Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

如何拿捏科研中的那把道德尺?談 CRISPR/Cas9 技術用於人體的適當性 ──《科學月刊》

科學月刊_96
・2019/01/23 ・2845字 ・閱讀時間約 5 分鐘 ・SR值 570 ・九年級

  • 林翰佐/銘傳大學生物科技學系副教授,科學月刊總編輯。

最近生命科學界爆發一宗廣受關注的事件:

中國科學家賀建奎博士將 CRISPR/Cas9 活體基因編輯技術用於人類胚胎的編輯,並經植入孕母著床懷孕後,於日前成功產下 2 名基因體受到修改的女嬰。

賀建奎博士宣稱,該計畫主要針對具有人類免疫缺陷病毒(HIV,即一般人俗稱的愛滋病毒)感染的夫妻,研究其對胎兒垂直感染的可能性,並藉由將受精卵中名為 CCR5 基因剔除來達到防治之目的。

賀博士似乎對此研究信心滿滿,但透過網路視頻的發表與媒體專訪披露之後,反而引發科學界與社會的震驚。在中國,數百名科學家幾乎在第一時間便聯署聲明譴責,稱此瘋狂的實驗存在著嚴重的生命倫理問題,並要求政府補上監管漏洞。聲明更直言該實驗在技術上沒有任何創新,唯一的突破是科學家的倫理道德底線。

賀建奎博士將 CRISPR/Cas9 活體基因編輯技術用於人類胚胎的編輯。
圖/wikipedia

顯然,這樣的研究跨越了科學界普世道德標準。即便是一般社會人士,相信對於這樣的研究也會感到有所不妥。不過生命科學的相關研究道德尺度在哪裡?其實這仍有嚴謹的脈絡可循。

-----廣告,請繼續往下閱讀-----

 

人體試驗的普世道德標準

探索生命一直是人類積極發展的科學議題,在人類進化的歷程當中,科學研究方向大抵朝向增進人類福祉為目標,但其中也不乏一些黑歷史,像是二次世界大戰時期納粹德國對集中營中的猶太人及日本 731 部隊對戰俘所做一系列不人道的人體試驗,這些研究顯然有其道德上的不公義性。不過,即便在承平時期,科學研究也有出岔錯的時候,例如美國發生塔斯基吉梅毒試驗 (Tuskegee syphilis experiment),原本立意良善的梅毒治療研究,在時空環境的改變下演變成為殘忍的見死不救。這些血淋淋的案例一再地揭示,以人類為主體的研究,似乎應該有明確的道德規範,藉以防止這類事情的不斷的重演。

參加塔斯基吉梅毒實驗的試驗者。
圖/wikipedia

有鑑於此,國際相關研究社群開始著手訂定人體試驗所應遵守的倫理規範。這些規範雖並非全然具有法律上的約束力,但這些凝聚國際團體共識的議定界定了普世對人體試驗中倫理的基本要求,因此幾經更迭修改,許多規範仍沿用至今,例如紐倫堡宣言 (Nuremberg Code)、赫爾辛基宣言 (Declaration of Helsinki) 及貝爾蒙特報告書 (Belmont Report) 等。

基本上,這些宣言與報告楬櫫人體試驗中應該遵行的 3 項重要的倫理基礎,分別為:

  1. 對人的尊重 ── 包括對人權的維護以及對受試個人的尊重。
  2. 善意的對待 ── 窮盡實驗的設計與執行降低對實驗者的傷害。
  3. 公平正義。

這些意涵也被各國的立法單位所重視,並將精神落實於立法之中,例如目前臺灣的「醫療法」中,即規定「人體試驗委員會」的設立,針對凡涉及人體及其組織檢體的研究進行實質上的審查,透過審核機制的管控確保研究計畫的品質,並保障對受試者的尊重以及各種權力的維護。

-----廣告,請繼續往下閱讀-----

人類胚胎的研究與對社會的衝擊

人類胚胎的研究一直是生命科學研究上道德的邊緣地帶,爭議的觀點有很多,除了部分宗教裡對於「人」形成的見解之外,更廣泛的關注在於胚胎是否應視為人而賦予其等同於人的權利

