2

9
6

文字

分享

2
9
6

「安提基瑟拉儀」橫空出世,史上第一台計算機?(上)│《電腦簡史》 齒輪時代(一)

張瑞棋_96
・2020/02/24 ・2932字 ・閱讀時間約 6 分鐘 ・SR值 510 ・六年級

-----廣告,請繼續往下閱讀-----

古人早就發現日月星辰相隔固定週期,會固定出現在天空相同位置,因此只要掌握其週期性,就能預測天體未來如何運行。這也意謂著,只要打造一部運轉週期與天體相同的齒輪裝置,無需人工計算,就能模擬天體的運行。這正是計算機最早的由來,而它出現的時間甚至還早於算盤千年以上……。

本文為系列文章,上篇請見:人工智慧崛起,人類從此俯首稱臣?│《電腦簡史》 楔子

第一章 古希臘的奇蹟

安提基瑟拉儀橫空出世

1900 年 10 月,希臘一艘採集海綿的小船在返航途中,遇上一場突如其來的暴風雨,迫使他們將船駛到附近的一座無人島避難。這個只有三公里寬的菱形小島因位於較大的基瑟拉 (Kythira) 島南方,所以叫做安提基瑟拉 (Antikythira) 島。過了三天,風雨終於平息,他們乾脆就在島旁下海尋找海綿,不料在海床上赫然發現一艘裝滿古物的沈船。經過幾個月的打撈,大量的陶罐、玻璃與金屬製品,以及銅製雕像堆積在雅典的國家考古博物館,初步鑑定這些古物至少已有兩千年的歷史。

在這批文物中,有一塊毫不起眼,已嚴重鈣化的小木盒靜靜地躺在一旁角落,始終未引起注意。直到 1902 年 5 月 17 日,一位工作人員發現它不知何時已風乾裂開成四塊,內部竟露出如鐘錶般的複雜齒輪結構,這才驚動館方找來專家,對這個猶如穿越時空回到過去的「安提基瑟拉儀」展開調查。

-----廣告,請繼續往下閱讀-----

要知道,靠齒輪運作的機械時鐘是十三世紀末期以後才發明的,在此之前,齒輪都只用於中大型的傳動裝置,基本上也不大複雜。而安提基瑟拉儀的大小相當於一本電話簿,從外觀即可看到十餘個環環相扣、輪齒細密的齒輪;外部還有許多環狀刻度,以及應該是用於安裝指針的轉軸。它的構造如此繁複精密,毫不遜於現代鐘錶,兩千年前的古人怎麼可能做得出來?究竟它的來歷是什麼?又有什麼用途?

經過初步鑑定,安提基瑟拉儀的製造日期約莫在西元前一百年上下,而從銘刻在上面少許依稀可辨的文字看來,應該是某種天文儀器,但因為鏽蝕嚴重,又整個被石灰岩緊緊包覆,以二十世紀初的科技,尚無法探究其內部結構。之後爆發了兩次世界大戰,相關資源與人力都被國家徵召投入戰爭,無暇他顧,破解工作就這麼擱置下來,一直要等到 1950 年代以後,被淡忘安提基瑟拉儀的才又被人想起。在許多科學家先後的努力下,運用陸續問世的新科技,例如 X 光、電腦斷層掃描,乃至電玩使用的表面紋理強化技術,安提基瑟拉儀的神秘面紗終於一層層揭開,也改寫了科學史。

1902 年已風乾裂開成四塊,內部露出如鐘錶般的複雜齒輪結構的「安提基瑟拉儀」,引起專家注意,並開始進行調查。圖/ By wikimedia commons CC BY 2.5

如鐘錶轉動的日月與五大行星

經過科學家還原重建,安提基瑟拉儀的原始大小為 34 × 18 × 9 公分,上下與兩側由木板組成框架,正面與背面是銅錫合金的金屬板。裡面有三十個齒輪已經確知其大小與輪齒數,最大的齒輪直徑達 13 公分,最小的不到 0.5 公分,每個齒輪的輪齒數目從 15 個到 223 個不等;另外至少還有五個佚失的齒輪無法確定規格。

安提基瑟拉儀的正面乍看有如時鐘,不過指針多達七根,分別代表太陽、月亮,以及水星、金星、火星、木星、土星這五顆行星。環狀刻度盤外圍細分成 365 個刻度,代表一年 365 天;內圈則均分為十二等分,分別標註太陽運動軌跡上的黃道十二宮名稱。轉動側面的把手,帶動齒輪運轉,七根指針各自會以不同速度轉動,以模擬一年之中,太陽、月亮與五大行星在黃道帶的相對位置;每隔四年再轉動刻度盤,以符合閏年多出來的一天。月亮指針上還有顆會轉動的小圓球,用來顯示月相盈虧。

-----廣告,請繼續往下閱讀-----

安提基瑟拉儀背面的上下部各有一個刻度盤,乍看像是很多圈的同心圓,但其實是連續的螺旋線條。上半部的螺旋線條共有 235 個陰曆月份的刻度,代表默冬週期 (Metonic cycle) ,這是由西元前五世紀的希臘數學家默冬 (Meton) 所發現的規律——月亮經過 235 次盈虧的天數剛好等於十九個太陽年,因此在這十九年中,陰曆必須多加入七個閏月。

