0

2
3

文字

分享

0
2
3

紀元前後的「矽谷」——亞歷山卓│《電腦簡史》 齒輪時代(四)

張瑞棋_96
・2020/03/16 ・2599字 ・閱讀時間約 5 分鐘 ・SR值 555 ・八年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

亞歷山卓出了阿基米德與克特西比烏斯兩位機械天才,已是難得。之後竟又出了費隆,編寫第一本機械百科全書;以及希羅,發明出許多史上第一的機械裝置。當時的亞歷山卓簡直是今日的矽谷,各項發明盡出自此地。不過,這些發明好像沒什麼實際用途?

本文為系列文章,上一篇請見:機械水鐘——時鐘與自動機器的濫觴│《電腦簡史》 齒輪時代(三)

第一本機械百科全書

上一篇提到發明機械水鐘的克特西比烏斯,後來擔任亞歷山大博物館的館長。在他擔任館長期間,大約是西元前兩百多年,一位年輕學子遠渡重洋,從一千公里遠的拜占庭 (Byzantium,也就是現今土耳其的伊斯坦堡) 來到亞歷山卓留學。不久之後,這位學子也對機械裝置做出重要貢獻,而以「拜占庭的費隆」 (Philo of Byzantium) 之名著稱。令他揚名後世的正是他所編寫的鉅著「機械彙編」 (Compendium of Mechanics) 。

費隆這套鉅著共有九大冊,但是原著早已佚失,只有部分篇章的內容經後人摘錄或轉述,才流傳下來。「機械彙編」的前兩冊分別是數學與機械的概論;第三冊是關於港口的建造;第四冊以及第七、八、九冊都與軍事有關,分別是拋投武器、城池的工事、攻防器材,與密碼書信;第五冊與第六冊就都是齒輪相關的機械裝置。

第五冊裡面記載的主要是運用水力或空氣壓力的機械裝置。例如其中有個用水車帶動石磨轉動的裝置,是目前所知最早的水力磨穀機。還有自動倒酒的女僕人偶,當客人將空酒杯放在她左手的手掌上,她右手的酒壺就會流出酒水到杯子中,直到酒杯將滿時便自動停止。除了這些創新的設計,費隆也收錄了克特西比烏所發明,由水力帶動的管風琴。

從目錄得知第六冊都是各種娛樂用的自動機器,只可惜這一冊的內容都已佚失,無從得知這些自動機器是何樣貌。其實第五冊中的倒酒女僕與管風琴已經有相當程度的自動化了,然而它們卻沒被費隆歸類到第六冊之中,令人更加好奇第六冊裡面的自動機器有多奇巧。

費隆所著作的「機械彙編」多已佚失,現存僅剩部分片段。圖\pixabay

雖然第六冊收錄的自動機器現在已經失傳,但是它們的設計圖或實物肯定至少流傳了三百年之久。因為到了西元一世紀,亞歷山卓又出現了一位機械天才,人稱亞歷山卓的希羅 (Hero of Alexandria) ,他所發明的許多機械裝置,都可見到克特西比烏與費隆兩人的影子。

史上第一的蒸汽引擎、自動販賣機、自動門

希羅於西元10年出生,是亞歷山卓土生土長的博學家,與克特西比烏、費隆等古希臘學者一樣,研究領域也橫跨數學、物理,與工程。其中最具代表性的,正是他所設計的各種動力裝置,有些還是史上最早的發明,例如:

  • 第一個蒸汽引擎:它的本體是一個空心鐵球,鐵球南北極處各有一支 L 型噴嘴,赤道的位置有水平的管子架於裝滿水的釜上。在釜下升火燒水,水沸騰後蒸氣經支架進入鐵球中,再從L 型噴嘴噴出而推動圓球旋轉。
  • 第一個風力機器:風力轉動風車後,帶動空氣幫浦推送空氣進入管風琴而發出樂音。
  • 第一台自動販賣機:這是飲用水的自動販賣機。投幣後,錢幣掉在槓桿一端的托盤上,原本平衡的槓桿因此傾斜,升高的另一端便打開水管的閥門,釋出流水。當硬幣從傾斜的托盤滑落後,槓桿恢復平衡,閥門再度關上。

除了這幾個史上第一的發明,希羅還發明了一項規模更加宏偉的自動裝置。這項裝置是裝在神廟的自動門,整合了各種不同動力,營造出劇場般的效果。

祭司會先點燃神廟大門前的火壇,再一步一步走到大門。祭司雙手一揚,兩扇大門即自動緩緩打開,裡面巨大莊嚴的神像,在信徒的殷切期待中逐漸顯露。當祭祀儀式結束,火壇的火焰也逐漸熄滅,祭司走出神廟後,大門又緩緩自動闔上。自動門的機關都藏在地底下(原理解說參見文末),群眾完全看不見,因此大門的開闔宛如來自神靈授予祭司的神祕力量,為儀式增添了令人敬畏的氛圍。

其實這幾項「史上第一」並不全都是希羅憑空發明,而是奠基於前人的成果。像「汽轉球」這個裝置,早在希羅出生之前,就有一本轉述克特西比烏許多發明的書,裡面就記載一件類似的構造,只不過裡面沒有提到圓球是否會旋轉。所以即使「汽轉球」是希羅首創的發明,應該也是他從克特西比烏這裡得到的靈感。風力管風琴,顯然也是將克特西比烏的水力管風琴改以風車取代;而飲水自動販賣機的原理,其實與費隆的倒酒女僕有異曲同工之妙。當然,神廟自動門這個前所未有的集大成之作,就完全可歸功於希羅了。

希羅集結前人智慧,而做出各種「史上第一」的發明。圖\wikipedia

這些只是沒用的玩意兒?