雖說我國《民法》中規定「人之權利能力,始於出生,終於死亡。」,但並不意味著可對未出生的人類胚胎得以高唱科學為名為所欲為。在 1997 年透過核轉殖技術成功培育出第一隻高等哺乳動物「桃莉羊」,隨即引發人類社會的重視,其中的原因就是意識到人類科技的進展以迅雷不及掩耳的速度發展至今,已有操弄胚胎,改變生命的可能。發明人威爾穆特博士 (Sir Ian Wilmut) 在成名之後旋即受到梵蒂岡天主教教宗的召見垂詢,足見其影響性。即便這類高等動物的複製技術未來商機無限,科學家宣稱可以透過預定的方式訂做一個 mini me,作為未來器官移植的備料庫,但更多反對的聲浪也接踵而至,例如這樣直接取用他人器官的方式是否合法的問題。

第一個成功複製的哺乳動物,複製羊桃莉。
圖/wikipedia

生命科技進展對社會的另一次震撼教育發生於人類胚胎幹細胞 (embryonic stem cells) 的相關研究,所謂胚胎幹細胞係指位於囊胚期 (blastocyst) 胚胎中位於特定區域;內細胞團 (inner cell mass) 中游離出來的細胞。先前的研究顯示,胚胎幹細胞具有多元分化 (pluripotency),可以透過誘導技術分化成人體內任何一種型態的細胞,故具有相當的醫療未來性。

然而,人類胚幹細胞株的建立必須透過破壞一顆胚胎來獲得,這種殺生式的救人科學在道德層面上有著尷尬的地位。美國國會曾於 1996 年通過所謂的迪基維克法案 (Dickey-Wicker Amendment),禁止聯邦的經費資助足以製造或摧毀人類胚胎幹細胞用之研究,企圖從金源上來限縮該領域的發展,然而囿於龐大的醫療商機,確保戰略上的科技競爭優勢,該法案已於 2009 年由美國聯邦法案明令廢止。

-----廣告,請繼續往下閱讀-----

讓我們再回到賀博士的問題

談到這裡,相信讀者會明顯的感受到問題的渾沌性,所有論述似乎只有原則與道德上的說明,而無明確的、法律上的明文規定

看起來的確如此,科技進展如此迅速與日益複雜,立法部門很難跟上腳步;另從實務的角度來看,法律保障的對象仍以現身在世者,在民主國家的政權當中更可能進一步的限縮於那些具有投票資格的選民,畢竟其為所謂的「民意基礎」,花心思在一個並不存在的個體為其設立法律謀求應有的福祉,並不是立法機構的首要任務。所以一切的把關機制,完全存乎研究主事者一心。

CRISPR/Cas 9 技術無疑是 21 世紀生物科學界最偉大的發現之一,透過這項技術可以實踐在世界上絕大多數生物體內誘導基因體的修改。然而此技術的不確定性也是眾所周知──整個技術如同拿霰彈槍獵鳥,除了目標,也會有「脫靶」造成其他基因被誤擊的可能──對人類胚胎而言,這意味著致癌機率的增加及未來衍生之代謝疾病發生的可能性。

更離譜的是,該實驗的設計與問題解決之間並沒有存在著必然性,反而有極大的機會衍生更多的問題。流行病學中研究中所論及的是擁有特殊亞型之 CCR5 基因的白血球可以降低 HIV 病毒感染的特性,但賀博士的作法是極端地利用 CRISPR 技術將 CCR5 基因的運作硬生生停止, CCR5 基因在器官發育等生理機轉中均扮演著重要的角色,僅為防止 HIV 病毒入侵的可能就大費周章的摘除宛如削足適履。

-----廣告,請繼續往下閱讀-----

筆者認為,除了急功近利,實在看不出這樣的研究真正的學術價值。人體胚胎研究不比實驗動物,我們必須為出生的生命負責,不知道賀博士是否有想過這樣更深層的意義?

人體胚胎研究不比實驗動物,我們必須為出生的生命負責。
圖/pixabay

延伸閱讀

  1. 臺灣學術倫理教育資源中心
  2. 林翰佐,〈物種基因剔除技術爆炸性的新突破 ─ CRISPR/Cas9 技術淺談〉,《科學月刊》,第 552 期,2015 年 12 月。

 

 

〈本文轉載自《科學月刊》2019年1月號〉

一個在資訊不值錢的時代中,試圖緊握那知識餘溫的科普雜誌。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3742 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

8
1

文字

分享

1
8
1
侏羅紀公園的場景可能真實發生?生物複製技術有哪些發展?複製人要出現了嗎?
PanSci_96
・2024/06/15 ・5062字 ・閱讀時間約 10 分鐘

如果用我們的基因製造複製人,可以代替我們上班上課嗎?想像一下,如果世界上每個人都有一個雙胞胎分身?或者,如果我們可以克隆出已故的名人?甚至複製已故的寵物或親人?

