網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

為何基因改造人類很母湯?實驗設計還不如研究生——賀建奎基因編輯嬰兒事件(上)

寒波_96
・2019/02/04 ・4108字 ・閱讀時間約 8 分鐘 ・SR值 541 ・八年級

後世的科學史家回顧公元 2018 年時,一定不會忽視 11 月底這件事:
「中國科學家賀建奎創造的基因改造人誕生」。

賀建奎是用 youtube 影片公佈結果,這種方式也值得記上一筆啊。圖/取自 超訊

賀建奎的作為公諸於世以後,震撼世界,從中國國內到國外,全世界的同行都在痛罵;為什麼呢?在此之前的爭議性研究,修改人類胚胎的 DNA 就已經夠令人非議的了;但賀建奎卻直接讓基因改造後的胚胎在母體受孕,懷胎後產下 2 位嬰兒。依據目前技術,辦到這件事的難度不大,卻由於各種自律與明文規範而受到阻止。

基改嬰兒誕生的情形,全世界一開始都不是很清楚,消息像擠牙膏般一點一滴流出,直至 2 個多月後的現在仍有不少疑問。不過隨著愈來愈多內情問世,大眾的創意都被賀建奎激發,從痛罵升級為花式痛罵;但同行們到底在罵什麼,賀建奎真的那麼罪大惡極嗎?

若你也有在關注,那你可能看過持續追蹤事件進展的博士生 北歐心科學,他對此事的觀點更是淺顯直白:「賀建奎的品格及科學能力都低下,是沽名釣譽的垃圾」。就讓我們來一起看看賀建奎到底做了什麼事吧。

https://www.facebook.com/NordicHearts/photos/a.1587022474873748/2214950322080957/?type=3&theater

讓基因被修改的生殖細胞受孕,母湯!

賀建奎改造人類的 DNA,為什麼讓科學家如此崩潰呢?因為他改造了生殖細胞的基因!

人體的細胞可以區分為體細胞 (somatic cell) 與生殖細胞 (germ cell) 兩種,「體細胞」像是血球、皮膚、腸道,即使基因改變也不會遺傳給後代,影響有限;「生殖細胞」則是卵、精,上頭的遺傳物質一旦改變就會遺傳給後代,加入人類族群的基因庫。

目前改變人類體細胞的 DNA 在研究上可以接受,臨床上更是某些病人的一線生機;但生殖細胞就有爭議了,若是讓改造後的生殖細胞受孕,繁衍成為人類,則是萬萬不可。胚胎的基因一旦被人為改變,此人不但將一輩子都帶著此遺傳變異,且這個人為的遺傳變異也將有機會代代傳承,造成長期的影響1

賀建奎在香港公佈改造人的基因定序結果,令人震驚的歷史時刻。圖/取自 北歐心科學

大部分同行都認為賀建奎的人類實驗相當拙劣,簡直是把真人當老鼠在玩,毫無責任感。然而,更要緊的並不是賀建奎的操作粗糙或精巧,而是像這篇文章標題所表述的:「不是會不會,而是該不該? (ask whether, not how)」,這件事情的關鍵在於,目前不論用任何方式製造基因被改造(或編輯)的小孩,都是不能接受的2

移除人體正常需求的免疫基因,就能免疫愛滋?

就算實驗做的再好,現階段創造基改嬰兒也是大錯特錯,何況賀建奎的實驗做的令人搖頭,想幫他找藉口都很難。他一系列實驗用簡單一句話就能說明:「毫無演化常識之下,對自然的拙劣模仿」。

賀建奎宣稱,之所以對人基因改造,目的是創造不會感染愛滋病的人。造成愛滋病的病原是人類免疫缺乏病毒(全名 human immunodeficiency virus,簡稱 HIV,本文之後直接稱作愛滋病毒),他認為:病毒要透過 CCR5 基因製造的蛋白質感染細胞,那麼就把這個基因直接消滅掉,不就不會感染愛滋病了嗎?他甚至稱其為「愛滋疫苗」。

好像很有道理……等等!這根本是以直線反推式的模式在思考。

 CCR5 其實還是人體正常需求的免疫基因,把一個完全健康的人,移除其中一個正常的基因,只為了預防未來可能會遇到的疾病?而且,還不見得真的能夠預防,這邏輯就像:為了避免腦殘,讓我們先把腦袋拔掉吧一樣。

正常的 CCR5 蛋白質是個穿膜的結構。更多資訊可以參考《基因編輯嬰兒 — 所以 CCR5 到底長怎樣?》

抵抗愛滋病的天然基因變異-CCR5-Δ32

CCR5 基因的蛋白質產物是細胞膜上的受器,有 352 個氨基酸,但有少部分的人沒這麼完整。過去研究發現,某些歐洲族群中有 10% 的人配備一個小眾的遺傳變異,稱作「CCR5-Δ32」(唸作 CCR5 delta 32),所以機率上該族群中有 1% 的人,2 個對偶基因都是 CCR5-Δ32,而這類型的人天生不容易感染愛滋病毒3

CCR5 基因如果出現 Δ32 變異,就會少掉中間 32 個鹼基對,使得蛋白質產物只剩下原本的一半,無法行使正常功能,達到阻止愛滋病毒感染的效果。若假如 2 個對偶基因中只有一個是 Δ32,另一個不是也沒效果,一定要 2 個都是 Δ32 才可以。目前已經有人利用此一原理,發展對抗愛滋病的基因療法。

然而,這是只考慮 CCR5 的狀況,有些款式的愛滋病毒即使沒有 CCR5,還可以利用另一個受器 CXCR4 入侵,也就是說,就算一個人的 CCR5 失去作用,也沒辦法 100% 對愛滋病免疫。(各位讀者覺得賀建奎是不知道,或是假裝忘記 CXCR4 呢?)

