金屬線接觸硫化鉛表面都能形成迴路,往往得嘗試很多次才能找到「熱點」,得到訊號。

儘管如此,AT&T 的工程師匹卡德 (Greenleaf Pickard) 仍看好礦石檢波器的潛力,試圖找出收訊效果更好的礦石。

-----廣告,請繼續往下閱讀-----

1902 年,匹卡德檢測一塊礦石的熱點時,懷疑施加的電流造成背景雜訊太大,於是伸手拿掉部分電池,結果雜訊果然馬上消失,無線電的訊號變得清楚許多。這時他看了一眼器材,才發現他剛剛不小心把電池的接線弄掉了,也就是礦石檢波器竟然不需要電,就可以接收無線電。

這個奇妙的現象完全違背過去的認知,於是匹卡德更加專心研究還有哪些礦石不用電就可以當檢波器。他花了三、四年的時間測試上千種礦石,發現有 250 種可以做為天然檢波器,其中又以熔融後的矽(原本用來製造石英玻璃)收訊效果最佳。

礦石收音機

匹卡德進行實驗的這段期間,無線電也正在發展另一項應用:傳送聲音。當時電話已是成熟的技術,可以將聲音轉換為音頻訊號,但音頻是連續波形,無線電波卻是脈衝電波,因此只能靠長/短、有/無來代表摩斯密碼,無法傳送音頻訊號。

1900 年,加拿大發明家范信達 (Reginald Fessenden) 發明一種高速交流發電機,終於能產生連續波形的無線電波(稱為「載波」,波形為規律的正弦波)。

-----廣告,請繼續往下閱讀-----

原本規律的載波與音頻疊加後,變成起伏變化的無線電波,電波的振幅大小便代表音訊的變化。這種調變電波振幅的技術便稱為「調幅」(Amplitude Modulation, 簡稱AM),就是現在 AM 廣播所用的技術。

調幅示意圖。圖:Wikipedia

調幅無線電到了接收端,還得經過「解調」才能還原成原來的音訊。首先,由於天線接收無線電波後,所產生的感應電流也是交流電,因此必須先把反方向的電流去掉,成為單一方向的直流電;這個步驟便稱為「整流」。接著再濾掉其中的載波,留下的就是原來的音頻訊號。

范信達直到 1904 年才成功做出有整流功能的檢波器,並於 1906 年的聖誕夜成功發送 AM 廣播到大西洋上的美國軍艦。不過范信達所發明的檢波器不易製造,又常需要調校,只適合專業人士使用。而半導體的單向導電性恰好可以將交流電整流為直流電,這類礦石便可直接做為無線廣播的檢波器。

1906 年,匹卡德獲得矽石檢波器的專利,並在隔年創立公司,製造用耳機收聽的礦石收音機,銷售給一般大眾。由於價格低廉、體積小巧又不需要電,因此頗受歡迎。礦石收音機成為史上第一個半導體商品;誰會想到如今半導體與各種電子產品密不可分,但最早卻是以不用電為訴求。

匹卡德於1916年發明的矽石檢波器。圖:Wikipedia

三極真空管橫空出世

就在匹卡德於 1906 年申請專利這一年,美國專利局也收到另一項影響更深遠的專利申請,那就是由德佛瑞斯特 (Lee De Forest) 改良的新型真空管。

原本弗萊明 (John A. Fleming) 於1904 年發明的真空管只有正負兩極,德佛瑞斯特用金屬柵格擋在金屬片與燈絲之間,變成除了正、負極,還多了「柵極」(Grid) 的三極管

柵極用來控制電流大小。當柵極施以負電壓,產生的電場與電子相斥,部分電子便被擋下,無法抵達正極金屬片,電流也就變小了。負電壓越大,被擋下的電子越多,電流也就越小;柵極就像家裡的水龍頭,不用動到水管的閥門,就可以各自調節水流大小。

三極管在金屬片與燈絲之間多了金屬柵格。圖:Wikipedia

德佛瑞斯特原本設計三極管只是為了調節電流,他沒想到六年之後,這項設計竟被發掘出放大訊號的功能。

原本只有二極管時,若要調整電流大小,正極電壓就要有相對幅度的改變,就如前面水管的比喻,沒有水龍頭的話,只能從源頭閥門控制水量。例如要讓電流從 12 mA 減半降為 6 mA,電壓要從 110 V 降到 60 V;但若使用三極管,則無須改變正極電壓,只要對柵極施以 -2 V 的電壓就可以了。

三級管的電壓變化只需二級管的 1/25 ,便能達到同樣的效果(若搭配適當的阻抗,相差還能到百倍以上),就像水龍頭那樣,轉動一點點,出水量就差很多。如果讓柵極做為訊號的輸入端,正極做為輸出端,那麼原本微弱的訊號,就會放大成強烈的訊號。

有了三極管做為訊號放大器,無線電可以傳得更遠,收訊效果也更好,而且收音機還可以配上喇叭。隨著廣播電台自 1920 年代開始快速發展,真空管收音機也進入一般家庭,成為民眾重要的休閒娛樂與資訊來源。相對地,礦石收音機的收訊效果與方便性都遠遠不如,自然不受青睞,逐漸沒落。好不容易找到舞台的半導體於是又被棄置一旁,沒想到十幾年後,同樣是由來自 AT&T 的工程師,再度讓半導體起死回生。