當然,這些都是幻想,但複製生物技術的發展正在讓這個幻想漸漸變為現實⋯⋯

科幻小說的故事照進現實,在技術層面上有哪些困難?道德上又會引發哪些問題呢?

讓我們一起探索這項驚人技術的曲折歷程吧!

-----廣告,請繼續往下閱讀-----

今天的文章將會回答以下問題:

  1. 複製生物技術的早期實驗有哪些?又帶來什麼影響?
  2. 基因複製技術最大的困難是什麼?
  3. 複製技術面臨哪些主要挑戰和倫理道德問題呢?
  4. 複製生物技術除了複製生物還能有哪些應用?

克隆實驗早期的探索與突破?

複製生物技術的發展是一個漫長而曲折的過程,從 19 世紀末的早期實驗,到 20 世紀中葉的技術突破,再到 21 世紀的應用與挑戰。

胚胎實驗的歷史可以追溯到 19 世紀末,當時德國生物學家杜里舒(Hans Driesch,1867-1941)進行了一項開創性的實驗。他通過搖晃的方式將四個海膽胚胎細胞分離,並觀察到每個分離的細胞都能發育成完整的幼體,儘管體型較小。這一實驗證明了早期胚胎細胞具有全能性(totipotency),即早期胚胎的每個細胞都能發展成完整個體,這為後來的細胞核移植技術奠定了基礎。

圖/giphy

在 20 世紀初,植物學家發現通過嫁接和分裂植物組織可以產生與母體相同的植物。奧地利植物學家戈特利・哈伯蘭特(Gottlieb Haberlandt,1854-1945)提出了「植物細胞全能性」(totipotency)的概念,即每個植物細胞都具有發育成完整植物的潛力。哈伯蘭特的實驗主要是通過無菌技術培養植物細胞,雖然當時他並未成功培育出完整的植物,但他的理論和研究為後來的植物組織培養和克隆技術奠定了基礎。

-----廣告,請繼續往下閱讀-----

1914 年,德國生物學家漢斯・斯佩(Hans Speman,1869-1941)進行了另一個具有里程碑意義的實驗。他利用了一根嬰兒頭髮製作的環狀結,將其繫在受精的蠑螈卵細胞上,並將細胞核推到一側。當細胞核所在的一側開始分裂成多個細胞後,他鬆開結讓一個細胞核滑回未分裂的細胞一側,從而產生了兩個獨立的細胞群,這些細胞群最後發育成了兩個完整的胚胎。這是最早的核移植(nuclear transfer)實驗,顯示了細胞核在胚胎發育中的重要性​。

20 世紀中葉,科學家們進一步推動了克隆技術的發展。1952 年,美國科學家羅伯特・布里格斯(Robert Briggs,1911-1983)和湯瑪斯・金恩(Thomas Joseph King,1921-2000)首次成功地將青蛙胚胎細胞的細胞核移植到去核的卵細胞中,並培育出蝌蚪,雖然這些克隆青蛙無法存活至成年,但這實驗證明了細胞核可以在去核卵母細胞中重新編程,進而發育成新個體。

圖/giphy

桃莉羊的誕生:克隆技術的重要里程碑

克隆技術的重大突破出現在 1996 年,當時英國羅斯林研究所的伊恩・威爾穆特(Ian Wilmut,1944-2023)和基思·坎貝爾(Keith Campbell,1954-2012)成功地克隆了第一個成年哺乳動物,也就是廣為人知的——桃莉羊(Dolly)。他們使用的是一隻成年綿羊的乳腺細胞核,將其移植到一個去核的卵細胞中,最終培育出桃莉。這一成就震驚了全世界,因為它證明了成體細胞的基因信息可以被重置為胚胎狀態,並成功發育成為一個完整的生物體,標誌著克隆技術的一個重要里程碑​。

1996 年,成功地克隆了第一個成年哺乳動物,也就是廣為人知的——桃莉羊(Dolly)。圖/wikipedia

桃莉羊的誕生引發了廣泛的科學和倫理討論。一方面,科學家看到了複製技術在醫學研究、保護瀕危物種以及農業中的潛力。另一方面,社會各界對複製技術的倫理問題表示擔憂,特別是人類複製的可能性。

