0

4
4

文字

分享

0
4
4

獨自搞定電腦與通訊的理論基礎,卻罕為人知的天才——夏農│《電腦簡史》數位時代(四)

張瑞棋_96
・2020/09/14 ・2348字 ・閱讀時間約 4 分鐘 ・SR值 538 ・八年級

【齒輪時代】的最後一章提到,MIT 教授凡納爾.布希除了發明微分分析儀之外,也直接或間接地對電腦發展做出重要貢獻。其中一項間接貢獻就是來自他所指導的學生夏農 (Claude E. Shannon)。這位不世出的天才雖然大眾知名度不高,但事實上,現代電腦與通訊的發展,都始於他憑一己之力提出的理論基礎。

本文為系列文章,上一篇請見:電腦運算的基礎——布林代數,是麼搞出來的?│《電腦簡史》數位時代(三)

擔任布希助理,操作微分分析儀,奠定電路基本功

夏農自小就喜歡搞電子實驗,他還曾利用鐵圍籬和八百公尺外的鄰居互傳電報。1936 年,夏農以數學和電機雙學位自密西根大學畢業後,進入 MIT 電機研究所就讀,同時在布希的實驗室當研究助理。

夏農(Claude Shannon, 1916-2001)。圖:Wikipedia

當時微分分析儀是唯一能算高階微分的計算機,所以實驗室不時會接受教授或其它研究單位的委託,為他們計算微分方程式。夏農的工作便是針對他們的問題,調整微分分析儀的設定,包括大大小小的連桿、滑輪等機械零件,以及近百個控制電動馬達的繼電器。

夏農相當樂在其中,看著微分分析儀按照自己的設定運轉,最後自動畫出答案,總令他心情愉悅。而最令他著迷的,就是在背後控制所有動作的繼電器。繼電器就像閘門,掌控電流的進出,雖然只有開與關兩種狀態,但串成迴路後,就能以特定的順序開開關關,就能讓微分分析儀解出各種微分方程式。

-----廣告,請繼續往下閱讀-----

於貝爾實驗室實習,悟出電子迴路與布林代數的關聯性

第二年暑假,夏農到美國電話電報公司 (AT&T) 的貝爾實驗室實習。當時貝爾實驗室正在開發縱橫式自動交換機,也是利用繼電器來控制電話線路的搭接。夏農操作了一學年的微分分析儀,對繼電器的運作已了然於胸,儘管電話交換機是截然不同的機器,其中的迴路也更密集複雜,他卻能看出兩者在運作上有共通之處。

1924年的電話交換機尚需人工操作。圖:Wikipedia

無論迴路大小,都是由許多繼電器與電路所組成,不同的連接方式決定電流如何流動,進而讓機器做出不同動作。如果兩個繼電器在一條電路上前後串聯,就必須兩個繼電器都打開,電流才能通過。如果電路一分為二,各自經過一個繼電器再合而為一(這稱為並聯),就只要有一個是開的,電流就能繼續往前了。

這只是電路的基本常識,每個工程師都知道,但就是沒有人像夏農那樣,看出電子迴路與布林代數的關聯。

夏農是以數學和電機雙學位畢業,對布林代數自然不陌生,但要從實體的電路聯想到抽象的邏輯關係,真的要有超乎常人的洞見。在他眼中,繼電器只有開、關兩種狀態,恰可用布林代數中的 1 與 0 兩種數字表示。繼電器串聯相當於邏輯運算的「且」(AND),並聯則是相當於「或」(OR),不管是什麼迴路,都可以用布爾代數描述。

-----廣告,請繼續往下閱讀-----

暑期實習結束後,夏農回到學校,立即向導師布希提及自己的想法。布希深感興趣,鼓勵他以此做為碩士論文的題目。

史上最重要的碩士論文,堪稱資訊時代的大憲章

沒幾個月,夏農就在 1937 這一年完成劃時代的論文,題為〈繼電器與交換電路的符號分析〉(A Symbol Analysis of Relay and Switching Circuits),開宗明義即宣告:「任何電路都可以用一組方程式表示,……。事實證明,其計算方式完全等同於符號邏輯所用的命題運算。」