希羅費盡心思,使用風力、火力、蒸氣等不同動力來源,讓齒輪裝置不需人力就可以自動運轉。然而這些自動機器看起來雖然很有趣,但對實際生活並沒有太大幫助,不像工業革命的蒸汽機,可以提高生產力,改善生活;說穿了,只是可有可無的發明。只會空轉的汽轉球就不用說了,風力管風琴與飲水自動販賣機主要也是為了娛樂效果。至於神廟自動門,或許可以增添祭司或君王的權威感,卻也不是必要的設計(派幾個人躲在暗處轉動輪軸不就好了?)。因此,希羅應該只是出於個人興趣,覺得好玩才設計這些自動機器。

歷史上像希羅這樣,不考慮實際效益,只因為好奇或有趣而投入研究的學者不在少數。耐人尋味的是,這些最初看似無啥大用的發明或發現,最後卻常常無心插柳地,帶來意想不到的用處。自動機器也是如此。正因為後世又有許多人追隨希羅的腳步,搞這類純粹好玩的自動機器,而對齒輪技術的提升與流傳起了推波助瀾的作用,也為計算機的發明埋下伏筆。

「神廟自動門」原理解說

希羅所發明的神廟自動門設計。圖\wikipedia

神廟自動門運用到火力、蒸氣與重力,所有機關都隱藏在神廟的下方。看似獨立的火壇其實底下埋著一個半滿的水箱,水箱另有管道接到一個作為砝碼的容器。這個容器由繩索懸掛在滑輪組下方,繩索另一端先在兩扇大門的轉軸纏繞幾圈後,再穿過另一個滑輪,末端掛著一個配重。

當火壇點燃後,水箱裡的空氣受熱膨脹,於是將水擠壓到砝碼容器內。原本與配重保持平衡狀態的砝碼容器注入水後,重量逐漸增加而往下沉,因而拉動繩索打開神廟大門。而當火壇的火熄滅後,負壓又將砝碼容器裡的水吸回水箱內,砝碼重量逐漸減輕,於是換成另一端的配重往下降,牽引繩索往反方向轉動轉軸而關上大門。

文章難易度
張瑞棋_96
423 篇文章 ・ 633 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

1

2
0

文字

分享

1
2
0
金魚的記憶才不只 7 秒!記憶力怎麼回事?好想要超大記憶容量
鳥苷三磷酸 (PanSci Promo)_96
・2022/12/01 ・2720字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 美光科技 委託,泛科學企劃執行。

你是不是也有過這樣的經驗?本來想上樓到房間拿個東西,進到房間之後卻忘了上樓的原因,還完全想不起來;到超巿想著要買三四樣東西回家,最後只記得其中兩樣,結果還把重要的一樣給漏了;手機 Line 群組裡發的訊息,看過一轉身回頭做事轉眼就忘了。

發生這種情況,是不是覺得很懊惱:明明才想好要幹嘛,才不過幾秒鐘的時間就全部忘記了?吼呦!我根本是金魚腦袋嘛!記憶力到底是怎麼回事啊?要是能擁有更好的記憶力就好了!

明明才想好要幹嘛,一轉眼卻又都忘記了。 圖/GIPHY

金魚的記憶才不只 7 秒!

忘東忘西,我是金魚腦?!無辜地的金魚躺著也中槍!被網路流傳的「魚只有 7 秒記憶」的說法牽累,老是被拖下水,被貼上「記憶力不好、健忘」的標籤,金魚恐怕要大大地舉「鰭」抗議了!魚的記憶只有 7 秒嗎?

根據研究顯示,魚類的記憶可以保持一到三個月,某些洄游的魚類都還記得小時候住過的地方的氣味,甚至記憶力可以維持到好幾年,相當於他們的一輩子。

還有科學家發現斑馬魚在經過訓練之後,可以很快學會如何走迷宮,根據聲音信號尋找食物。但是當牠們壓力過大時會記不住東西,注意力分散也會降低學習效率,而且記憶力也會隨著衰老而逐漸衰退。如此看來,斑馬魚的記憶特點是不是跟人類有相似之處。

記憶力到底是怎麼回事?

為什麼魚會有記憶?為什麼人會有記憶?記憶力跟腦袋好不好、聰不聰明有關係嗎?這個就要探究記憶歷程的形成源頭了。

依照訊息處理的過程,外界的訊息經由我們的感覺受器(個體感官)接收到此訊息刺激形成神經電位後,被大腦轉譯成可以被前額葉解讀的資訊,最終會在我們的前額葉進行處理,如果前額處理後認為是有意義的內容就有可能被記住。

在問記憶好不好之前,先了解記憶形成的過程。圖/GIPHY

根據英國神經心理學家巴德利 Alan Baddeley 提出的工作記憶模式,前額葉處理資訊的能力稱為「短期工作記憶」,而處理完有意義、能被記住的內容則是「長期記憶」。

你可能會好奇「那記憶能被延長嗎」?只要透過反覆背誦、重覆操作等練習,我們就有機會將短期記憶轉化為長期記憶了。

要是能有超大記憶容量就好了!

比如當我們在接聽客戶電話時,對方報出電話號碼、交辦待辦事項,從接收訊息、形成短暫記憶到資訊篩選方便後續處理,整個大腦記憶組織海馬迴區的運作,如果用電腦儲存區來類比,「短期記憶」就像隨機存取記憶體 RAM,能有效且短暫的儲存資訊,而「長期記憶」就是硬碟等儲存裝置。

從上一段記憶的形成過程,可以得出記憶與認知、注意力有關,甚至可以透過刻意練習、習慣養成和一些利用大腦特性的記憶法來輔助學習,並強化和延長記憶力。

雖然人的記憶可以被延長、認知可以被提高,但當日常生活和工作上,需要被運算處理以及被記憶理解的事物越來越多、越來越複雜,並且需要被快速、大量地提取使用時,那就不只是記憶力的問題,而是與資訊取用速度、條理梳理、記憶容量有關了!