-----廣告,請繼續往下閱讀-----

桃莉羊的成功開啟了克隆技術的新篇章,此後,小鼠、牛、山羊等多種哺乳動物相繼被成功複製,展示了這一技術的廣泛應用潛力。同時,科學家們將目光投向了更為複雜的靈長類動物。

靈長類動物的複製技術在 21 世紀取得了進一步的突破。2018年,中國科學家成功利用與桃莉羊相同的「體細胞核轉植」技術複製出兩隻有相同基因的長尾彌猴「中中」和「華華」,標誌著克隆技術的又一個突破​。2020年中國又成功複製了恆河猴,並取名為「ReTro」,不同於印象中印象中複製動物壽命都很短或是飽受疾病之苦,ReTro 在今年(2024年)已經要滿四歲了,是首隻平安長大成年的複製恆河猴。

複製技術的挑戰?

儘管克隆技術在基因層面上已經相對成熟,但要複製出健康的個體仍然面臨巨大挑戰。許多克隆動物都表現出健康問題,如免疫系統缺陷、心血管問題、早衰、壽命縮短或在在肝、腎、肺、大腦、關節等地方產生發育上的缺陷,也有部分出現體型異常巨大的問題​​。例如綿羊的正常壽命約在 12 年左右,但桃莉羊在 6 歲時,就因關節炎與肺部感染而去世。

這主要是因為,細胞核在卵細胞中的重新啟動過程容易出現問題,導致克隆個體可能存在基因表達異常。即便是中國科學院成功複製的 ReTro 也只是難得成功的個案。

-----廣告,請繼續往下閱讀-----

基因複製出的人類會和本人完全一模一樣嗎?

克隆技術,特別是克隆人類,涉及複雜的倫理和道德問題。一方面,克隆技術可能會被用來治療某些疾病,或是用於治療遺傳疾病和器官移植,甚至延長壽命;但另一方面,它也可能被濫用,導致倫理危機。例如,克隆人類可能引發身份認同問題,並挑戰現有的社會和家庭結構​,反對者擔心擔心這樣的技術會對社會和人類本質造成不可預見的影響。

如果突破細胞核重新啟動的困境,複製出來的克隆人會和本人完全一樣嗎?

答案是:「不會」。

圖/imdb

美國演化生物學家阿亞拉(Francisco J. Ayala,1934-2023)在《美國國家科學院院刊》上提出,我們目前進行的生物複製實驗複製的只是「基因型」而非「表現型」。基因型指的是基因組成;而表現型指的是包含個體外表、解剖結構、生理機能以及智力、道德觀、審美、宗教價值觀等行為傾向和屬性,還有透過經驗、模仿、學習所獲得的特徵。表現型是基因與環境間複雜作用下的產物。基因型的複製就像是同卵雙胞胎,就算長得再像,他們怎麼樣都不會是「同一個人」。透過生物複製技術基因複製出的克隆人,其實也只不過是跟你擁有相同基因的雙胞胎而已。

-----廣告,請繼續往下閱讀-----

不過目前世界上也存在一種能複製表現型的技術,那就是——「AI」。

隨著人工智能技術的進步,模擬人類個性和行為變得越來越現實。例如,AI 可以通過學習大量數據來模擬特定個體的行為模式,甚至在某些情況下,AI 克隆可能會比生物克隆更具實用性。然而,這也帶來了新的風險,包括隱私泄露、數據濫用等​​。

複製技術在生物醫學領域來能有哪些應用?

複製技術的應用範圍廣泛,涵蓋了醫學研究、農業、生態保護等多個領域。

複製技術在生物醫學領域具有巨大的潛力。幹細胞治療可以利用克隆技術培育出患者自身的幹細胞,從而避免免疫排斥反應。製藥公司可以利用克隆動物來進行藥物測試,提高藥物研發的效率和準確性​。科學家也可以生產出大量具有相同基因組的細胞,用於研究疾病機制和開發新藥。克隆技術被用於創建動物模型,這些模型有助於研究人類疾病的機制和治療方法。例如,科學家利用克隆技術創建了患有阿爾茨海默症和帕金森症的動物模型,這些模型為藥物開發和治療策略的研究提供了重要的工具。