夏農先以簡單的雙開關電路為例,說明如何用布林代數標示串聯與並聯的接法,並列出基本公理與交換律、結合律、……等運算法則。接著他再進一步分析不同型式的複雜電路,證明也都可以用布林代數表示。最後夏農強調這套方法不只可以用於現有的機器,還可以解決各種問題。

他寫道:「事實上,任何運算只要是用『若』、『或』、『且』等字眼在有限的步驟內描述,都可以用繼電器自動算出來。」

-----廣告,請繼續往下閱讀-----

為了佐證這項主張,他提出三種全新的應用,並附上自己設計的電路圖。第一個是電路的簡化;原本使用二十個元件的電路,經由邏輯演算找出等效的表達式後,可以將元件減少為十四個。第二個與第三個應用都是他的創新發明,分別是使用五個按鍵開關的電子密碼鎖,以及二進位的電子加法器(嚴格來說仍不算電子式,因為繼電器的開關仍是利用電磁鐵的機械動作)。

電路的邏輯閘。圖:Wikipedia

這篇論文於第二年公開發表後,立即引起巨大的迴響,甚至被譽為「應該是本世紀最重要、最值得注意的碩士論文」,後來《科學美國人》雜誌也稱它是「資訊時代的大憲章」。

電路設計化繁為簡,電腦從此邁向數位時代

的確,夏農這篇論文影響深遠。原本錯綜複雜的電路圖改用布林代數表示後,就可以在實際建造機器之前,清楚計算出執行的結果,大幅減少嘗試錯誤所耗費的時間與成本。除此之外,還能如夏農所示範的,找出更精簡的電路方案。科技產品因為設計效率提升、製造成本下降,才得以更加迅速地推陳出新。

計算機的發展也受惠於夏農的創見,才開啟了數位時代(他革命性的通訊理論會在第三部另外介紹)。

-----廣告,請繼續往下閱讀-----

夏農所提出的邏輯電路雖然以繼電器為範例,但其實這套抽象法則具有普遍性,任何有開關兩種狀態的元件皆可套用。因此即使後來繼電器被真空管取代,然後真空管又被電晶體淘汰,無論電腦的硬體零件怎麼換、電路圖多複雜,都還是基於夏農所提出的邏輯閘。

夏農已經指出一條通往未來之路,很快地,這條路上就將出現打造現代電腦的各路好漢……。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1056 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

3
1

文字

分享

0
3
1
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
通信三本柱:通信模型大解密
數感實驗室_96
・2024/06/30 ・654字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

想像一下,你和朋友在咖啡廳聊天。這看似簡單的互動,其實包含一個基本的通信模型喔。你是傳輸端(transmitter),朋友是接收端(receiver),而環境中的其他聲音則構成了通道(channel)。這三者共同組成了基本的通信模型。在接下來的文章中,我們將深入探討這個模型的每一個部分,並了解它們如何影響我們日常的通信體驗。

以上就是數位通信系統的三大支柱:傳輸端、通道和接收端的簡單介紹。實際上,它們的功能遠不止於此,整個通信系統的複雜程度超乎想像。除了數位物理層的演算法和電路設計外,還涉及類比電路、網路層等不同面向,真的是一門博大精深的領域。

通信技術致力於解決全球數十億人每天遇到的實際問題。如果你對於挑戰高難度的數學、物理、演算法問題感興趣,這將是一個充滿寶藏的領域。成功解決這些挑戰,不僅具備巨大的商業價值,更能推動通信科技的進步,提升全人類的通信體驗。你是否已經躍躍欲試了呢?