日常生活中需要處理的事務越來越多,那就不只是記憶力的問題,而是有關記憶力容量的問題了……。圖/GIPHY

再加上短期記憶會隨著年齡增加明顯衰減,這時我們更需要借助一些外部「儲存裝置」來幫我們記住、保存更多更複雜的資訊!

美光推出高規格新一代快閃記憶體,滿足以數據為中心的工作負載

4K 影片、高清晰品質照片、大量數據、程式代碼、工作報告……在這個數據量大爆炸的時代,誰能解決消費者最大的儲存困擾,並滿足最快的資料存取速度,就能佔有這塊前景看好的市場!

全球第四大半導體公司—美光科技又領先群雄一步!除了推出 232 層 3D NAND 外,業界先進的 1α DRAM 製程節點可是正港 MIT,在台灣一條龍進行研發、製造、封裝。日前更宣布推出業界最先進的 1β DRAM,並預計明年於台灣量產喔! 

美光不久前宣布量產具備業界多層數、高儲存密度、高性能且小尺寸的 232 層 3D NAND Flash,能提供從終端使用者到雲端間大部分數據密集型應用最佳支援。 

美光技術與產品執行副總裁 Scott DeBoer 表示,美光 232 層 3D NAND Flash 快閃記憶體為儲存裝置創新的分水嶺,涵蓋諸多層面創新,像是使用最新六平面技術,讓高達 232 層的 3D NAND 就像立體停車場,能多層垂直堆疊記憶體顆粒,解決 2D NAND 快閃記憶體帶來的限制;如同一個收納達人,能在最小的空間裡,收納最多的東西。

藉由提高密度,縮小封裝尺寸,美光 232 層 3D NAND 只要 1.1 x 1.3 的大小,就能把資料盡收其中。此外,美光 232 層 NAND 存取速度達業界最快的 2.4GB/s,搭配每個平面數條獨立字元線,好比六層樓高的高速公路又擁有多條獨立運行的車道,能緩解雍塞,減少讀寫壽命間的衝突,提高系統服務品質。

結語

等真正能在大腦植入像伊隆‧馬斯克提出的「Neuralink」腦機介面晶片,讓大腦與虛擬世界溝通,屆時世界對資訊讀取、儲存方式可能又會有所不同了。

但在這之前,我們可以更靈活地的運用現有的電腦設備,搭配高密度、高性能、小尺寸的美光 232 層 NAND 來協助、應付日常生活上多功需求和高效能作業。

快搜尋美光官方網站,了解業界最先進的技術,並追蹤美光Facebook粉絲專頁獲取最新消息吧!

參考資料

  1. https://pansci.asia/archives/101764
  2. 短期記憶與機制
  3. 感覺記憶、短期記憶、長期記憶  
  4. 注意力不集中?「利他能」真能提神變聰明嗎?

文章難易度
所有討論 1

0

10
7

文字

分享

0
10
7
改變在一「矽」之間——半導體的誕生│《電腦簡史》數位時代(十六)
張瑞棋_96
・2021/04/05 ・6669字 ・閱讀時間約 13 分鐘 ・SR值 542 ・八年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文為系列文章,上一篇請見:邁向商用化——電腦產業的形成│《電腦簡史》數位時代(十五)

真空管的先天缺陷:易報銷

二次大戰後,電腦全面使用真空管後,速度大幅提升,隨著需要大量計算的企業越來越多,電腦前景看似一片光明。不過當電腦上線運作後,真空管的先天缺陷終於曝露出來,嚴重阻礙電腦產業的發展。

真空管是靠加熱極細的燈絲而產生游離電子,電子被吸引至做為正極的金屬片而產生單向電流。由於燈絲與電極都會逐漸耗損,真空管的壽命原本就不長;即使是特別為電腦生產的真空管,在正常狀況下也不過能用兩千個小時。更何況在進行高速運算時,真空管不斷開開關關,燈絲很容易因此燒斷而提早報銷。

真空管二極體的構造。圖:Wikipedia

一部電腦至少有幾千個真空管,只要有一、二個壞掉,就會影響整體電路的運作。以 UNIVAC 為例,平均故障間隔 (MTBF, Mean Time Between Failures) 的時間不超過 24 小時;美軍的 ENIAC 用的真空管超過一萬七千個,MTBF 更是只有 12 小時。而一旦發生問題,要排除故障也相當耗費時間,平均得花幾個小時才能找出損壞的真空管,予以更換。

電腦如果動不動就得停機檢修,不僅效益大打折扣,還會影響正常作業,誰想花大錢購置電腦卻惹來內部抱怨連連。可靠性的問題沒有解決,電腦就難以獲得全面採用,只是真空管的物理特性就是如此,能再改善的空間有限,只能期待全新的電子元件出現。

如今我們知道,這革命性的電子元件就是電晶體。它不僅解決了可靠性的問題,而且大幅降低成本、縮小體積、提升速度,讓電腦改頭換面,並催生出各種電子產品,人類文明從此邁入新紀元。電晶體之所以能帶來革命性的改變,乃因它是奠基於一種革命性的材料——半導體。要知道電晶體如何發明,得先知道什麼是半導體。

半導電性:導體與絕緣體之間

顧名思義,半導體就是具有半導電性的物體。但何謂半導電性?