-----廣告,請繼續往下閱讀-----

在農業領域,複製技術被用於繁殖優良品種,增加牲畜的生產力和抗病能力。通過克隆優秀的畜禽個體,農民可以提高產量,降低疾病風險,從而提高農業生產的效益。

此外,複製技術在生態保護方面也有重要的應用。許多瀕危物種由於種群數量減少,面臨滅絕的危險。科學家們利用複製技術試圖保護這些物種,例如,已經有研究成功克隆了瀕危的野生動物,為保護生物多樣性提供了新的方法。

圖/imdb

結論

總結而言,複製生物技術的發展歷程充滿了挑戰和機遇。從早期的胚胎細胞分離實驗,到 20 世紀中葉的核移植技術,再到 1996 年桃莉羊的成功,科學家們在不斷探索和突破。儘管技術上取得了許多進展,但複製健康個體的挑戰仍然存在。此外,倫理和道德問題也不容忽視。未來,隨著技術的不斷進步,克隆技術在生物醫學領域的應用將更加廣泛,但我們也必須謹慎對待其可能帶來的社會和倫理影響,我們需要謹慎管理這項強大的技術,在發揮其潛力的同時,避免可能帶來的社會和倫理風險。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1

1

0
1

文字

分享

1
0
1
人類有可能扮演上帝嗎?喬治.丘奇的基因科學之夢(中)——《未來的造物者》
臉譜出版_96
・2023/11/12 ・4139字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

猝睡症

在研究路上,丘奇認識了哈佛分子生物學者吳昭婷(Chao-ting Wu)博士。吳十分欣賞他不受拘束的工作態度與創意,也支持他瘋狂的想法,兩人墜入愛河,在一九九○年結婚。他們在數年後生了個女兒,女兒的睡眠模式和父親同樣不尋常。吳提議父女都去做檢查,結果丘奇和女兒都被診斷出猝睡症(narcolepsy)。丘奇意識到自己若接受標準治療就會失去清醒夢狀態,於是他決定接受嗜睡症狀,繼續照常生活。他不再開車,但也學了一些保持清醒的方法,例如站立或在雙腳之間轉移重心。

儘管與眾不同,丘奇仍在家人幫助下活出精采的人生,他深受家人啟發,開始大力支持其他人的想法。到了二○○○年代初期,他門下已有背景各異的學生,發表論文數也多達數百,其中許多篇奠定了現今合成生物學的基礎。二○○四年一篇論文提出平價 DNA 合成方法,並示範了將一條條 DNA 印在微型晶片上的技巧。二○○九年一篇重大的研究論文中,丘奇提出能同時分析數百萬份基因體序列的新科技。那之後,丘奇想到了加速基因建造與拼組過程的方法:他想將生物演化應用在實驗室裡。還記得先前介紹的青蒿素嗎?在研究青蒿素合成方法的過程中,研究團隊費了約二千五百萬美元與約一百五十人一年份的辛勞——而當時的任務僅是稍微調整數十段基因,和合成一整隻生物相比差得太遠了。丘奇認為不必從零編寫一份完美的 DNA 密碼,而是能讓機器從設計草圖開始自動發展出多種變化,之後再挑選出最成功的幾個版本。

合成生物學

他和實驗室一小群人還真製造出這麼一臺機器,它是機械手臂、燒瓶、管線與偵測器組成的四不像,全都由電腦操作。他們的第一場實驗是稍微改變一株大腸桿菌,讓它生產更多茄紅素(lycopene)——讓番茄呈紅色的類胡蘿蔔素。機器做出了一百五十億個新菌株,每一株的遺傳密碼都經過調整,有些菌株能生產比原菌株多達四倍的茄紅素。丘奇將這種方法稱為「多路自動化基因體工程」(multiplex automated genome engineering,MAGE),這可以算是生物演化,只不過是加強版演化。他還想到幾種實際應用方法,例如創造各不相同的人類細胞株做研究使用——有了這種方法,科學家就能瞭解突變造成疾病的機制等等,有機會大幅改變我們醫學與醫療發展。我們或許可以設計出對病毒有抗性的幹細胞,將它們用於細胞療法,或者也可以設計並培養對疾病有抗性的新器官。我們理論上還能調整基因體之後用體外受精技術讓受精卵在母體子宮著床,最後生下對病毒有抵抗力的嬰兒。