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

參考資料

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 53 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

4
4

文字

分享

0
4
4
獨自搞定電腦與通訊的理論基礎,卻罕為人知的天才——夏農│《電腦簡史》數位時代(四)
張瑞棋_96
・2020/09/14 ・2348字 ・閱讀時間約 4 分鐘 ・SR值 538 ・八年級

-----廣告,請繼續往下閱讀-----

【齒輪時代】的最後一章提到,MIT 教授凡納爾.布希除了發明微分分析儀之外,也直接或間接地對電腦發展做出重要貢獻。其中一項間接貢獻就是來自他所指導的學生夏農 (Claude E. Shannon)。這位不世出的天才雖然大眾知名度不高,但事實上,現代電腦與通訊的發展,都始於他憑一己之力提出的理論基礎。

本文為系列文章,上一篇請見:電腦運算的基礎——布林代數,是麼搞出來的?│《電腦簡史》數位時代(三)

擔任布希助理,操作微分分析儀,奠定電路基本功

夏農自小就喜歡搞電子實驗,他還曾利用鐵圍籬和八百公尺外的鄰居互傳電報。1936 年,夏農以數學和電機雙學位自密西根大學畢業後,進入 MIT 電機研究所就讀,同時在布希的實驗室當研究助理。

夏農(Claude Shannon, 1916-2001)。圖:Wikipedia

當時微分分析儀是唯一能算高階微分的計算機,所以實驗室不時會接受教授或其它研究單位的委託,為他們計算微分方程式。夏農的工作便是針對他們的問題,調整微分分析儀的設定,包括大大小小的連桿、滑輪等機械零件,以及近百個控制電動馬達的繼電器。

夏農相當樂在其中,看著微分分析儀按照自己的設定運轉,最後自動畫出答案,總令他心情愉悅。而最令他著迷的,就是在背後控制所有動作的繼電器。繼電器就像閘門,掌控電流的進出,雖然只有開與關兩種狀態,但串成迴路後,就能以特定的順序開開關關,就能讓微分分析儀解出各種微分方程式。

-----廣告,請繼續往下閱讀-----

於貝爾實驗室實習,悟出電子迴路與布林代數的關聯性

第二年暑假,夏農到美國電話電報公司 (AT&T) 的貝爾實驗室實習。當時貝爾實驗室正在開發縱橫式自動交換機,也是利用繼電器來控制電話線路的搭接。夏農操作了一學年的微分分析儀,對繼電器的運作已了然於胸,儘管電話交換機是截然不同的機器,其中的迴路也更密集複雜,他卻能看出兩者在運作上有共通之處。

1924年的電話交換機尚需人工操作。圖:Wikipedia

無論迴路大小,都是由許多繼電器與電路所組成,不同的連接方式決定電流如何流動,進而讓機器做出不同動作。如果兩個繼電器在一條電路上前後串聯,就必須兩個繼電器都打開,電流才能通過。如果電路一分為二,各自經過一個繼電器再合而為一(這稱為並聯),就只要有一個是開的,電流就能繼續往前了。

這只是電路的基本常識,每個工程師都知道,但就是沒有人像夏農那樣,看出電子迴路與布林代數的關聯。

夏農是以數學和電機雙學位畢業,對布林代數自然不陌生,但要從實體的電路聯想到抽象的邏輯關係,真的要有超乎常人的洞見。在他眼中,繼電器只有開、關兩種狀態,恰可用布林代數中的 1 與 0 兩種數字表示。繼電器串聯相當於邏輯運算的「且」(AND),並聯則是相當於「或」(OR),不管是什麼迴路,都可以用布爾代數描述。

-----廣告,請繼續往下閱讀-----

暑期實習結束後,夏農回到學校,立即向導師布希提及自己的想法。布希深感興趣,鼓勵他以此做為碩士論文的題目。

史上最重要的碩士論文,堪稱資訊時代的大憲章

沒幾個月,夏農就在 1937 這一年完成劃時代的論文,題為〈繼電器與交換電路的符號分析〉(A Symbol Analysis of Relay and Switching Circuits),開宗明義即宣告:「任何電路都可以用一組方程式表示,……。事實證明,其計算方式完全等同於符號邏輯所用的命題運算。」