德佛瑞斯特於1914年用三極管打造的訊號放大器。圖:Wikipedia

真空管搞不定短波

三極真空管有助於無線廣播,當然也有助於電話傳得更遠。 AT&T 利用真空管擴大電話網路,於 1915 年開通橫跨東西兩岸的長途電話。1927 年 1 月 7 日, AT&T 總裁進一步透過無線電波,從紐約打電話到倫敦,完成史上第一通越洋電話。不過這通電話只是試驗性質,真要提供越洋電話服務,還有項技術問題須要克服。

紐約與倫敦相隔甚遠,無線電波無法橫越地表弧度直接送達,必須經大氣的電離層反射到地面。然而一年四季、晴雨晨昏,大氣條件都不一樣,對電波的影響也大不相同。因此若要維持越洋電話全年暢通,通訊設備須要能夠收發不同波長的無線電波。不過真空管在高頻(也就是短波)的表現不是很好,如何克服這個問題便成為貝爾實驗室的首要任務。

貝爾實驗室於 1925 年成立,初期的工程師大多從 AT&T 陸續轉調過來,歐偉 (Russell Ohl) 也是其中之一,他對無線電的興趣始自大學時期。1914 年第一次世界大戰爆發,當時大學二年級的歐偉,在課堂上第一次聽到礦石收音機發出聲音,而且竟然是遠在大西洋的英國船隻,遭到德國潛艇攻擊所發出的求救訊號,從此他便對無線電深深著迷。

歐偉原本在 AT&T 就是負責短波的研發,1927 年轉到貝爾實驗室後仍繼續這個項目。他們不斷將無線電電波推向更高的頻率,但最終遇到瓶頸難以跨越。當其他同事仍執著於真空管時,歐偉於 1935 年決定從頭開始,一一檢視過去無線電的各種實驗與論文,從中發掘可行方案。最後他把目標瞄準礦石收音機的矽石,相信這才是解答。

歐偉 (Russell Ohl) 在他的實驗室裡。圖:Engineering and Technology History Wiki

一道裂痕開啟「矽」的半導體時代

礦石收音機不是才被真空管淘汰嗎?同事與主管都認為歐偉異想天開,但他認為只要去除矽石中的雜質,就能收發頻率更高的無線電波。歐偉自己多次嘗試用矽粉製造,卻不得其果,最後終於在 1939 年找到具有冶金專長的同事,用高溫熔製的方法精煉出高純度的矽。

1940 年 2 月 23 日,歐偉決定檢測一塊去年製出的矽石,據他的同事說,這塊矽石相當奇特,每次測的導電性都不一樣。歐偉仔細檢查這塊矽石,發現中間有條裂痕,他猜想這就是導電性不一致的原因,原本不以為意。但他接上示波器,赫然發現矽石在檯燈的照射下,竟然會產生電流。

光電效應是會產生電流,但那是以紫外線照射金屬,而這顆 40 W 的燈泡發出的是可見光,矽的導電性也遠遠不如金屬。雖然美國發明家弗里茲 (Charles Fritts) 曾於 1884 年將硒鍍上金箔,做成太陽能電池,但這樣的光伏效應 (Photovoltaic effect,也稱「光生伏特效應」) 轉換效率非常低,只有 1% 左右。歐偉所測到的電壓,超過當時所知的光電效應與光伏效應十倍以上,絕對是項前所未有的發現。

歐偉趕緊找主管來看,同時和同事繼續深入研究這塊矽石。他們發現電流總是由裂痕的上半部流往下半部,而不會反向而行。經過進一步分析發現,裂痕兩邊含有不同的雜質,上半部含有少許的硼,而下半部的雜質則是磷。

他們推測應該是這塊矽石經過高溫熔化,在自然冷卻的過程中,較重的磷下沉得比較快,較輕的硼下沉得比較慢,裂痕出現的地方剛好將這兩種元素阻隔開,以致矽石的上、下半部各有不同的雜質。

歐偉推測電流就是兩邊不同的雜質所致。磷有 5 個價電子,而硼有 3 個價電子,在白熾燈泡的照射下,磷的多餘電子被激發而越過裂痕,填補含硼那一邊矽石的電洞,而產生電流。這就類似電池的負極提供電子給正極,於是歐偉也用「n型」、「p型」來稱呼這兩種矽石,然後把劃分兩邊的裂痕——也就是這兩種半導體的接觸面——叫做「p-n 接面」(p-n junction)。這幾個名稱便一直沿用到現今的半導體。

半體體的基本名稱不但源自歐偉的命名,如今我們懂得利用摻雜來改變半導體的導電性,也是始自他這次的發現。不過對歐偉而言,他一心只想研究無線電波,發現半導體的光伏效應只是偶然,他無意也沒有能力再深究其中原理。

半導體的後續研究隨即由貝爾實驗室另一個團隊接手,這群有量子力學背景的物理學家將釐清 p-n 接面的奧秘,進而發明改變世界的電晶體。

-----廣告,請繼續往下閱讀-----
張瑞棋_96
423 篇文章 ・ 1016 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。