我們理論上能調整基因體之後用體外受精技術讓受精卵在母體子宮著床,最後生下對病毒有抵抗力的嬰兒。圖/giphy

但是說到底,丘奇最重大的貢獻可能是在二○一二年發現輕易改變 DNA 序列、修改基因功能的方法,進而奠定 CRISPR 技術的基礎。CRISPR 是基因編輯的科技基石,全稱為「常間回文重複序列叢集」(clustered regularly interspaced short palindromic repeats,CRISPR),這是基因體當中特定一種重複的 DNA 序列,序列無論是正讀或反讀都一樣。廣泛而言,這是一種有廣泛用途的技術,可用以改正基因缺陷,還可用以創造生命力較頑強的植物或消滅病原體。

-----廣告,請繼續往下閱讀-----

丘奇和從前的博士後學生——哈佛博德研究所(Broad Institute)的張鋒(Feng Zhang)——合力在《科學》期刊發表數篇論文,提出了用 CRISPR 技術引導細菌酶 Cas9 精準剪切人類細胞 DNA 的方法。他們以微生物學者伊紐曼.夏彭蒂耶(Emmanuelle Charpentier)與生物化學學者珍妮佛.道納(Jennifer Doudna)早先的發現為基礎;夏彭蒂耶、道納兩人當時分別在瑞典優密歐微生物研究中心(Umeå Centre for Microbial Research)與加州大學柏克萊分校做研究,她們發明了用 CRISPR 關聯蛋白質(CRISPR associated proteins)這種酶有效剪貼 DNA 的方法。她們的 CRISPR 系統在二○一○年代引起了一波淘金狂潮,致使兩人在二○二○年獲得諾貝爾化學獎,成為有史以來第一個贏得諾貝爾科學獎項的全女性團隊。丘奇雖也有貢獻卻未得獎,但他不以為忤,反而對記者表示「我覺得這個選擇非常棒……那是關鍵的新發現」,並接著誇讚夏彭蒂耶與道納優秀的工作成果。

過去二十年來,丘奇平均每年合作成立一家新公司,主要是為了幫助自己門下最有潛力的博士後研究員離開實驗室、正式出社會。他另外申請了六十份專利、輔導了新一代基因工程師,協助新世代研究者塑造明日世界。到了二○○○年代中期,他萌生了重新發明塑膠杯的想法,只不過這次不用石化材料。簡單而言,丘奇團隊將微生物的遺傳訊息再程序化,讓微生物吃下糖之後生產聚羥基丁酸酯(polyhydroxybutyrate),這種強韌且可生物分解的材料能用以短時間容納液體,對攤販而言再適合不過。團隊在二○○九年甘迺迪表演藝術中心(Kennedy Center)一場演出的中場休息時間首次推出新產品,杯子上貼著得意洋洋的宣言:「百分之百植物製成的塑膠。」

以植物為原料製成的可口可樂寶特瓶。圖/讀新聞學英文

丘奇另外和一小支科學家團隊提出了腦科學計畫(BRAIN Initiative),結合國家科學基金會、國防高等研究計畫署等公私部門的力量,試圖解析大腦的運作原理。他在二○○五年推出個人基因體計畫(Personal Genome Project),用以交流基因體、健康與遺傳特徵等公眾數據。為了推動計畫,丘奇與科學界許多著名人物公開了自己的基因體數據,希望能促使人們自由分享數據,以便讓科學家研究人類的基因與遺傳特徵,並且開啟關於個人遺傳密碼透明度與隱私的討論。公開自身基因體數據的人包括受過太空人訓練的投資者與慈善家艾絲特.戴森(Esther Dyson)、哈佛醫學院的科技主任約翰.哈拉姆卡(John Halamka)、客製化醫療保健公司賽歐納(Sciona)的創辦人羅莎琳.吉爾(Rosalynn Gill)、知名心理學者與作家史迪芬.平克(Steven Pinker),而丘奇本人當然也參與其中。十組基因體並不算太多,而數據本身雖然沒有署名,這十位著名人物的身分還是對大眾公開了,所以不可能完全保證他們的隱私。他們願意提供資料,完全是多虧了丘奇的請託。

復活

讀到此處,你想必看得出丘奇是聰慧且願意挑戰自己與他人的思想家、啟發人心的導師,也許還有一口氣接下太多計畫的毛病。換言之,他就是那種會去研究如何讓絕種動物復活的研究者——而他特別想復活的動物,正是四千年前在更新世(Pleistocene)絕跡的長毛象。