夏農先以簡單的雙開關電路為例,說明如何用布林代數標示串聯與並聯的接法,並列出基本公理與交換律、結合律、……等運算法則。接著他再進一步分析不同型式的複雜電路,證明也都可以用布林代數表示。最後夏農強調這套方法不只可以用於現有的機器,還可以解決各種問題。

他寫道:「事實上,任何運算只要是用『若』、『或』、『且』等字眼在有限的步驟內描述,都可以用繼電器自動算出來。」

-----廣告,請繼續往下閱讀-----

為了佐證這項主張,他提出三種全新的應用,並附上自己設計的電路圖。第一個是電路的簡化;原本使用二十個元件的電路,經由邏輯演算找出等效的表達式後,可以將元件減少為十四個。第二個與第三個應用都是他的創新發明,分別是使用五個按鍵開關的電子密碼鎖,以及二進位的電子加法器(嚴格來說仍不算電子式,因為繼電器的開關仍是利用電磁鐵的機械動作)。

電路的邏輯閘。圖:Wikipedia

這篇論文於第二年公開發表後,立即引起巨大的迴響,甚至被譽為「應該是本世紀最重要、最值得注意的碩士論文」,後來《科學美國人》雜誌也稱它是「資訊時代的大憲章」。

電路設計化繁為簡,電腦從此邁向數位時代

的確,夏農這篇論文影響深遠。原本錯綜複雜的電路圖改用布林代數表示後,就可以在實際建造機器之前,清楚計算出執行的結果,大幅減少嘗試錯誤所耗費的時間與成本。除此之外,還能如夏農所示範的,找出更精簡的電路方案。科技產品因為設計效率提升、製造成本下降,才得以更加迅速地推陳出新。

計算機的發展也受惠於夏農的創見,才開啟了數位時代(他革命性的通訊理論會在第三部另外介紹)。

-----廣告,請繼續往下閱讀-----

夏農所提出的邏輯電路雖然以繼電器為範例,但其實這套抽象法則具有普遍性,任何有開關兩種狀態的元件皆可套用。因此即使後來繼電器被真空管取代,然後真空管又被電晶體淘汰,無論電腦的硬體零件怎麼換、電路圖多複雜,都還是基於夏農所提出的邏輯閘。

夏農已經指出一條通往未來之路,很快地,這條路上就將出現打造現代電腦的各路好漢……。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1056 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
1

文字

分享

0
1
1
替晶片打造數學工具的喬治.布爾(George Boole)
數感實驗室_96
・2024/06/01 ・561字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

煮湯時看到調理包背面寫著「加水且加入鹽巴或味精,就大功告成了」。

這句話該怎麼解讀呢?邏輯思維好的人可能很快就能反應過來,意思是加水是必須的,鹽巴和味精至少要加一個。當然,兩者都加也行,但似乎不太健康。

你可能會說:「煮湯時誰會想那麼多?這太哲學了!」其實,19 世紀有位數學家將邏輯建立在數學而非哲學之上,他的貢獻深深影響了現代電腦的運算。他就是我們今天的主角——喬治.布爾(George Boole)。

-----廣告,請繼續往下閱讀-----

在工作會議中,清晰的邏輯思維能幫助我們有條理地表達觀點,並迅速理解他人的意見;程式設計中,邏輯是核心,透過布林代數和邏輯運算,電腦能根據條件執行不同的任務,在智慧家電中利用邏輯閘判斷多個輸入條件來控制輸出結果。

因此,布爾提出的這一套邏輯思維與布林代數,不僅在學術領域至關重要,更是日常生活中不可或缺的工具。

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 53 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/