0

0
0

文字

分享

0
0
0

如何拿捏科研中的那把道德尺?談 CRISPR/Cas9 技術用於人體的適當性 ──《科學月刊》

科學月刊_96
・2019/01/23 ・2845字 ・閱讀時間約 5 分鐘 ・SR值 570 ・九年級

  • 林翰佐/銘傳大學生物科技學系副教授,科學月刊總編輯。

最近生命科學界爆發一宗廣受關注的事件:

中國科學家賀建奎博士將 CRISPR/Cas9 活體基因編輯技術用於人類胚胎的編輯,並經植入孕母著床懷孕後,於日前成功產下 2 名基因體受到修改的女嬰。

賀建奎博士宣稱,該計畫主要針對具有人類免疫缺陷病毒(HIV,即一般人俗稱的愛滋病毒)感染的夫妻,研究其對胎兒垂直感染的可能性,並藉由將受精卵中名為 CCR5 基因剔除來達到防治之目的。

賀博士似乎對此研究信心滿滿,但透過網路視頻的發表與媒體專訪披露之後,反而引發科學界與社會的震驚。在中國,數百名科學家幾乎在第一時間便聯署聲明譴責,稱此瘋狂的實驗存在著嚴重的生命倫理問題,並要求政府補上監管漏洞。聲明更直言該實驗在技術上沒有任何創新,唯一的突破是科學家的倫理道德底線。

賀建奎博士將 CRISPR/Cas9 活體基因編輯技術用於人類胚胎的編輯。
圖/wikipedia

顯然,這樣的研究跨越了科學界普世道德標準。即便是一般社會人士,相信對於這樣的研究也會感到有所不妥。不過生命科學的相關研究道德尺度在哪裡?其實這仍有嚴謹的脈絡可循。

-----廣告,請繼續往下閱讀-----

 

人體試驗的普世道德標準

探索生命一直是人類積極發展的科學議題,在人類進化的歷程當中,科學研究方向大抵朝向增進人類福祉為目標,但其中也不乏一些黑歷史,像是二次世界大戰時期納粹德國對集中營中的猶太人及日本 731 部隊對戰俘所做一系列不人道的人體試驗,這些研究顯然有其道德上的不公義性。不過,即便在承平時期,科學研究也有出岔錯的時候,例如美國發生塔斯基吉梅毒試驗 (Tuskegee syphilis experiment),原本立意良善的梅毒治療研究,在時空環境的改變下演變成為殘忍的見死不救。這些血淋淋的案例一再地揭示,以人類為主體的研究,似乎應該有明確的道德規範,藉以防止這類事情的不斷的重演。

參加塔斯基吉梅毒實驗的試驗者。
圖/wikipedia

有鑑於此,國際相關研究社群開始著手訂定人體試驗所應遵守的倫理規範。這些規範雖並非全然具有法律上的約束力,但這些凝聚國際團體共識的議定界定了普世對人體試驗中倫理的基本要求,因此幾經更迭修改,許多規範仍沿用至今,例如紐倫堡宣言 (Nuremberg Code)、赫爾辛基宣言 (Declaration of Helsinki) 及貝爾蒙特報告書 (Belmont Report) 等。

基本上,這些宣言與報告楬櫫人體試驗中應該遵行的 3 項重要的倫理基礎,分別為:

  1. 對人的尊重 ── 包括對人權的維護以及對受試個人的尊重。
  2. 善意的對待 ── 窮盡實驗的設計與執行降低對實驗者的傷害。
  3. 公平正義。

這些意涵也被各國的立法單位所重視,並將精神落實於立法之中,例如目前臺灣的「醫療法」中,即規定「人體試驗委員會」的設立,針對凡涉及人體及其組織檢體的研究進行實質上的審查,透過審核機制的管控確保研究計畫的品質,並保障對受試者的尊重以及各種權力的維護。

-----廣告,請繼續往下閱讀-----

人類胚胎的研究與對社會的衝擊

人類胚胎的研究一直是生命科學研究上道德的邊緣地帶,爭議的觀點有很多,除了部分宗教裡對於「人」形成的見解之外,更廣泛的關注在於胚胎是否應視為人而賦予其等同於人的權利