之所以如此,是因為月球繞地球一圈要 27.32 天,但因為地球同時也繞著太陽轉,所以月球要再多繞一些,才會再度回到與太陽、地球成一直線的位置,因此月亮盈虧的平均週期是 29.53 天。計算得知 29.53 天* 235 個陰曆月 = 6939.55 天,剛好約等於十九年整 (365.25 天 * 19 年 = 6939.75 天)。也就是說,陰曆的日期對應到陽曆的日期,要等十九年後才又會一樣,例如西元 2000 年的大年初一是二月五日,下次大年初一也在二月五日的情況會發生在 2019 年。

這個螺旋刻度便是用來換算陰曆與陽曆的對應日期。當正面的指針轉動時,背面默冬週期的指針也同時跟著轉,而且指針設計成活動的,長度會隨著轉動而伸縮,就像唱針沿著黑膠唱片的溝紋走那樣,順著螺旋線條轉,指出陰曆的月份。當正面的太陽指針轉了 6940 天,背面這根指針也剛好走到螺旋的盡頭,然後再回到初始的位置重新開始。

安提基瑟拉儀包含各種刻度盤,且搭載著默冬週期及其他計算年月的方式。

日食月食,均可預測

不過 6940 天還是比十九年的實際天數多了四分之一天,所以默冬週期的指針走過四輪,就會比正面的太陽指針快了一天。為了讓陰陽曆的對應關係回到一致,刻度盤內的左半部有個連動的小指針,每個默冬週期轉四分之一圈。等它轉完一圈,就手動調整默冬週期的刻度盤,完成校正。

-----廣告,請繼續往下閱讀-----

刻度盤內的右半部還有支小指針,每四年轉一圈。它的刻度盤也是均分成四等分,上面標註奧林匹亞運動會與其它幾個當時的重要賽事,除了可以知道舉辦的日子,也可以用來提醒四年一閏,要調整正面的刻度盤。

安提基瑟拉儀背面下半部的螺旋刻度則是有 223 個,代表 223 個朔望月的沙羅 (Saros) 週期——用來預測發生日月食的日期。為什麼用朔望月?因為日月食一定發生在太陽、地球與月亮排成一直線時,日食是月亮擋在太陽與地球之間,正是新月之時;月食則是地球在太陽與月球之間,月亮此時是在滿月的位置。但因為月球繞地球轉的平面略有傾斜,與太陽運行的黃道面(實際上就是地球公轉的平面)約有五度的夾角,所以不是每次月亮在太陽與地球之間,或地球在太陽與月球之間,就會有日月食,必須月球也剛好運行到黃道面上,才會遮住太陽或被地球遮住。而每隔 223 個朔望月,日月食的出現模式就會開始重複。

沙羅週期的指針運作方式與默冬週期的指針一樣,也會跟著一起轉動,如果指到刻度盤上標註日食或月食的位置,便表示當天會發生日月食。而且刻度盤內也有個校正誤差的小指針,這是因為沙羅週期實際上是十八年十一天又八小時,所以下一次沙羅週期同樣的日月食出現的時間會比前一次晚八小時,必須經過三個週期,才又會回歸到相同的時間。這個小指針每三個沙羅週期轉完一圈,刻度盤均分成三等份,從小指針的位置就知道目前是在第幾個週期,發生日月食的時辰是何時。

原來安提基瑟拉儀竟是功能如此完整的天文儀器,除了換算陰陽曆的日期,同時也呈現太陽、月亮與五大行星的運行軌跡,以及月相的盈虧變化,還能指出日月食的時間。這些計算原本相當繁複耗時,如今轉動齒輪即可更加迅速又準確地得出答案,而這其實就是現代計算機的作用,也因此有人認為安提基瑟拉儀是史上第一台計算機。

-----廣告,請繼續往下閱讀-----
安提基瑟拉儀甚至擁有計算日月食及手動校正誤差的功能,對於古文明來說,這是一項極具精確性且先進的發明。圖\pixabay

究竟是誰,具備這樣的天文知識與齒輪工藝,竟能在兩千一百年前就打造出安提基瑟拉儀?

文章難易度
所有討論 2
張瑞棋_96
423 篇文章 ・ 940 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
195 篇文章 ・ 299 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

11
7

文字

分享

0
11
7
改變在一「矽」之間——半導體的誕生│《電腦簡史》數位時代(十六)
張瑞棋_96
・2021/04/05 ・6669字 ・閱讀時間約 13 分鐘 ・SR值 542 ・八年級

-----廣告,請繼續往下閱讀-----

本文為系列文章,上一篇請見:邁向商用化——電腦產業的形成│《電腦簡史》數位時代(十五)

真空管的先天缺陷:易報銷

二次大戰後,電腦全面使用真空管後,速度大幅提升,隨著需要大量計算的企業越來越多,電腦前景看似一片光明。不過當電腦上線運作後,真空管的先天缺陷終於曝露出來,嚴重阻礙電腦產業的發展。