我們知道不同元素有不同電子數,以原子核為核心,由內而外分布於不同殼層。越外層的電子能量越高,其中最外層的電子稱為「價電子」,所處的能階稱為「價帶」。價電子仍被束縛在原子內,所以無法導電,必須獲得能量躍遷到「傳導帶」才能導電。傳導帶與價帶的能量差距稱為「能隙」,導電性便取決於能隙的大小。

金屬的能隙非常小,甚至傳導帶與價帶有部分重疊,所以導電性很高;反之,絕緣體的能隙很大,價電子無法跨越,因此無法導電。半導電的能隙則介於金屬與絕緣體之間。

三種不同導電性。圖:Wikipedia

能隙的大小與價電子的個數有關。每個殼層可容納的電子數都有上限,當價電子殼層越接近填滿狀態,就越穩定,需要越多能量才能激發價電子跳到傳導帶;當價電子越少,就越容易脫離束縛,跑到傳導帶。

金屬的價電子通常不超過 3 個(過渡金屬除外),很容易形成自由電子,到處移動。絕緣體通常有 5 個或以上的價電子。碳、矽、鍺、錫、鉛等 IV 族元素有 4 個價電子,剛好是半滿狀態,導電性介於導體與絕緣體之間,屬於半導體。

IV 族元素如果摻雜其它元素,導電性也會跟著改變。例如把磷摻到矽裡面,因為磷有 5 個價電子,其中 4 個與矽共用後,還多一個價電子,就更容易跑到傳導帶成為自由電子,這種半導體稱為 n 型 (n 代表 negative)。

矽如果摻的是有三個價電子的硼,只差一個價電子就是最穩定的狀態,猶如有個「電洞」讓經過的電子落入陷阱。旁邊的電子掉進這個電洞後又產生一個新的電洞,形成骨牌效應,從另一個角度看,就像是帶正電的電洞會移動一樣,因此稱為 p 型半導體 (p 代表 positive)。

偶然發現半導體

除了摻雜,化合物也可能形成半導體。半導體最早被發現,就是與 IV 族元素無關的化合物。1833 年,法拉第有一次在做電力實驗時,無意間將燈火靠近硫化銀,結果發現導電能力竟然大增;一旦移走燈火,導電性又隨著溫度下降而降低。一般金屬在高溫時,導電性會變差,硫化銀卻剛好相反,令法拉第大感訝異。

硫化銀就是一種半導體。高溫之所以增加半導體的導電性,是因為熱能會讓更多價電子躍遷到傳導帶,因此增加了導電性。一般金屬原本僅需一點能量就能產生自由電子,集體往正極方向移動。但電子如果吸收太多熱能,反而四處亂竄,原本的定向性受到破壞,導電能力也就隨之下降了。

法拉第雖然發現半導體這個特性,卻無法了解其中原理。畢竟當時距離道爾吞提出原子說還不到 30 年,是否有所謂的基本粒子仍頗受質疑,更無從想像原子內部還有電子與原子核。因此法拉第發表這個奇特的現象後,就不了了之,也沒有人想到在導體與絕緣體之外,還有一種半導體。下次半導體再度躍上檯面,已是四十年之後。

1874 年,才 24 歲的德國物理學家布勞恩 (Ferdinand Braun) 在研究各種硫化物的導電性時,將硫化鉛接上電,卻發現檢流計的指針紋風不動。他試著調換正負極,結果指針馬上就有反應。這實在太奇怪了,一個物體的導電性應該是一致的,怎麼會因為正負極不同接法,一下是絕緣體,一下又是導體?

發現半導體具有單向導電性的布勞恩。圖:Wikipedia

單向導電性是半導體另一項重要特性。硫有 6 個價電子,所以硫化鉛是 n 型半導體,一般情況下,電子只能從硫化鉛往正極移動,才會從另一個方向測不到電流。同樣地,由於當時仍然不清楚原子的構造(湯姆森於 1897 年才發現電子),不知如何解釋這個奇特現象。

大家毫無頭緒,單向導電性又看不出有何用途,因此布勞恩發表實驗結果後,並沒有激起任何漣漪。半導體再次受到忽視,要等到赫茲於 1888 年發表無線電波的實驗後,硫化鉛這類的半導體礦石才引起大家的興趣。

接收無線電波

赫茲的實驗吸引很多人投入無線電波的研究,印度科學家博斯 (Jagadish Chandra Bose) 也是其中之一。他發現 IV 族元素的礦石不但有單向導電性,而且不遵守歐姆定律:電流與電壓成正比。當施予礦石的電壓小於某個臨界值時,電流微乎其微;一但超過臨界電壓,電流便突然大幅增加。

博斯想到可以利用這個特性偵測微弱的無線電波。只要先對接收裝置施以適當電壓,讓無線電波所產生的感應電壓恰好超過臨界電壓,電流便會出現明顯變化,就能如實呈現無線電波。

1894 年,博斯將金屬天線的一端與硫化鉛的表面接觸,做成無線電偵測器(也稱「檢波器」),成功接收到一英哩之外的無線電波,這中間還隔了三道磚牆。

博斯發明的無線電收發器。圖:Wikipedia

馬可尼 (Guglielmo Marconi) 也在這一年發明無線電報系統,兩年後他和博斯在倫敦會面,不過博斯對商業應用不感興趣,並未與馬可尼合作。馬可尼也沒有採用博斯這個技術,而是利用感應電流產生的磁場變化,來吸引金屬屑或發出聲響,作為判斷電波的依據。

事實上,博斯自己後來也改用別種技術設計檢波器,因為礦石檢波器的確不是很靈光。礦石中的雜質分布並不均勻,不是每次用金屬線接觸硫化鉛表面都能形成迴路,往往得嘗試很多次才能找到「熱點」,得到訊號。