雖說我國《民法》中規定「人之權利能力,始於出生,終於死亡。」,但並不意味著可對未出生的人類胚胎得以高唱科學為名為所欲為。在 1997 年透過核轉殖技術成功培育出第一隻高等哺乳動物「桃莉羊」,隨即引發人類社會的重視,其中的原因就是意識到人類科技的進展以迅雷不及掩耳的速度發展至今,已有操弄胚胎,改變生命的可能。發明人威爾穆特博士 (Sir Ian Wilmut) 在成名之後旋即受到梵蒂岡天主教教宗的召見垂詢,足見其影響性。即便這類高等動物的複製技術未來商機無限,科學家宣稱可以透過預定的方式訂做一個 mini me,作為未來器官移植的備料庫,但更多反對的聲浪也接踵而至,例如這樣直接取用他人器官的方式是否合法的問題。

第一個成功複製的哺乳動物,複製羊桃莉。
圖/wikipedia

生命科技進展對社會的另一次震撼教育發生於人類胚胎幹細胞 (embryonic stem cells) 的相關研究,所謂胚胎幹細胞係指位於囊胚期 (blastocyst) 胚胎中位於特定區域;內細胞團 (inner cell mass) 中游離出來的細胞。先前的研究顯示,胚胎幹細胞具有多元分化 (pluripotency),可以透過誘導技術分化成人體內任何一種型態的細胞,故具有相當的醫療未來性。

然而,人類胚幹細胞株的建立必須透過破壞一顆胚胎來獲得,這種殺生式的救人科學在道德層面上有著尷尬的地位。美國國會曾於 1996 年通過所謂的迪基維克法案 (Dickey-Wicker Amendment),禁止聯邦的經費資助足以製造或摧毀人類胚胎幹細胞用之研究,企圖從金源上來限縮該領域的發展,然而囿於龐大的醫療商機,確保戰略上的科技競爭優勢,該法案已於 2009 年由美國聯邦法案明令廢止。

-----廣告,請繼續往下閱讀-----

讓我們再回到賀博士的問題

談到這裡,相信讀者會明顯的感受到問題的渾沌性,所有論述似乎只有原則與道德上的說明,而無明確的、法律上的明文規定

看起來的確如此,科技進展如此迅速與日益複雜,立法部門很難跟上腳步;另從實務的角度來看,法律保障的對象仍以現身在世者,在民主國家的政權當中更可能進一步的限縮於那些具有投票資格的選民,畢竟其為所謂的「民意基礎」,花心思在一個並不存在的個體為其設立法律謀求應有的福祉,並不是立法機構的首要任務。所以一切的把關機制,完全存乎研究主事者一心。

CRISPR/Cas 9 技術無疑是 21 世紀生物科學界最偉大的發現之一,透過這項技術可以實踐在世界上絕大多數生物體內誘導基因體的修改。然而此技術的不確定性也是眾所周知──整個技術如同拿霰彈槍獵鳥,除了目標,也會有「脫靶」造成其他基因被誤擊的可能──對人類胚胎而言,這意味著致癌機率的增加及未來衍生之代謝疾病發生的可能性。

更離譜的是,該實驗的設計與問題解決之間並沒有存在著必然性,反而有極大的機會衍生更多的問題。流行病學中研究中所論及的是擁有特殊亞型之 CCR5 基因的白血球可以降低 HIV 病毒感染的特性,但賀博士的作法是極端地利用 CRISPR 技術將 CCR5 基因的運作硬生生停止, CCR5 基因在器官發育等生理機轉中均扮演著重要的角色,僅為防止 HIV 病毒入侵的可能就大費周章的摘除宛如削足適履。

-----廣告,請繼續往下閱讀-----

筆者認為,除了急功近利,實在看不出這樣的研究真正的學術價值。人體胚胎研究不比實驗動物,我們必須為出生的生命負責,不知道賀博士是否有想過這樣更深層的意義?