真空管是靠加熱極細的燈絲而產生游離電子,電子被吸引至做為正極的金屬片而產生單向電流。由於燈絲與電極都會逐漸耗損,真空管的壽命原本就不長;即使是特別為電腦生產的真空管,在正常狀況下也不過能用兩千個小時。更何況在進行高速運算時,真空管不斷開開關關,燈絲很容易因此燒斷而提早報銷。

真空管二極體的構造。圖:Wikipedia

一部電腦至少有幾千個真空管,只要有一、二個壞掉,就會影響整體電路的運作。以 UNIVAC 為例,平均故障間隔 (MTBF, Mean Time Between Failures) 的時間不超過 24 小時;美軍的 ENIAC 用的真空管超過一萬七千個,MTBF 更是只有 12 小時。而一旦發生問題,要排除故障也相當耗費時間,平均得花幾個小時才能找出損壞的真空管,予以更換。

電腦如果動不動就得停機檢修,不僅效益大打折扣,還會影響正常作業,誰想花大錢購置電腦卻惹來內部抱怨連連。可靠性的問題沒有解決,電腦就難以獲得全面採用,只是真空管的物理特性就是如此,能再改善的空間有限,只能期待全新的電子元件出現。

-----廣告,請繼續往下閱讀-----

如今我們知道,這革命性的電子元件就是電晶體。它不僅解決了可靠性的問題,而且大幅降低成本、縮小體積、提升速度,讓電腦改頭換面,並催生出各種電子產品,人類文明從此邁入新紀元。電晶體之所以能帶來革命性的改變,乃因它是奠基於一種革命性的材料——半導體。要知道電晶體如何發明,得先知道什麼是半導體。

半導電性:導體與絕緣體之間

顧名思義,半導體就是具有半導電性的物體。但何謂半導電性?

我們知道不同元素有不同電子數,以原子核為核心,由內而外分布於不同殼層。越外層的電子能量越高,其中最外層的電子稱為「價電子」,所處的能階稱為「價帶」。價電子仍被束縛在原子內,所以無法導電,必須獲得能量躍遷到「傳導帶」才能導電。傳導帶與價帶的能量差距稱為「能隙」,導電性便取決於能隙的大小。

金屬的能隙非常小,甚至傳導帶與價帶有部分重疊,所以導電性很高;反之,絕緣體的能隙很大,價電子無法跨越,因此無法導電。半導電的能隙則介於金屬與絕緣體之間。

-----廣告,請繼續往下閱讀-----
三種不同導電性。圖:Wikipedia

能隙的大小與價電子的個數有關。每個殼層可容納的電子數都有上限,當價電子殼層越接近填滿狀態,就越穩定,需要越多能量才能激發價電子跳到傳導帶;當價電子越少,就越容易脫離束縛,跑到傳導帶。

金屬的價電子通常不超過 3 個(過渡金屬除外),很容易形成自由電子,到處移動。絕緣體通常有 5 個或以上的價電子。碳、矽、鍺、錫、鉛等 IV 族元素有 4 個價電子,剛好是半滿狀態,導電性介於導體與絕緣體之間,屬於半導體。

IV 族元素如果摻雜其它元素,導電性也會跟著改變。例如把磷摻到矽裡面,因為磷有 5 個價電子,其中 4 個與矽共用後,還多一個價電子,就更容易跑到傳導帶成為自由電子,這種半導體稱為 n 型 (n 代表 negative)。

矽如果摻的是有三個價電子的硼,只差一個價電子就是最穩定的狀態,猶如有個「電洞」讓經過的電子落入陷阱。旁邊的電子掉進這個電洞後又產生一個新的電洞,形成骨牌效應,從另一個角度看,就像是帶正電的電洞會移動一樣,因此稱為 p 型半導體 (p 代表 positive)。

-----廣告,請繼續往下閱讀-----

偶然發現半導體

除了摻雜,化合物也可能形成半導體。半導體最早被發現,就是與 IV 族元素無關的化合物。1833 年,法拉第有一次在做電力實驗時,無意間將燈火靠近硫化銀,結果發現導電能力竟然大增;一旦移走燈火,導電性又隨著溫度下降而降低。一般金屬在高溫時,導電性會變差,硫化銀卻剛好相反,令法拉第大感訝異。

硫化銀就是一種半導體。高溫之所以增加半導體的導電性,是因為熱能會讓更多價電子躍遷到傳導帶,因此增加了導電性。一般金屬原本僅需一點能量就能產生自由電子,集體往正極方向移動。但電子如果吸收太多熱能,反而四處亂竄,原本的定向性受到破壞,導電能力也就隨之下降了。

法拉第雖然發現半導體這個特性,卻無法了解其中原理。畢竟當時距離道爾吞提出原子說還不到 30 年,是否有所謂的基本粒子仍頗受質疑,更無從想像原子內部還有電子與原子核。因此法拉第發表這個奇特的現象後,就不了了之,也沒有人想到在導體與絕緣體之外,還有一種半導體。下次半導體再度躍上檯面,已是四十年之後。

1874 年,才 24 歲的德國物理學家布勞恩 (Ferdinand Braun) 在研究各種硫化物的導電性時,將硫化鉛接上電,卻發現檢流計的指針紋風不動。他試著調換正負極,結果指針馬上就有反應。這實在太奇怪了,一個物體的導電性應該是一致的,怎麼會因為正負極不同接法,一下是絕緣體,一下又是導體?