儘管如此,AT&T 的工程師匹卡德 (Greenleaf Pickard) 仍看好礦石檢波器的潛力,試圖找出收訊效果更好的礦石。

1902 年,匹卡德檢測一塊礦石的熱點時,懷疑施加的電流造成背景雜訊太大,於是伸手拿掉部分電池,結果雜訊果然馬上消失,無線電的訊號變得清楚許多。這時他看了一眼器材,才發現他剛剛不小心把電池的接線弄掉了,也就是礦石檢波器竟然不需要電,就可以接收無線電。

這個奇妙的現象完全違背過去的認知,於是匹卡德更加專心研究還有哪些礦石不用電就可以當檢波器。他花了三、四年的時間測試上千種礦石,發現有 250 種可以做為天然檢波器,其中又以熔融後的矽(原本用來製造石英玻璃)收訊效果最佳。

礦石收音機

匹卡德進行實驗的這段期間,無線電也正在發展另一項應用:傳送聲音。當時電話已是成熟的技術,可以將聲音轉換為音頻訊號,但音頻是連續波形,無線電波卻是脈衝電波,因此只能靠長/短、有/無來代表摩斯密碼,無法傳送音頻訊號。

1900 年,加拿大發明家范信達 (Reginald Fessenden) 發明一種高速交流發電機,終於能產生連續波形的無線電波(稱為「載波」,波形為規律的正弦波)。

原本規律的載波與音頻疊加後,變成起伏變化的無線電波,電波的振幅大小便代表音訊的變化。這種調變電波振幅的技術便稱為「調幅」(Amplitude Modulation, 簡稱AM),就是現在 AM 廣播所用的技術。

調幅示意圖。圖:Wikipedia

調幅無線電到了接收端,還得經過「解調」才能還原成原來的音訊。首先,由於天線接收無線電波後,所產生的感應電流也是交流電,因此必須先把反方向的電流去掉,成為單一方向的直流電;這個步驟便稱為「整流」。接著再濾掉其中的載波,留下的就是原來的音頻訊號。

范信達直到 1904 年才成功做出有整流功能的檢波器,並於 1906 年的聖誕夜成功發送 AM 廣播到大西洋上的美國軍艦。不過范信達所發明的檢波器不易製造,又常需要調校,只適合專業人士使用。而半導體的單向導電性恰好可以將交流電整流為直流電,這類礦石便可直接做為無線廣播的檢波器。

1906 年,匹卡德獲得矽石檢波器的專利,並在隔年創立公司,製造用耳機收聽的礦石收音機,銷售給一般大眾。由於價格低廉、體積小巧又不需要電,因此頗受歡迎。礦石收音機成為史上第一個半導體商品;誰會想到如今半導體與各種電子產品密不可分,但最早卻是以不用電為訴求。

匹卡德於1916年發明的矽石檢波器。圖:Wikipedia

三極真空管橫空出世

就在匹卡德於 1906 年申請專利這一年,美國專利局也收到另一項影響更深遠的專利申請,那就是由德佛瑞斯特 (Lee De Forest) 改良的新型真空管。

原本弗萊明 (John A. Fleming) 於1904 年發明的真空管只有正負兩極,德佛瑞斯特用金屬柵格擋在金屬片與燈絲之間,變成除了正、負極,還多了「柵極」(Grid) 的三極管

柵極用來控制電流大小。當柵極施以負電壓,產生的電場與電子相斥,部分電子便被擋下,無法抵達正極金屬片,電流也就變小了。負電壓越大,被擋下的電子越多,電流也就越小;柵極就像家裡的水龍頭,不用動到水管的閥門,就可以各自調節水流大小。

三極管在金屬片與燈絲之間多了金屬柵格。圖:Wikipedia

德佛瑞斯特原本設計三極管只是為了調節電流,他沒想到六年之後,這項設計竟被發掘出放大訊號的功能。

原本只有二極管時,若要調整電流大小,正極電壓就要有相對幅度的改變,就如前面水管的比喻,沒有水龍頭的話,只能從源頭閥門控制水量。例如要讓電流從 12 mA 減半降為 6 mA,電壓要從 110 V 降到 60 V;但若使用三極管,則無須改變正極電壓,只要對柵極施以 -2 V 的電壓就可以了。

三級管的電壓變化只需二級管的 1/25 ,便能達到同樣的效果(若搭配適當的阻抗,相差還能到百倍以上),就像水龍頭那樣,轉動一點點,出水量就差很多。如果讓柵極做為訊號的輸入端,正極做為輸出端,那麼原本微弱的訊號,就會放大成強烈的訊號。

有了三極管做為訊號放大器,無線電可以傳得更遠,收訊效果也更好,而且收音機還可以配上喇叭。隨著廣播電台自 1920 年代開始快速發展,真空管收音機也進入一般家庭,成為民眾重要的休閒娛樂與資訊來源。相對地,礦石收音機的收訊效果與方便性都遠遠不如,自然不受青睞,逐漸沒落。好不容易找到舞台的半導體於是又被棄置一旁,沒想到十幾年後,同樣是由來自 AT&T 的工程師,再度讓半導體起死回生。

德佛瑞斯特於1914年用三極管打造的訊號放大器。圖:Wikipedia

真空管搞不定短波

三極真空管有助於無線廣播,當然也有助於電話傳得更遠。 AT&T 利用真空管擴大電話網路,於 1915 年開通橫跨東西兩岸的長途電話。1927 年 1 月 7 日, AT&T 總裁進一步透過無線電波,從紐約打電話到倫敦,完成史上第一通越洋電話。不過這通電話只是試驗性質,真要提供越洋電話服務,還有項技術問題須要克服。