人體胚胎研究不比實驗動物,我們必須為出生的生命負責。
圖/pixabay

延伸閱讀

  1. 臺灣學術倫理教育資源中心
  2. 林翰佐,〈物種基因剔除技術爆炸性的新突破 ─ CRISPR/Cas9 技術淺談〉,《科學月刊》,第 552 期,2015 年 12 月。

 

 

〈本文轉載自《科學月刊》2019年1月號〉

一個在資訊不值錢的時代中,試圖緊握那知識餘溫的科普雜誌。

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3494 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

1

0
1

文字

分享

1
0
1
人類有可能扮演上帝嗎?喬治.丘奇的基因科學之夢(中)——《未來的造物者》
臉譜出版_96
・2023/11/12 ・4139字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

猝睡症

在研究路上,丘奇認識了哈佛分子生物學者吳昭婷(Chao-ting Wu)博士。吳十分欣賞他不受拘束的工作態度與創意,也支持他瘋狂的想法,兩人墜入愛河,在一九九○年結婚。他們在數年後生了個女兒,女兒的睡眠模式和父親同樣不尋常。吳提議父女都去做檢查,結果丘奇和女兒都被診斷出猝睡症(narcolepsy)。丘奇意識到自己若接受標準治療就會失去清醒夢狀態,於是他決定接受嗜睡症狀,繼續照常生活。他不再開車,但也學了一些保持清醒的方法,例如站立或在雙腳之間轉移重心。

儘管與眾不同,丘奇仍在家人幫助下活出精采的人生,他深受家人啟發,開始大力支持其他人的想法。到了二○○○年代初期,他門下已有背景各異的學生,發表論文數也多達數百,其中許多篇奠定了現今合成生物學的基礎。二○○四年一篇論文提出平價 DNA 合成方法,並示範了將一條條 DNA 印在微型晶片上的技巧。二○○九年一篇重大的研究論文中,丘奇提出能同時分析數百萬份基因體序列的新科技。那之後,丘奇想到了加速基因建造與拼組過程的方法:他想將生物演化應用在實驗室裡。還記得先前介紹的青蒿素嗎?在研究青蒿素合成方法的過程中,研究團隊費了約二千五百萬美元與約一百五十人一年份的辛勞——而當時的任務僅是稍微調整數十段基因,和合成一整隻生物相比差得太遠了。丘奇認為不必從零編寫一份完美的 DNA 密碼,而是能讓機器從設計草圖開始自動發展出多種變化,之後再挑選出最成功的幾個版本。

合成生物學

他和實驗室一小群人還真製造出這麼一臺機器,它是機械手臂、燒瓶、管線與偵測器組成的四不像,全都由電腦操作。他們的第一場實驗是稍微改變一株大腸桿菌,讓它生產更多茄紅素(lycopene)——讓番茄呈紅色的類胡蘿蔔素。機器做出了一百五十億個新菌株,每一株的遺傳密碼都經過調整,有些菌株能生產比原菌株多達四倍的茄紅素。丘奇將這種方法稱為「多路自動化基因體工程」(multiplex automated genome engineering,MAGE),這可以算是生物演化,只不過是加強版演化。他還想到幾種實際應用方法,例如創造各不相同的人類細胞株做研究使用——有了這種方法,科學家就能瞭解突變造成疾病的機制等等,有機會大幅改變我們醫學與醫療發展。我們或許可以設計出對病毒有抗性的幹細胞,將它們用於細胞療法,或者也可以設計並培養對疾病有抗性的新器官。我們理論上還能調整基因體之後用體外受精技術讓受精卵在母體子宮著床,最後生下對病毒有抵抗力的嬰兒。