-----廣告,請繼續往下閱讀-----

四千年以前,長毛象已經在地球極北存活數千年。你可以將牠們想像為大象的近親,只不過身上長著粗糙的毛髮與多層脂肪以便抵抗冰河時期的嚴寒,還有可用以覓食的長象牙。(過了很久很久以後,創作者從牠們身上得到靈感,創造了《星際大戰》〔Star Wars〕中的虛構生物「班薩」〔bantha〕。)我們不清楚長毛象滅絕的確切原因,不過研究者認為是人類狩獵與氣溫變化減少了長毛象族群數目與食物來源。

長毛象算是「關鍵物種」(keystone species),生態系統裡其他物種在許多方面都仰賴牠們的存在,才得以穩定生存。長毛象成群行動、找尋可食用的枯草時會將樹木撞倒,也會將雪層壓實,保持永凍土層的穩定。一旦長毛象與其他大型草食動物不再吃枯草也不再將雪地壓實,生態系統就發生了變化:表面的雪層融得快了些,以致永凍土遭受陽光直射,開始以驚人的速率融化並將溫室氣體釋放到大氣中,造就了惡性循環。氣溫升高導致冰雪加速消融,釋放出更多溫室氣體,使得氣溫繼續提升,就這麼不斷循環下去。若能使長毛象起死回生,野放到加拿大與俄羅斯,那或許有機會修復失衡的生態系統,而且——老實說吧——如果能用這種方式抵抗氣候變遷造成的生存危機,那不是超級新奇、超級酷嗎?

長毛象模型。圖/wikimedia

丘奇花了不少心思考慮去滅絕(de-extinction)的執行方法,不過第一個做這種嘗試的人並不是他。全世界第一隻哺乳類複製動物——桃莉羊(Dolly the sheep)——誕生於一九九六年,牠之所以能被複製出來是多虧了一種稱為「核轉置」(nuclear transfer)的技術,而這種技術開啟了讓滅絕生物起死回生的大門。核轉置的主旨在於將一顆完整細胞的細胞核小心翼翼地抽取出來,置入同物種或近親物種的卵子,餘下步驟則近似製作試管嬰兒的方法:雜交卵子置入動物子宮後著床,若一切順利,孕母將會在孕期結束時產下健康的雜交動物。在二○○○年,世上最後一頭庇里牛斯山羊(一種野生的山羊)死了,不過人們用液態氮將那最後一頭山羊的細胞保存下來,後來到了二○○三年,研究者成功用核轉置方法複製出一頭小羊——可惜牠出生後只活了短短幾分鐘。核轉置技術雖能用以複製動物,但也有其限制,只有保有完整且具功能性之基因體的動物才有機會被複製出來——舉例而言,研究者必須要有冷凍保存得異常完好的動物屍體,而北極圈內恰巧有好幾隻保存完好的長毛象屍體。然而即使在屍體存在且保存完好的情況下,讓滅絕物種起死回生的研究也不一定能成功,複製出來的動物也許無法存活。這種動物早已在數千年前絕跡,牠的基因體想必無法適應今日的地球環境。

因此,丘奇想到了另一種解決辦法:他想反其道而行,以近親物種完整、健康的細胞為起點,再加入滅絕物種留存下來的基因片段,一步步倒推回去。我們以旅鴿(passenger pigeon)為例,這種鴿子一度遍布全美,數以百萬計的鴿群從天上飛過時,甚至能遮蔽白晝陽光,但牠們卻在一九一四年絕跡了。我們能使用目前仍存活的近親物種——野鴿(rock pigeon)——的幹細胞,讓旅鴿重回地球。我們可以將旅鴿的部分基因置入野鴿幹細胞,接著轉形(transform)到精子細胞,再注入卵子細胞後發育成受精卵,最後生出帶有旅鴿特徵的野鴿。

-----廣告,請繼續往下閱讀-----

這類想法深深吸引了創辦《全球概覽》(Whole Earth Catalog)期刊與尖端線上服務「The WELL」的科技界傳說級人物史都華.布蘭特(Stewart Brand),以及生技業經理(也是布蘭特之妻)萊恩.菲蘭(Ryan Phelan)。布蘭特、菲蘭與丘奇聯手推出了去滅絕關鍵物種的新計畫,其中包括旅鴿與長毛象——確切而言,是有點長毛的長毛象,畢竟他們製作出的不會是真正的長毛象,而是和長毛象現存親緣關係最近的物種——亞洲象——幹細胞基因剪接(splicing)後誕生的生物。

——本文摘自《未來的造物者》,2023 年 11 月,臉譜出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。