-----廣告,請繼續往下閱讀-----
發現半導體具有單向導電性的布勞恩。圖:Wikipedia

單向導電性是半導體另一項重要特性。硫有 6 個價電子,所以硫化鉛是 n 型半導體,一般情況下,電子只能從硫化鉛往正極移動,才會從另一個方向測不到電流。同樣地,由於當時仍然不清楚原子的構造(湯姆森於 1897 年才發現電子),不知如何解釋這個奇特現象。

大家毫無頭緒,單向導電性又看不出有何用途,因此布勞恩發表實驗結果後,並沒有激起任何漣漪。半導體再次受到忽視,要等到赫茲於 1888 年發表無線電波的實驗後,硫化鉛這類的半導體礦石才引起大家的興趣。

接收無線電波

赫茲的實驗吸引很多人投入無線電波的研究,印度科學家博斯 (Jagadish Chandra Bose) 也是其中之一。他發現 IV 族元素的礦石不但有單向導電性,而且不遵守歐姆定律:電流與電壓成正比。當施予礦石的電壓小於某個臨界值時,電流微乎其微;一但超過臨界電壓,電流便突然大幅增加。

博斯想到可以利用這個特性偵測微弱的無線電波。只要先對接收裝置施以適當電壓,讓無線電波所產生的感應電壓恰好超過臨界電壓,電流便會出現明顯變化,就能如實呈現無線電波。

-----廣告,請繼續往下閱讀-----

1894 年,博斯將金屬天線的一端與硫化鉛的表面接觸,做成無線電偵測器(也稱「檢波器」),成功接收到一英哩之外的無線電波,這中間還隔了三道磚牆。

博斯發明的無線電收發器。圖:Wikipedia

馬可尼 (Guglielmo Marconi) 也在這一年發明無線電報系統,兩年後他和博斯在倫敦會面,不過博斯對商業應用不感興趣,並未與馬可尼合作。馬可尼也沒有採用博斯這個技術,而是利用感應電流產生的磁場變化,來吸引金屬屑或發出聲響,作為判斷電波的依據。

事實上,博斯自己後來也改用別種技術設計檢波器,因為礦石檢波器的確不是很靈光。礦石中的雜質分布並不均勻,不是每次用金屬線接觸硫化鉛表面都能形成迴路,往往得嘗試很多次才能找到「熱點」,得到訊號。

儘管如此,AT&T 的工程師匹卡德 (Greenleaf Pickard) 仍看好礦石檢波器的潛力,試圖找出收訊效果更好的礦石。

-----廣告,請繼續往下閱讀-----

1902 年,匹卡德檢測一塊礦石的熱點時,懷疑施加的電流造成背景雜訊太大,於是伸手拿掉部分電池,結果雜訊果然馬上消失,無線電的訊號變得清楚許多。這時他看了一眼器材,才發現他剛剛不小心把電池的接線弄掉了,也就是礦石檢波器竟然不需要電,就可以接收無線電。

這個奇妙的現象完全違背過去的認知,於是匹卡德更加專心研究還有哪些礦石不用電就可以當檢波器。他花了三、四年的時間測試上千種礦石,發現有 250 種可以做為天然檢波器,其中又以熔融後的矽(原本用來製造石英玻璃)收訊效果最佳。

礦石收音機

匹卡德進行實驗的這段期間,無線電也正在發展另一項應用:傳送聲音。當時電話已是成熟的技術,可以將聲音轉換為音頻訊號,但音頻是連續波形,無線電波卻是脈衝電波,因此只能靠長/短、有/無來代表摩斯密碼,無法傳送音頻訊號。

1900 年,加拿大發明家范信達 (Reginald Fessenden) 發明一種高速交流發電機,終於能產生連續波形的無線電波(稱為「載波」,波形為規律的正弦波)。

-----廣告,請繼續往下閱讀-----

原本規律的載波與音頻疊加後,變成起伏變化的無線電波,電波的振幅大小便代表音訊的變化。這種調變電波振幅的技術便稱為「調幅」(Amplitude Modulation, 簡稱AM),就是現在 AM 廣播所用的技術。

調幅示意圖。圖:Wikipedia

調幅無線電到了接收端,還得經過「解調」才能還原成原來的音訊。首先,由於天線接收無線電波後,所產生的感應電流也是交流電,因此必須先把反方向的電流去掉,成為單一方向的直流電;這個步驟便稱為「整流」。接著再濾掉其中的載波,留下的就是原來的音頻訊號。

范信達直到 1904 年才成功做出有整流功能的檢波器,並於 1906 年的聖誕夜成功發送 AM 廣播到大西洋上的美國軍艦。不過范信達所發明的檢波器不易製造,又常需要調校,只適合專業人士使用。而半導體的單向導電性恰好可以將交流電整流為直流電,這類礦石便可直接做為無線廣播的檢波器。