我們理論上能調整基因體之後用體外受精技術讓受精卵在母體子宮著床,最後生下對病毒有抵抗力的嬰兒。圖/giphy

但是說到底,丘奇最重大的貢獻可能是在二○一二年發現輕易改變 DNA 序列、修改基因功能的方法,進而奠定 CRISPR 技術的基礎。CRISPR 是基因編輯的科技基石,全稱為「常間回文重複序列叢集」(clustered regularly interspaced short palindromic repeats,CRISPR),這是基因體當中特定一種重複的 DNA 序列,序列無論是正讀或反讀都一樣。廣泛而言,這是一種有廣泛用途的技術,可用以改正基因缺陷,還可用以創造生命力較頑強的植物或消滅病原體。

-----廣告,請繼續往下閱讀-----

丘奇和從前的博士後學生——哈佛博德研究所(Broad Institute)的張鋒(Feng Zhang)——合力在《科學》期刊發表數篇論文,提出了用 CRISPR 技術引導細菌酶 Cas9 精準剪切人類細胞 DNA 的方法。他們以微生物學者伊紐曼.夏彭蒂耶(Emmanuelle Charpentier)與生物化學學者珍妮佛.道納(Jennifer Doudna)早先的發現為基礎;夏彭蒂耶、道納兩人當時分別在瑞典優密歐微生物研究中心(Umeå Centre for Microbial Research)與加州大學柏克萊分校做研究,她們發明了用 CRISPR 關聯蛋白質(CRISPR associated proteins)這種酶有效剪貼 DNA 的方法。她們的 CRISPR 系統在二○一○年代引起了一波淘金狂潮,致使兩人在二○二○年獲得諾貝爾化學獎,成為有史以來第一個贏得諾貝爾科學獎項的全女性團隊。丘奇雖也有貢獻卻未得獎,但他不以為忤,反而對記者表示「我覺得這個選擇非常棒……那是關鍵的新發現」,並接著誇讚夏彭蒂耶與道納優秀的工作成果。

過去二十年來,丘奇平均每年合作成立一家新公司,主要是為了幫助自己門下最有潛力的博士後研究員離開實驗室、正式出社會。他另外申請了六十份專利、輔導了新一代基因工程師,協助新世代研究者塑造明日世界。到了二○○○年代中期,他萌生了重新發明塑膠杯的想法,只不過這次不用石化材料。簡單而言,丘奇團隊將微生物的遺傳訊息再程序化,讓微生物吃下糖之後生產聚羥基丁酸酯(polyhydroxybutyrate),這種強韌且可生物分解的材料能用以短時間容納液體,對攤販而言再適合不過。團隊在二○○九年甘迺迪表演藝術中心(Kennedy Center)一場演出的中場休息時間首次推出新產品,杯子上貼著得意洋洋的宣言:「百分之百植物製成的塑膠。」

以植物為原料製成的可口可樂寶特瓶。圖/讀新聞學英文

丘奇另外和一小支科學家團隊提出了腦科學計畫(BRAIN Initiative),結合國家科學基金會、國防高等研究計畫署等公私部門的力量,試圖解析大腦的運作原理。他在二○○五年推出個人基因體計畫(Personal Genome Project),用以交流基因體、健康與遺傳特徵等公眾數據。為了推動計畫,丘奇與科學界許多著名人物公開了自己的基因體數據,希望能促使人們自由分享數據,以便讓科學家研究人類的基因與遺傳特徵,並且開啟關於個人遺傳密碼透明度與隱私的討論。公開自身基因體數據的人包括受過太空人訓練的投資者與慈善家艾絲特.戴森(Esther Dyson)、哈佛醫學院的科技主任約翰.哈拉姆卡(John Halamka)、客製化醫療保健公司賽歐納(Sciona)的創辦人羅莎琳.吉爾(Rosalynn Gill)、知名心理學者與作家史迪芬.平克(Steven Pinker),而丘奇本人當然也參與其中。十組基因體並不算太多,而數據本身雖然沒有署名,這十位著名人物的身分還是對大眾公開了,所以不可能完全保證他們的隱私。他們願意提供資料,完全是多虧了丘奇的請託。

復活

讀到此處,你想必看得出丘奇是聰慧且願意挑戰自己與他人的思想家、啟發人心的導師,也許還有一口氣接下太多計畫的毛病。換言之,他就是那種會去研究如何讓絕種動物復活的研究者——而他特別想復活的動物,正是四千年前在更新世(Pleistocene)絕跡的長毛象。