紐約與倫敦相隔甚遠,無線電波無法橫越地表弧度直接送達,必須經大氣的電離層反射到地面。然而一年四季、晴雨晨昏,大氣條件都不一樣,對電波的影響也大不相同。因此若要維持越洋電話全年暢通,通訊設備須要能夠收發不同波長的無線電波。不過真空管在高頻(也就是短波)的表現不是很好,如何克服這個問題便成為貝爾實驗室的首要任務。

貝爾實驗室於 1925 年成立,初期的工程師大多從 AT&T 陸續轉調過來,歐偉 (Russell Ohl) 也是其中之一,他對無線電的興趣始自大學時期。1914 年第一次世界大戰爆發,當時大學二年級的歐偉,在課堂上第一次聽到礦石收音機發出聲音,而且竟然是遠在大西洋的英國船隻,遭到德國潛艇攻擊所發出的求救訊號,從此他便對無線電深深著迷。

歐偉原本在 AT&T 就是負責短波的研發,1927 年轉到貝爾實驗室後仍繼續這個項目。他們不斷將無線電電波推向更高的頻率,但最終遇到瓶頸難以跨越。當其他同事仍執著於真空管時,歐偉於 1935 年決定從頭開始,一一檢視過去無線電的各種實驗與論文,從中發掘可行方案。最後他把目標瞄準礦石收音機的矽石,相信這才是解答。

歐偉 (Russell Ohl) 在他的實驗室裡。圖:Engineering and Technology History Wiki

一道裂痕開啟「矽」的半導體時代

礦石收音機不是才被真空管淘汰嗎?同事與主管都認為歐偉異想天開,但他認為只要去除矽石中的雜質,就能收發頻率更高的無線電波。歐偉自己多次嘗試用矽粉製造,卻不得其果,最後終於在 1939 年找到具有冶金專長的同事,用高溫熔製的方法精煉出高純度的矽。

1940 年 2 月 23 日,歐偉決定檢測一塊去年製出的矽石,據他的同事說,這塊矽石相當奇特,每次測的導電性都不一樣。歐偉仔細檢查這塊矽石,發現中間有條裂痕,他猜想這就是導電性不一致的原因,原本不以為意。但他接上示波器,赫然發現矽石在檯燈的照射下,竟然會產生電流。

光電效應是會產生電流,但那是以紫外線照射金屬,而這顆 40 W 的燈泡發出的是可見光,矽的導電性也遠遠不如金屬。雖然美國發明家弗里茲 (Charles Fritts) 曾於 1884 年將硒鍍上金箔,做成太陽能電池,但這樣的光伏效應 (Photovoltaic effect,也稱「光生伏特效應」) 轉換效率非常低,只有 1% 左右。歐偉所測到的電壓,超過當時所知的光電效應與光伏效應十倍以上,絕對是項前所未有的發現。

歐偉趕緊找主管來看,同時和同事繼續深入研究這塊矽石。他們發現電流總是由裂痕的上半部流往下半部,而不會反向而行。經過進一步分析發現,裂痕兩邊含有不同的雜質,上半部含有少許的硼,而下半部的雜質則是磷。

他們推測應該是這塊矽石經過高溫熔化,在自然冷卻的過程中,較重的磷下沉得比較快,較輕的硼下沉得比較慢,裂痕出現的地方剛好將這兩種元素阻隔開,以致矽石的上、下半部各有不同的雜質。

歐偉推測電流就是兩邊不同的雜質所致。磷有 5 個價電子,而硼有 3 個價電子,在白熾燈泡的照射下,磷的多餘電子被激發而越過裂痕,填補含硼那一邊矽石的電洞,而產生電流。這就類似電池的負極提供電子給正極,於是歐偉也用「n型」、「p型」來稱呼這兩種矽石,然後把劃分兩邊的裂痕——也就是這兩種半導體的接觸面——叫做「p-n 接面」(p-n junction)。這幾個名稱便一直沿用到現今的半導體。

半體體的基本名稱不但源自歐偉的命名,如今我們懂得利用摻雜來改變半導體的導電性,也是始自他這次的發現。不過對歐偉而言,他一心只想研究無線電波,發現半導體的光伏效應只是偶然,他無意也沒有能力再深究其中原理。

半導體的後續研究隨即由貝爾實驗室另一個團隊接手,這群有量子力學背景的物理學家將釐清 p-n 接面的奧秘,進而發明改變世界的電晶體。

張瑞棋_96
423 篇文章 ・ 633 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

11
4

文字

分享

0
11
4
邁向商用化——電腦產業的形成│《電腦簡史》數位時代(十五)
張瑞棋_96
・2021/02/01 ・4303字 ・閱讀時間約 8 分鐘 ・SR值 521 ・七年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文為系列文章,上一篇請見:破解密碼到模仿遊戲——圖靈那些不可說或無人識的貢獻│《電腦簡史》數位時代(十四)

全世界只需要五台電腦?

「我想電腦的全球市場大概五台吧。」 ——IBM 總裁華生 (Thomas Watson),1943 年。

這句話現在看起來相當荒謬可笑,尤其竟然出自 IBM 總裁口中,更令人覺得匪夷所思。當然,用現今個人電腦的市場規模來評判華生這句話並不公平,畢竟當時根本無法想像家家戶戶有電腦。

不過再怎麼樣,中大型電腦的市場規模也絕對不只個位數吧?IBM 自己是靠製表機起家,為政府部門、鐵道公司、壽險公司等大型機構做資料統計都超過三十年了,為什麼仍會如此低估電腦的需求?