1906 年,匹卡德獲得矽石檢波器的專利,並在隔年創立公司,製造用耳機收聽的礦石收音機,銷售給一般大眾。由於價格低廉、體積小巧又不需要電,因此頗受歡迎。礦石收音機成為史上第一個半導體商品;誰會想到如今半導體與各種電子產品密不可分,但最早卻是以不用電為訴求。

匹卡德於1916年發明的矽石檢波器。圖:Wikipedia

三極真空管橫空出世

就在匹卡德於 1906 年申請專利這一年,美國專利局也收到另一項影響更深遠的專利申請,那就是由德佛瑞斯特 (Lee De Forest) 改良的新型真空管。

原本弗萊明 (John A. Fleming) 於1904 年發明的真空管只有正負兩極,德佛瑞斯特用金屬柵格擋在金屬片與燈絲之間,變成除了正、負極,還多了「柵極」(Grid) 的三極管

柵極用來控制電流大小。當柵極施以負電壓,產生的電場與電子相斥,部分電子便被擋下,無法抵達正極金屬片,電流也就變小了。負電壓越大,被擋下的電子越多,電流也就越小;柵極就像家裡的水龍頭,不用動到水管的閥門,就可以各自調節水流大小。

三極管在金屬片與燈絲之間多了金屬柵格。圖:Wikipedia

德佛瑞斯特原本設計三極管只是為了調節電流,他沒想到六年之後,這項設計竟被發掘出放大訊號的功能。

原本只有二極管時,若要調整電流大小,正極電壓就要有相對幅度的改變,就如前面水管的比喻,沒有水龍頭的話,只能從源頭閥門控制水量。例如要讓電流從 12 mA 減半降為 6 mA,電壓要從 110 V 降到 60 V;但若使用三極管,則無須改變正極電壓,只要對柵極施以 -2 V 的電壓就可以了。

三級管的電壓變化只需二級管的 1/25 ,便能達到同樣的效果(若搭配適當的阻抗,相差還能到百倍以上),就像水龍頭那樣,轉動一點點,出水量就差很多。如果讓柵極做為訊號的輸入端,正極做為輸出端,那麼原本微弱的訊號,就會放大成強烈的訊號。

有了三極管做為訊號放大器,無線電可以傳得更遠,收訊效果也更好,而且收音機還可以配上喇叭。隨著廣播電台自 1920 年代開始快速發展,真空管收音機也進入一般家庭,成為民眾重要的休閒娛樂與資訊來源。相對地,礦石收音機的收訊效果與方便性都遠遠不如,自然不受青睞,逐漸沒落。好不容易找到舞台的半導體於是又被棄置一旁,沒想到十幾年後,同樣是由來自 AT&T 的工程師,再度讓半導體起死回生。

德佛瑞斯特於1914年用三極管打造的訊號放大器。圖:Wikipedia

真空管搞不定短波

三極真空管有助於無線廣播,當然也有助於電話傳得更遠。 AT&T 利用真空管擴大電話網路,於 1915 年開通橫跨東西兩岸的長途電話。1927 年 1 月 7 日, AT&T 總裁進一步透過無線電波,從紐約打電話到倫敦,完成史上第一通越洋電話。不過這通電話只是試驗性質,真要提供越洋電話服務,還有項技術問題須要克服。

紐約與倫敦相隔甚遠,無線電波無法橫越地表弧度直接送達,必須經大氣的電離層反射到地面。然而一年四季、晴雨晨昏,大氣條件都不一樣,對電波的影響也大不相同。因此若要維持越洋電話全年暢通,通訊設備須要能夠收發不同波長的無線電波。不過真空管在高頻(也就是短波)的表現不是很好,如何克服這個問題便成為貝爾實驗室的首要任務。

貝爾實驗室於 1925 年成立,初期的工程師大多從 AT&T 陸續轉調過來,歐偉 (Russell Ohl) 也是其中之一,他對無線電的興趣始自大學時期。1914 年第一次世界大戰爆發,當時大學二年級的歐偉,在課堂上第一次聽到礦石收音機發出聲音,而且竟然是遠在大西洋的英國船隻,遭到德國潛艇攻擊所發出的求救訊號,從此他便對無線電深深著迷。

歐偉原本在 AT&T 就是負責短波的研發,1927 年轉到貝爾實驗室後仍繼續這個項目。他們不斷將無線電電波推向更高的頻率,但最終遇到瓶頸難以跨越。當其他同事仍執著於真空管時,歐偉於 1935 年決定從頭開始,一一檢視過去無線電的各種實驗與論文,從中發掘可行方案。最後他把目標瞄準礦石收音機的矽石,相信這才是解答。

歐偉 (Russell Ohl) 在他的實驗室裡。圖:Engineering and Technology History Wiki

一道裂痕開啟「矽」的半導體時代

礦石收音機不是才被真空管淘汰嗎?同事與主管都認為歐偉異想天開,但他認為只要去除矽石中的雜質,就能收發頻率更高的無線電波。歐偉自己多次嘗試用矽粉製造,卻不得其果,最後終於在 1939 年找到具有冶金專長的同事,用高溫熔製的方法精煉出高純度的矽。