-----廣告,請繼續往下閱讀-----

四千年以前,長毛象已經在地球極北存活數千年。你可以將牠們想像為大象的近親,只不過身上長著粗糙的毛髮與多層脂肪以便抵抗冰河時期的嚴寒,還有可用以覓食的長象牙。(過了很久很久以後,創作者從牠們身上得到靈感,創造了《星際大戰》〔Star Wars〕中的虛構生物「班薩」〔bantha〕。)我們不清楚長毛象滅絕的確切原因,不過研究者認為是人類狩獵與氣溫變化減少了長毛象族群數目與食物來源。

長毛象算是「關鍵物種」(keystone species),生態系統裡其他物種在許多方面都仰賴牠們的存在,才得以穩定生存。長毛象成群行動、找尋可食用的枯草時會將樹木撞倒,也會將雪層壓實,保持永凍土層的穩定。一旦長毛象與其他大型草食動物不再吃枯草也不再將雪地壓實,生態系統就發生了變化:表面的雪層融得快了些,以致永凍土遭受陽光直射,開始以驚人的速率融化並將溫室氣體釋放到大氣中,造就了惡性循環。氣溫升高導致冰雪加速消融,釋放出更多溫室氣體,使得氣溫繼續提升,就這麼不斷循環下去。若能使長毛象起死回生,野放到加拿大與俄羅斯,那或許有機會修復失衡的生態系統,而且——老實說吧——如果能用這種方式抵抗氣候變遷造成的生存危機,那不是超級新奇、超級酷嗎?

長毛象模型。圖/wikimedia

丘奇花了不少心思考慮去滅絕(de-extinction)的執行方法,不過第一個做這種嘗試的人並不是他。全世界第一隻哺乳類複製動物——桃莉羊(Dolly the sheep)——誕生於一九九六年,牠之所以能被複製出來是多虧了一種稱為「核轉置」(nuclear transfer)的技術,而這種技術開啟了讓滅絕生物起死回生的大門。核轉置的主旨在於將一顆完整細胞的細胞核小心翼翼地抽取出來,置入同物種或近親物種的卵子,餘下步驟則近似製作試管嬰兒的方法:雜交卵子置入動物子宮後著床,若一切順利,孕母將會在孕期結束時產下健康的雜交動物。在二○○○年,世上最後一頭庇里牛斯山羊(一種野生的山羊)死了,不過人們用液態氮將那最後一頭山羊的細胞保存下來,後來到了二○○三年,研究者成功用核轉置方法複製出一頭小羊——可惜牠出生後只活了短短幾分鐘。核轉置技術雖能用以複製動物,但也有其限制,只有保有完整且具功能性之基因體的動物才有機會被複製出來——舉例而言,研究者必須要有冷凍保存得異常完好的動物屍體,而北極圈內恰巧有好幾隻保存完好的長毛象屍體。然而即使在屍體存在且保存完好的情況下,讓滅絕物種起死回生的研究也不一定能成功,複製出來的動物也許無法存活。這種動物早已在數千年前絕跡,牠的基因體想必無法適應今日的地球環境。

因此,丘奇想到了另一種解決辦法:他想反其道而行,以近親物種完整、健康的細胞為起點,再加入滅絕物種留存下來的基因片段,一步步倒推回去。我們以旅鴿(passenger pigeon)為例,這種鴿子一度遍布全美,數以百萬計的鴿群從天上飛過時,甚至能遮蔽白晝陽光,但牠們卻在一九一四年絕跡了。我們能使用目前仍存活的近親物種——野鴿(rock pigeon)——的幹細胞,讓旅鴿重回地球。我們可以將旅鴿的部分基因置入野鴿幹細胞,接著轉形(transform)到精子細胞,再注入卵子細胞後發育成受精卵,最後生出帶有旅鴿特徵的野鴿。