IBM 首任總裁華生。圖:Wikipedia

其實華生才於 1939 年親自拍板定案,與哈佛大學共同開發電腦,他絕對有想到其它大學肯定也有電腦的需求。同時他也應該知道軍方為了二次大戰,正在積極打造電腦,用來計算彈道、製作射表。

只不過對華生而言,這些電腦都是為了特定用途打造,而且是採合作開發的模式,在他眼中並不是可商品化的產品,他要的是可以直接採用標準產品的商用市場。然而當時需要大量計算的企業本來就寥寥可數,況且那些計算工作也多是簡單的統計分析,用 IBM 的製表機就綽綽有餘了。所以華生當時看衰電腦市場也是有其道理。

華生的觀點恰恰反映了電腦在那個時代所扮演的角色:計算高深複雜的數學方程式。而這顯然只有學者才會用到,要不是為了本身的科學研究,就是幫軍方計算彈道、空氣動力學之類的。

事實上,當時也的確都是大學與軍方這兩個單位在推動電腦的開發(貝爾實驗室雖然一開始是自己主動打造複數計算機,但後來就中止電腦研發,直到戰爭爆發,才接受軍方委託繼續開發)。如果電腦用途只侷限於此,華生的預言恐怕就八九不離十。所幸二次大戰結束後,商用市場興起,電腦產業才有今日的榮景。不過你大概想不到,第一家打造商用電腦的竟不是 IBM 之類的電腦公司,而是英國一家餐飲企業。

餅乾工廠與劍橋大學

萊昂企業 (J. Lyons and Co.) 於 1884 年成立時只是一間小茶館,後來不但發展為遍布英國的連鎖茶館,還拓展出甜點、餐廳等不同連鎖店,並且自己設廠生產各種餅乾、糕點。二次大戰後,管理階層鑒於組織越來越龐大,想要從美國購置事務機器來提升管理效率。

萊昂企業旗下的連鎖餐廳,攝於 1942 年。圖:Wikipedia

結果他們蒐集各方資料後,發現美國陸軍於 1946 年 2月公開發表了第一台通用型電子計算機 ENIAC。萊昂企業高層對此極感興趣,於是派人於 1947 年 5 月前往美國參訪考察。

他們拜訪了高士汀(前情提要:他在戰時代表陸軍派駐在摩爾電機學院,負責協調 ENIAC 的設計與建造。就是他主動把馮紐曼撰寫的〈EDVAC 報告初稿〉分送給美、英兩國的相關機構,促成了許多部馮紐曼架構的電腦誕生),表明想要建置一台電腦。高士汀好心的告訴他們不用捨近求遠,離他們公司總部不遠的劍橋大學就有團隊正在打造電腦。

原來劍橋大學的物理學家威爾克斯 (Maurice Wilkes) 也拿到一份〈EDVAC 報告初稿〉,而且比圖靈幸運的是,他有位研究生二次大戰時曾在海軍服役,負責設計雷達所用的延遲線記憶體,因此知道如何打造水銀延遲線。

雖然技術上的障礙克服了,但劍橋大學校方對開發電腦興趣不大,不願給予經費,威爾克斯只好一邊著手設計,一邊尋找經費來源。沒想到幸運之神再次眷顧,萊昂企業竟然主動找上門來,願意贊助開發經費,以換取威爾克斯協助他們打造商用電腦。

威爾克斯設計的「電子延遲存儲自動計算機」(Electronic Delay Storage Automatic Calculator,簡稱 EDSAC)  不到兩年就完工,於 1949 年 5 月 6 日成功執行了計算平方數的程式,成為繼曼徹斯特寶寶之後,第二台可存取程式的數位電腦。

EDSAC 創下的諸多第一

不過嚴格來說,曼徹斯特寶寶原本就是為了打造曼徹斯特一號而試做的先導機型,只能做簡單的計算,輸入/輸出裝置也相當克難,功能相當有限。因此若以真正具有完整功能的電腦而言,第一台可存取程式的電腦應該是 EDSAC;曼徹斯特一號則以 40 天的差距屈居第二。

完工後的 EDSAC,左方即設計者威爾克斯。圖:Wikipedia

還有幾項電腦史上的第一也與 EDSAC 有關。在機器剛開機時,會先有基本程序讓相關元件就緒,這是靠一連串的電子訊號控制電磁開關來完成。負責程式設計的研究生惠勒 (David Wheeler) 將開機程序改用一組初階指令 (initial orders) 控制,這組指令用英文代碼描述,方便程式設計師以更直觀的方式設定機器。

惠勒所設計的初階指令就是最早的組合語言 (assembly language),他因此被視為「組譯器」(assembler,將組合語言轉換成機器碼的系統) 的發明人。1951 年,惠勒以〈用 EDSAC 做自動計算〉這篇論文取得博士學位,成為史上第一位電腦科學博士

EDSAC 完工後,威爾克斯並沒有敝帚自珍,反而很快地自 1950 年開始開放給外界使用,他為此與惠勒編寫了史上第一本電腦程式的教科書,讓有意使用 EDSAC 的學者知道如何撰寫程式。這其中有四位後來獲得諾貝爾獎(兩位合得 1962 年化學獎、一位獲 1963 年醫學獎,還有一位是 1974 年物理獎得主),他們還特別在頒獎典禮上,致辭感謝 EDSAC 對他們的研究有很大的幫助。

順帶一提,史上第一個視覺化的電腦遊戲也是出現在 EDSAC 上。EDSAC 原本配有監測電路用的陰極射線管;1952 年,一位研究生寫了井字遊戲的程式,讓人與電腦對弈,井字與 ”O”、”X” 符號就直接呈現在陰極射線管上。