1940 年 2 月 23 日,歐偉決定檢測一塊去年製出的矽石,據他的同事說,這塊矽石相當奇特,每次測的導電性都不一樣。歐偉仔細檢查這塊矽石,發現中間有條裂痕,他猜想這就是導電性不一致的原因,原本不以為意。但他接上示波器,赫然發現矽石在檯燈的照射下,竟然會產生電流。

光電效應是會產生電流,但那是以紫外線照射金屬,而這顆 40 W 的燈泡發出的是可見光,矽的導電性也遠遠不如金屬。雖然美國發明家弗里茲 (Charles Fritts) 曾於 1884 年將硒鍍上金箔,做成太陽能電池,但這樣的光伏效應 (Photovoltaic effect,也稱「光生伏特效應」) 轉換效率非常低,只有 1% 左右。歐偉所測到的電壓,超過當時所知的光電效應與光伏效應十倍以上,絕對是項前所未有的發現。

歐偉趕緊找主管來看,同時和同事繼續深入研究這塊矽石。他們發現電流總是由裂痕的上半部流往下半部,而不會反向而行。經過進一步分析發現,裂痕兩邊含有不同的雜質,上半部含有少許的硼,而下半部的雜質則是磷。

他們推測應該是這塊矽石經過高溫熔化,在自然冷卻的過程中,較重的磷下沉得比較快,較輕的硼下沉得比較慢,裂痕出現的地方剛好將這兩種元素阻隔開,以致矽石的上、下半部各有不同的雜質。

歐偉推測電流就是兩邊不同的雜質所致。磷有 5 個價電子,而硼有 3 個價電子,在白熾燈泡的照射下,磷的多餘電子被激發而越過裂痕,填補含硼那一邊矽石的電洞,而產生電流。這就類似電池的負極提供電子給正極,於是歐偉也用「n型」、「p型」來稱呼這兩種矽石,然後把劃分兩邊的裂痕——也就是這兩種半導體的接觸面——叫做「p-n 接面」(p-n junction)。這幾個名稱便一直沿用到現今的半導體。

半體體的基本名稱不但源自歐偉的命名,如今我們懂得利用摻雜來改變半導體的導電性,也是始自他這次的發現。不過對歐偉而言,他一心只想研究無線電波,發現半導體的光伏效應只是偶然,他無意也沒有能力再深究其中原理。

半導體的後續研究隨即由貝爾實驗室另一個團隊接手,這群有量子力學背景的物理學家將釐清 p-n 接面的奧秘,進而發明改變世界的電晶體。

張瑞棋_96
423 篇文章 ・ 940 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

11
4

文字

分享

0
11
4
邁向商用化——電腦產業的形成│《電腦簡史》數位時代(十五)
張瑞棋_96
・2021/02/01 ・4303字 ・閱讀時間約 8 分鐘 ・SR值 521 ・七年級

-----廣告,請繼續往下閱讀-----

本文為系列文章,上一篇請見:破解密碼到模仿遊戲——圖靈那些不可說或無人識的貢獻│《電腦簡史》數位時代(十四)

全世界只需要五台電腦?

「我想電腦的全球市場大概五台吧。」 ——IBM 總裁華生 (Thomas Watson),1943 年。

這句話現在看起來相當荒謬可笑,尤其竟然出自 IBM 總裁口中,更令人覺得匪夷所思。當然,用現今個人電腦的市場規模來評判華生這句話並不公平,畢竟當時根本無法想像家家戶戶有電腦。

不過再怎麼樣,中大型電腦的市場規模也絕對不只個位數吧?IBM 自己是靠製表機起家,為政府部門、鐵道公司、壽險公司等大型機構做資料統計都超過三十年了,為什麼仍會如此低估電腦的需求?

IBM 首任總裁華生。圖:Wikipedia

其實華生才於 1939 年親自拍板定案,與哈佛大學共同開發電腦,他絕對有想到其它大學肯定也有電腦的需求。同時他也應該知道軍方為了二次大戰,正在積極打造電腦,用來計算彈道、製作射表。

只不過對華生而言,這些電腦都是為了特定用途打造,而且是採合作開發的模式,在他眼中並不是可商品化的產品,他要的是可以直接採用標準產品的商用市場。然而當時需要大量計算的企業本來就寥寥可數,況且那些計算工作也多是簡單的統計分析,用 IBM 的製表機就綽綽有餘了。所以華生當時看衰電腦市場也是有其道理。

-----廣告,請繼續往下閱讀-----

華生的觀點恰恰反映了電腦在那個時代所扮演的角色:計算高深複雜的數學方程式。而這顯然只有學者才會用到,要不是為了本身的科學研究,就是幫軍方計算彈道、空氣動力學之類的。

事實上,當時也的確都是大學與軍方這兩個單位在推動電腦的開發(貝爾實驗室雖然一開始是自己主動打造複數計算機,但後來就中止電腦研發,直到戰爭爆發,才接受軍方委託繼續開發)。如果電腦用途只侷限於此,華生的預言恐怕就八九不離十。所幸二次大戰結束後,商用市場興起,電腦產業才有今日的榮景。不過你大概想不到,第一家打造商用電腦的竟不是 IBM 之類的電腦公司,而是英國一家餐飲企業。