-----廣告,請繼續往下閱讀-----

這類想法深深吸引了創辦《全球概覽》(Whole Earth Catalog)期刊與尖端線上服務「The WELL」的科技界傳說級人物史都華.布蘭特(Stewart Brand),以及生技業經理(也是布蘭特之妻)萊恩.菲蘭(Ryan Phelan)。布蘭特、菲蘭與丘奇聯手推出了去滅絕關鍵物種的新計畫,其中包括旅鴿與長毛象——確切而言,是有點長毛的長毛象,畢竟他們製作出的不會是真正的長毛象,而是和長毛象現存親緣關係最近的物種——亞洲象——幹細胞基因剪接(splicing)後誕生的生物。

——本文摘自《未來的造物者》,2023 年 11 月,臉譜出版,未經同意請勿轉載。

所有討論 1
臉譜出版_96
85 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

1

19
1

文字

分享

1
19
1
倒楣的愛滋病毒,一住到基因沙漠、不得翻身
miss9_96
・2020/12/21 ・2721字 ・閱讀時間約 5 分鐘 ・SR值 580 ・九年級

約有 0.5% 的患者,不需要服藥、體內病毒絕少發作,猶似永遠被冷凍著。那些人,被稱為「菁英控制者 (elite controllers) 」

上世紀末發明的抗反轉錄病毒療法 (antiretroviral therapy / ART),扭轉了人類和愛滋病毒之間的關係註1、有效地控制了病毒在人體內的肆虐。但科學界驚奇地發現,有些患者不需要吃藥,體內的病毒也幾乎不會爆發,這是怎麼回事呢?

好奇怪啊,「菁英控制者」患者,為什麼不用吃藥?

愛滋病毒將自己基因鑲入宿主細胞的 DNA 中,數年後再大肆複製、產生巨量後代。而約有 0.5% 的患者,不需要服藥、體內的病毒似乎絕少發作,猶似永遠地被冷凍在細胞中。那些天生就能壓制病毒的患者,被稱為「菁英控制者 (elite controllers) 」。

有些患者不需服藥,病毒也絕少發作,像是有魔法控制一樣。圖/giphy

《自然 (Nature) 》期刊近日發了兩篇文章 [1, 2],闡述了菁英控制者體內的病毒,很可能是住到染色體的冷門地段,無法從基因被轉錄成病毒蛋白質,變成一段永無功能的病毒基因。

哈佛–麻省理工和波士頓布萊根婦女醫院 (Brigham and Women’s Hospital) 團隊研究了「菁英控制者」和服用藥物的一般患者,她們體內的被感染細胞 DNA 。想了解菁英控制者裡的病毒基因,發生了什麼事?以及「住到」了宿主 DNA 的那些位置?

-----廣告,請繼續往下閱讀-----

「菁英控制者」體內的病毒,沒有壞掉啊。那為什麼不發作?

團隊發現,在「菁英控制者」細胞裡,病毒基因的拷貝數較少。換言之,鑲入宿主染色體裡的病毒量較低(如下圖 1a )。此觀察合乎常理(「菁英控制者」絕少發病),然而,接下來的發現就耐人尋味了。

和一般服藥的患者相比,「菁英控制者」細胞裡的病毒基因們,完整、不帶缺陷的比例反而比較高(如下圖 1c )!顯示了「菁英控制者」細胞裡的病毒基因,具備複製、被轉錄能力;然而,這群不吃藥的「菁英控制者」鮮少發病,血中的病毒量長年維持在低點。體內的病毒基因雖然完整,但它們彷彿被冷凍了一樣,似乎從來不發病(或鮮少)(如圖 2 )。為什麼?