世上首部商用電腦誕生

威爾克斯如願完成 EDSAC 後,當然要履行對幕後金主萊昂企業的承諾。萊昂企業高層對電腦的冀望極高,特地設置了一個專責部門「萊昂電子辦公室」(Lyons electronic office,簡稱 LEO),而且並非採購現成的機種,而是要自己打造量身訂做的電腦;名稱就取為「里歐一號」(LEO 1)。

第一部商用電腦「里歐一號」。圖:Wikipedia

里歐一號完全參考 EDSAC 的設計,惟記憶容量擴增為兩倍,很快就於 1951 年 2 月竣工。11 月,萊昂企業開始將訂單、配銷、庫存等管理系統電腦化,首度實現今日通稱的「管理資訊系統」(Management Information System),里歐一號也因此成為世上第一部商用電腦。

到目前為止,英國在電腦發展上仍然領先美國。儘管曼徹斯特大學與劍橋大學都是取得〈EDVAC 報告初稿〉後,才開始設計馮紐曼架構的電腦;其中幾人還特地飛到美國,參加摩爾電機學院的暑期課程,才習得相關的電腦知識,但英國團隊卻比美國更早打造出機器。

英國除了率先達成好幾項技術上的里程碑,在軟體應用上也更勇於嘗試。當萊昂企業開始導入管理資訊系統時,美國的電腦主要仍用於科學計算或為政府部門解決特定問題。至於掌握商用市場的 IBM,仍然用機電式的製表機,為客戶處理簡單的加減乘除。

英美兩國電腦實力的消長

不過美國的落後純屬偶然。EDVAC 是因為核心成員紛紛離去,以致延宕到 1952 年 2 月才完工。悻悻然自行創業的莫奇利與艾科特因為從頭開始,所以 1949 年 3 月才完成美國第一部可存取程式的電腦「二進位自動計算機」(Binary Automatic Computer,簡稱 BINAC),比英國的曼徹斯特寶寶晚了近一年。回到普林斯頓高等研究院的馮紐曼畢竟是學者而非工程師,直到 1952 年 1 月才所打造出 IAS 機器。

沉睡的 IBM 也即將甦醒。由於韓戰爆發,美國國防部須要進行核彈的計算,IBM 終於在 1952 年 4 月推出高速運算的「國防計算機」(The Defense Calculator),這是 IBM 第一部馮紐曼架構的真空管電腦。既然都已經開發了,這又是通用型計算機,可以執行各種程式,那就更名為 701,推到商用市場試試看吧。於是 IBM 自 1953 年開始向企業用戶推銷 701,從此開啟了 IBM 主宰中大型電腦市場的時代,也標誌了美國後來居上的開始。

IBM 701 的運算單元。圖:Wikipedia

順帶一提,文章一開頭引述 IBM 總裁華生所說的那句話,據信其實就是出自他在 1953 年的股東大會上,報告 701 的銷售成果時所說的:「我們巡迴拜訪客戶前,原本預期訂單頂多 5 台,結果拿了 18 張訂單回來。」後來以訛傳訛,才演變成他在 1943 年說了那句名言。

華生那次巡迴其實只拜訪了 20 家客戶,結果高達九成願意購置電腦,證明了商用電腦確實有相當的市場需求。IBM 光是隔年推出的平價機型 650,就在八年內賣出兩千部,其它七家規模較小的電腦公司也都頗有斬獲;市場上還幫他們取了「白雪公主與七矮人」的暱稱。

美國電腦產業風起雲湧,迅速地把原本領先的英國拋在腦後,實乃大時代下的必然結果。歐洲國家歷經二次大戰的蹂躪,國力嚴重耗損,相對地,美國本土則完全未受戰火波及,加上為盟國生產大量武器軍需,帶動經濟大幅成長,因而促進商用電腦的需求。而且如之前在介紹凡納爾.布希時提到的,在他的大力推動下,美國政府將研究經費下放給大學或民間的實驗室,不僅促進產業發展,也讓技術在民間扎根,科技實力因而大幅領先全世界。

磁性記憶體

電腦相關的技術也是如此。以記憶體來說,水銀延遲線與威廉斯管這兩種裝置都過於昂貴,使得電腦造價讓企業用戶望之卻步。雖然早在十九世紀末,就有人利用電磁感應錄下聲音,但記錄資料卻始終難以實現。

直到 1947 年,美國一家「工程研究公司」(Engineering Research Associates) 才在海軍的委託下,開發出「磁鼓記憶體」(Magnetic Drum Memory)。它的原理類似硬碟,只不過磁性材料是噴塗在圓筒表面。

1958年的磁鼓記憶體。圖:Wikipedia

雖然磁鼓記憶體因為有轉動的機械動作,資料存取速度比不上水銀延遲線與威廉斯管,卻因為容量大、可靠性高、無揮發性(意思是不插電時,資料也不會消失),成本又低,成為實現平價電腦的一大關鍵。IBM 650 就是用了磁鼓記憶體,才得以降低售價。

1949 年,磁性記憶體又往前推進一步。時任艾肯研究助理的華裔物理博士王安,在參與打造「哈佛四號」電腦時,發明了「磁芯記憶體」(Magnetic Core Memory)。這是將電線穿過許多磁環構成的陣列,沒有任何機械動作,只有電流穿梭其中,所以速度飛快。但因為造價高昂,只用於高階機種或是核心記憶體。

就在記憶體的技術取得新的進展之際,有一項革命性的發明也在貝爾實驗室悄悄展開,這項發明將徹底改變電腦的樣貌,將電腦帶向另一個新世紀。那就是——電晶體。

張瑞棋_96
423 篇文章 ・ 633 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。