餅乾工廠與劍橋大學

萊昂企業 (J. Lyons and Co.) 於 1884 年成立時只是一間小茶館,後來不但發展為遍布英國的連鎖茶館,還拓展出甜點、餐廳等不同連鎖店,並且自己設廠生產各種餅乾、糕點。二次大戰後,管理階層鑒於組織越來越龐大,想要從美國購置事務機器來提升管理效率。

萊昂企業旗下的連鎖餐廳,攝於 1942 年。圖:Wikipedia

結果他們蒐集各方資料後,發現美國陸軍於 1946 年 2月公開發表了第一台通用型電子計算機 ENIAC。萊昂企業高層對此極感興趣,於是派人於 1947 年 5 月前往美國參訪考察。

-----廣告,請繼續往下閱讀-----

他們拜訪了高士汀(前情提要:他在戰時代表陸軍派駐在摩爾電機學院,負責協調 ENIAC 的設計與建造。就是他主動把馮紐曼撰寫的〈EDVAC 報告初稿〉分送給美、英兩國的相關機構,促成了許多部馮紐曼架構的電腦誕生),表明想要建置一台電腦。高士汀好心的告訴他們不用捨近求遠,離他們公司總部不遠的劍橋大學就有團隊正在打造電腦。

原來劍橋大學的物理學家威爾克斯 (Maurice Wilkes) 也拿到一份〈EDVAC 報告初稿〉,而且比圖靈幸運的是,他有位研究生二次大戰時曾在海軍服役,負責設計雷達所用的延遲線記憶體,因此知道如何打造水銀延遲線。

雖然技術上的障礙克服了,但劍橋大學校方對開發電腦興趣不大,不願給予經費,威爾克斯只好一邊著手設計,一邊尋找經費來源。沒想到幸運之神再次眷顧,萊昂企業竟然主動找上門來,願意贊助開發經費,以換取威爾克斯協助他們打造商用電腦。

威爾克斯設計的「電子延遲存儲自動計算機」(Electronic Delay Storage Automatic Calculator,簡稱 EDSAC)  不到兩年就完工,於 1949 年 5 月 6 日成功執行了計算平方數的程式,成為繼曼徹斯特寶寶之後,第二台可存取程式的數位電腦。

-----廣告,請繼續往下閱讀-----

EDSAC 創下的諸多第一

不過嚴格來說,曼徹斯特寶寶原本就是為了打造曼徹斯特一號而試做的先導機型,只能做簡單的計算,輸入/輸出裝置也相當克難,功能相當有限。因此若以真正具有完整功能的電腦而言,第一台可存取程式的電腦應該是 EDSAC;曼徹斯特一號則以 40 天的差距屈居第二。

完工後的 EDSAC,左方即設計者威爾克斯。圖:Wikipedia

還有幾項電腦史上的第一也與 EDSAC 有關。在機器剛開機時,會先有基本程序讓相關元件就緒,這是靠一連串的電子訊號控制電磁開關來完成。負責程式設計的研究生惠勒 (David Wheeler) 將開機程序改用一組初階指令 (initial orders) 控制,這組指令用英文代碼描述,方便程式設計師以更直觀的方式設定機器。

惠勒所設計的初階指令就是最早的組合語言 (assembly language),他因此被視為「組譯器」(assembler,將組合語言轉換成機器碼的系統) 的發明人。1951 年,惠勒以〈用 EDSAC 做自動計算〉這篇論文取得博士學位,成為史上第一位電腦科學博士

EDSAC 完工後,威爾克斯並沒有敝帚自珍,反而很快地自 1950 年開始開放給外界使用,他為此與惠勒編寫了史上第一本電腦程式的教科書,讓有意使用 EDSAC 的學者知道如何撰寫程式。這其中有四位後來獲得諾貝爾獎(兩位合得 1962 年化學獎、一位獲 1963 年醫學獎,還有一位是 1974 年物理獎得主),他們還特別在頒獎典禮上,致辭感謝 EDSAC 對他們的研究有很大的幫助。

-----廣告,請繼續往下閱讀-----

順帶一提,史上第一個視覺化的電腦遊戲也是出現在 EDSAC 上。EDSAC 原本配有監測電路用的陰極射線管;1952 年,一位研究生寫了井字遊戲的程式,讓人與電腦對弈,井字與 ”O”、”X” 符號就直接呈現在陰極射線管上。

世上首部商用電腦誕生

威爾克斯如願完成 EDSAC 後,當然要履行對幕後金主萊昂企業的承諾。萊昂企業高層對電腦的冀望極高,特地設置了一個專責部門「萊昂電子辦公室」(Lyons electronic office,簡稱 LEO),而且並非採購現成的機種,而是要自己打造量身訂做的電腦;名稱就取為「里歐一號」(LEO 1)。

第一部商用電腦「里歐一號」。圖:Wikipedia

里歐一號完全參考 EDSAC 的設計,惟記憶容量擴增為兩倍,很快就於 1951 年 2 月竣工。11 月,萊昂企業開始將訂單、配銷、庫存等管理系統電腦化,首度實現今日通稱的「管理資訊系統」(Management Information System),里歐一號也因此成為世上第一部商用電腦。