圖 1:(a)「菁英控制者」和一般服藥者細胞裡,病毒基因數的頻率。
(b)「菁英控制者」和一般服藥者細胞裡,病毒基因狀態的比例。圖/參考文獻2
圖2:兩名「菁英控制者」的 CD4 T細胞(藍線),和血中病毒濃度變化(紅線) 註2
箭頭為患者抽血、提供數據的時間。圖/參考文獻2

「菁英控制者」體內的病毒基因,住到不能被轉錄的沙漠裡了

進一步觀察,「菁英控制者」體內的病毒基因多樣性,發現極低的多樣性。彷彿病毒鑲入宿主 DNA 後,從此不再複製、被轉錄;僅能透過受感染 T 細胞的有絲分裂增加病毒基因,無法透過產生大量子代病毒、感染更多新細胞。因此只能以最原始的狀態保留病毒基因。

這些病毒基因鑲入宿主 DNA 後,從此不再被轉錄,只能以最原始的狀態保留病毒基因。圖/giphy

而基於上述觀察,團隊假設這些病毒基因,可能鑲入到染色體裡某些不轉錄的區域。檢視病毒基因在「菁英控制者」染色體的位置,團隊證實了她們的假設。病毒的基因集中在不轉錄的區域(作者暱稱:基因沙漠/gene deserts)(如圖3),如:

-----廣告,請繼續往下閱讀-----
  • DNA 的非蛋白質編碼區域 (non-protein-coding regions ) 註3。DNA 序列裡,擁有龐大的區域,並不會轉錄成蛋白質。部分人類已知其功能(如:端粒區域的 DNA ),部分仍未知。
  • DNA 的著絲點 (centromere)。該區域負責在有絲分裂時,和紡錘絲 (spindle fiber) 連結的位置。此區域的 DNA 和染色體蛋白質緊密包裹,難以被轉錄
  • 鋅指蛋白質家族 (zinc-finger protein family) 註4
圖3:一名「菁英控制者」的細胞中,病毒基因在染色體裡的位置。圖/參考文獻2

微觀上,「菁英控制者」體內的病毒基因也被抑制

而「菁英控制者」裡的病毒基因,除了住到不轉錄的 DNA沙 漠外;在微觀上,也發現到被甲基化、沉默的特徵。如下圖 4,和一般服藥者相比,「菁英控制者」裡的病毒基因,大幅度被甲基化(超過 90% )的比例更高

圖 4:「菁英控制者」和一般服藥者裡,不同程度被甲基化的病毒基因的比例。圖/參考文獻2

「菁英控制者」體內的病毒住到爛套房,是因,還是果?

最後,團隊討論了「菁英控制者」體內病毒基因的差異,以及她們長期不發病的關係,是因(因為病毒基因住到爛套房,使「菁英控制者」不發病),還是果(其他因素抑制了病毒,而基因住到爛套房現象,是結果)呢?

團隊討論裡,偏向「是原因,同時也是結果」。她們認為「菁英控制者」最初被感染時,部分被感染的細胞,病毒基因可以被轉錄,因此被辨認而清除;而其他被感染的細胞,牠們體內病毒基因被蛋白質緊密包裹、不被活化、轉錄;因為沒有表現出病毒的蛋白質,反倒沒有被認出來,因此沒有被殺害。隨著時間流逝,牠們殘活下來,並帶著病毒基因持續地活下去。

圖5:作者推論「菁英控制者」體內病毒和細胞共生的過程。圖/參考文獻1

註解

  1. 嚴格來說,引發愛滋病的病毒的名稱是人類免疫缺陷病毒 (HIV) ,感染此病毒的人類稱為 HIV 帶原者,而如果此病毒在人體內肆虐,使疾病惡化後才會被稱為愛滋病,又稱後天免疫缺乏症候群 (AIDS) 。因此嚴格來說愛滋病是患者病況惡化後的名稱,而非病毒的稱呼。但在中文的使用者習慣中,似乎會將兩者混用。為符合多數中文讀者的閱讀習慣,本文暫不區分。
  2. 愛滋病病發時,CD4 T 細胞會巨幅下降,低於200 Cells / mm3時被認為發病,必須服藥;血中病毒濃度會快速上升。
  3. DNA 序列裡,擁有龐大的區域,並不會轉錄成蛋白質,如:端粒等。
  4. 為何鑲入鋅指蛋白質家族,為何會降低病毒基因被轉錄的機會?此部分我並沒有讀懂,期許有高手能解讀和分享。