CRISPR 技術濫用,對自然拙劣的模仿

CCR5-Δ32 是天然存在的遺傳變異,賀建奎採取當今流行的 CRISPR-Cas9 改變基因序列,過程卻是「對自然拙劣的模仿」。CRISPR 基因改造技術,原理是人為設計一段序列,與基因組上的目標對應,導引 Cas9 蛋白質到達目標搞破壞,再讓細胞本身的修復機制把斷裂的 DNA 修理好4

可用於基因編輯的方法,CRISPR 是其中一種。這些方法都可以切斷基因組的雙股 DNA,再直接修復成跟本來不太一樣(左下),或是插入給予的外源 DNA 序列(右下),達到改變 DNA 序列的目的。圖/取自 ref 4

CRISPR 基改自從 2012 年底問世以來已經改版多次,現在已更加方便與精準,不過大致上仍可以分為兩種策略。一種是在 Cas9 作用的同時,也給予一段 DNA 序列,讓目標序列被切斷以後,將人為給予的片段塞進基因組,這種基因改造較為精準,但是比較困難,成功機率較低。

而比較容易,成功機率較高的作法,則是直接破壞目標;這也是賀建奎選擇的方案。他把 Cas9 攻擊的目標設計在 Δ32 的位置,希望能人為製造 CCR5-Δ32。坦白說,我認為賀建奎好像搞不太通原理,不知道這樣實驗設計的意義是什麼?

即使是按照賀建奎「沒有 CCR5 就不會感染愛滋病」的設定,也只要把 CCR5 基因直接消滅即可,他可以把 Cas9 攻擊的位置,設計在基因編碼序列的前端,或是啟動子 (promoter) 上,降低基改 CCR5 製造出殘廢蛋白質的機率;也可以把攻擊位置擺在基因外面兩端,直接用外加的 CCR5-Δ32 換掉原本的 CCR5

但是他的想法似乎是:天然存在的是 CCR5-Δ32,我就是要山寨一個一模一樣的出來!

圖中共有 5 個序列,最上面是一般的 CCR5,第二個是改版 CCR5-Δ32,兩者都是天然的存在。下面 3 個分別是賀建奎創造的 2 位基改嬰兒,露露與娜娜的基因。 圖/取自麻薩諸塞大學醫學院 Sean Ryder 的推特

實驗結果卻是失敗的。賀建奎選擇的方法,本來對序列的改造就不會那麼精準,而根據他自己公佈的結果(假如是真的),他創造了和 CCR5-Δ32 乍看很像,但是完全不一樣的多種突變。

正常的體染色體都是成雙成對,CCR5 基因在體染色體上,所以一個人應該會有 2 個 CCR5 基因。其中一位基因改造人露露,一個 CCR5 完全沒有改變,另一個對偶基因的中間少掉 15 個鹼基對,因此應該仍能製造蛋白質,只是中間少掉 5 個氨基酸。可以肯定,她的遺傳組合無法抵抗愛滋病毒,算是實驗失敗,然而,基因改造過但實驗失敗的胚胎,卻還是受孕並出生成為露露,一位真真實實的人類。

另一位基因改造人娜娜,他的 2 個 CCR5 都被改變,但改法卻不一樣。一個 CCR5 在中間少掉 4 個鹼基對,另一個卻多出 1 個,使得她不但沒有正常的 CCR5,還會製造 2 種新的突變蛋白質,影響未知。她可能對某些愛滋病毒免疫,但是如前所述,她仍無法抵抗所有愛滋病毒,還面臨著未知的遺傳風險。

現在回頭來看,「賀建奎的品格及科學能力都低下,是沽名釣譽的垃圾」指控是否名符其實呢?

賀建奎的紙老虎被戳穿後,報導就出現這種角度看起來比較陰險的照片。圖/取自 Nature 新聞〈First CRISPR babies: six questions that remain

如果你是科學家,知道這件事情的嚴重性,那你可能要比一般人更嚴厲譴責賀建奎的行為。引用《中國基因改造人,為什麼科學家應該堅決反對?》文中所說:

「社會大眾根本分不清楚什麼 DNA 還是基因改造,假如放任如賀建奎之流的野心家胡亂實驗,遲早要出大問題,到時候大眾對生物研究將充滿疑慮與恐懼,只會一概排斥與禁止,對科學發展造成很糟糕的影響」。

接下來讓我們來更仔細的了解什麼是 CRISPR ,以及繼續討論「改造基因預防愛滋,是否搞錯了些什麼? 」吧!

延伸閱讀

參考文獻

  1. An ‘epic scientific misadventure’: NIH head Francis Collins ponders fallout from CRISPR baby study
  2. Human genome editing: ask whether, not how
  3. HIV Resistant Mutation(本文作者雖然只是高中生,不過把 CCR5 基因與 AIDS 的關係整理的非常清楚)
  4. The CRISPR tool kit for genome editing and beyond(類似的回顧論文很多,隨便選一篇最近的)

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

文章難易度
寒波_96
153 篇文章 ・ 377 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。


0

12
5

文字

分享

0
12
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
15 篇文章 ・ 12 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》