到目前為止,英國在電腦發展上仍然領先美國。儘管曼徹斯特大學與劍橋大學都是取得〈EDVAC 報告初稿〉後,才開始設計馮紐曼架構的電腦;其中幾人還特地飛到美國,參加摩爾電機學院的暑期課程,才習得相關的電腦知識,但英國團隊卻比美國更早打造出機器。

-----廣告,請繼續往下閱讀-----

英國除了率先達成好幾項技術上的里程碑,在軟體應用上也更勇於嘗試。當萊昂企業開始導入管理資訊系統時,美國的電腦主要仍用於科學計算或為政府部門解決特定問題。至於掌握商用市場的 IBM,仍然用機電式的製表機,為客戶處理簡單的加減乘除。

英美兩國電腦實力的消長

不過美國的落後純屬偶然。EDVAC 是因為核心成員紛紛離去,以致延宕到 1952 年 2 月才完工。悻悻然自行創業的莫奇利與艾科特因為從頭開始,所以 1949 年 3 月才完成美國第一部可存取程式的電腦「二進位自動計算機」(Binary Automatic Computer,簡稱 BINAC),比英國的曼徹斯特寶寶晚了近一年。回到普林斯頓高等研究院的馮紐曼畢竟是學者而非工程師,直到 1952 年 1 月才所打造出 IAS 機器。

沉睡的 IBM 也即將甦醒。由於韓戰爆發,美國國防部須要進行核彈的計算,IBM 終於在 1952 年 4 月推出高速運算的「國防計算機」(The Defense Calculator),這是 IBM 第一部馮紐曼架構的真空管電腦。既然都已經開發了,這又是通用型計算機,可以執行各種程式,那就更名為 701,推到商用市場試試看吧。於是 IBM 自 1953 年開始向企業用戶推銷 701,從此開啟了 IBM 主宰中大型電腦市場的時代,也標誌了美國後來居上的開始。

IBM 701 的運算單元。圖:Wikipedia

順帶一提,文章一開頭引述 IBM 總裁華生所說的那句話,據信其實就是出自他在 1953 年的股東大會上,報告 701 的銷售成果時所說的:「我們巡迴拜訪客戶前,原本預期訂單頂多 5 台,結果拿了 18 張訂單回來。」後來以訛傳訛,才演變成他在 1943 年說了那句名言。

-----廣告,請繼續往下閱讀-----

華生那次巡迴其實只拜訪了 20 家客戶,結果高達九成願意購置電腦,證明了商用電腦確實有相當的市場需求。IBM 光是隔年推出的平價機型 650,就在八年內賣出兩千部,其它七家規模較小的電腦公司也都頗有斬獲;市場上還幫他們取了「白雪公主與七矮人」的暱稱。

美國電腦產業風起雲湧,迅速地把原本領先的英國拋在腦後,實乃大時代下的必然結果。歐洲國家歷經二次大戰的蹂躪,國力嚴重耗損,相對地,美國本土則完全未受戰火波及,加上為盟國生產大量武器軍需,帶動經濟大幅成長,因而促進商用電腦的需求。而且如之前在介紹凡納爾.布希時提到的,在他的大力推動下,美國政府將研究經費下放給大學或民間的實驗室,不僅促進產業發展,也讓技術在民間扎根,科技實力因而大幅領先全世界。

磁性記憶體

電腦相關的技術也是如此。以記憶體來說,水銀延遲線與威廉斯管這兩種裝置都過於昂貴,使得電腦造價讓企業用戶望之卻步。雖然早在十九世紀末,就有人利用電磁感應錄下聲音,但記錄資料卻始終難以實現。

直到 1947 年,美國一家「工程研究公司」(Engineering Research Associates) 才在海軍的委託下,開發出「磁鼓記憶體」(Magnetic Drum Memory)。它的原理類似硬碟,只不過磁性材料是噴塗在圓筒表面。

-----廣告,請繼續往下閱讀-----
1958年的磁鼓記憶體。圖:Wikipedia

雖然磁鼓記憶體因為有轉動的機械動作,資料存取速度比不上水銀延遲線與威廉斯管,卻因為容量大、可靠性高、無揮發性(意思是不插電時,資料也不會消失),成本又低,成為實現平價電腦的一大關鍵。IBM 650 就是用了磁鼓記憶體,才得以降低售價。

1949 年,磁性記憶體又往前推進一步。時任艾肯研究助理的華裔物理博士王安,在參與打造「哈佛四號」電腦時,發明了「磁芯記憶體」(Magnetic Core Memory)。這是將電線穿過許多磁環構成的陣列,沒有任何機械動作,只有電流穿梭其中,所以速度飛快。但因為造價高昂,只用於高階機種或是核心記憶體。

就在記憶體的技術取得新的進展之際,有一項革命性的發明也在貝爾實驗室悄悄展開,這項發明將徹底改變電腦的樣貌,將電腦帶向另一個新世紀。那就是——電晶體。

張瑞棋_96
423 篇文章 ・ 940 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。