參考文獻

1. Nicolas Chomont (2020) HIV enters deep sleep in people who naturally control the virus. Nature. DOI: 10.1038/d41586-020-02438-7

-----廣告,請繼續往下閱讀-----

2. Chenyang Jiang, Xiaodong Lian, Ce Gao, Xiaoming Sun, Kevin B. Einkauf, Joshua M. Chevalier, Samantha M. Y. Chen, Stephane Hua, Ben Rhee, Kaylee Chang, Jane E. Blackmer, Matthew Osborn, Michael J. Peluso, Rebecca Hoh, Ma Somsouk, Jeffrey Milush, Lynn N. Bertagnolli, Sarah E. Sweet, Joseph A. Varriale, Peter D. Burbelo, Tae-Wook Chun, Gregory M. Laird, Erik Serrao, Alan N. Engelman, Mary Carrington, Robert F. Siliciano, Janet M. Siliciano, Steven G. Deeks, Bruce D. Walker, Mathias Lichterfeld & Xu G. Yu -Show (2020) Distinct viral reservoirs in individuals with spontaneous control of HIV-1. Nature. DOI: https://doi.org/10.1038/s41586-020-2651-8

miss9_96
170 篇文章 ・ 1016 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

2
1

文字

分享

0
2
1
被科技甜頭蒙蔽的雙眼,第一批原子彈製造的起源(上)——《科學怪人(MIT麻省理工學院出版社「特別註解版」)》
麥田出版_96
・2020/10/31 ・2574字 ・閱讀時間約 5 分鐘 ・SR值 537 ・八年級

  • 文/海瑟.道格拉斯

誘人的科技甜美

當謎題的解答豁然開朗、當每一片拼圖完美地接合起來合作無間、當某項研究呈現井然有序的成果,科學家和工程師就說出這個詞語。

科技的甜美非常誘人、非常濃烈,而且正如我們在維克多.法蘭肯斯坦(《科學怪人》的主角)的故事中看到的,也可能使人盲目,看不見自己追尋的解答會帶來什麼後果。

受到科技的甜美驅策的科學家,可能看不見旁觀者眼中顯而易見的事實──某些計畫縱然誘人,但完成計畫不見得是件好事。

維克多最初發現生命的祕密時,立刻被成功沖昏了頭,因此沒有跟同儕分享他的發現,反而加速為自己的想法展開全面性試驗──他可以讓毫無生氣的軀體起死回生嗎?

-----廣告,請繼續往下閱讀-----

在他不顧一切執行實驗時,他把自己逼到了崩潰邊緣,徹澈底底沉溺於這項研究帶來的技術甜頭,無法自拔。他不再連繫親朋好友,也切斷了能為他的工作注入更高觀點的一切社會連結。

維克多在進行他的實驗時,沈浸在這項研究帶來的科技甜頭。圖/Wikimedia common

他察覺有什麼事情不太對勁──他之所以不願意透露他的研究計畫,或許不只因為想在取得成績之前保守祕密。一直到他的創造物甦醒過來,他才明白創造這樣的生命或許不是個好主意。事實上,他對自己的創造物望之卻步,逃避了兩年。

到最後,為了阻止繼續製造人性悲劇,他將生命的最後階段用來追逐科學怪人,兩人跳起了一段黑暗之舞。

故事最後,維克多為阻止科學怪人繼續製造悲劇,用生命追逐科學怪人。圖/pxhere

誠然,維克多是一篇哥德式恐怖故事中的虛構人物,但他的研究工作的發展弧線──從靈光乍現、得到(他拒絕公布的)理論性發現、閉門實驗直到完成實際成品、對千辛萬苦造出的成品感到嫌棄,到最後終於扛起責任、為了約束創造物的行為而對它窮追不捨──這種情節並非只存在於虛構世界。

-----廣告,請繼續往下閱讀-----

這樣的發展弧線,也出現在二十世紀最重大的一項科學研究上:第一批原子彈的製造

核裂變的發現改變了一切

原子彈的研製過程跟維克多的故事並不完全吻合,因為前者是許多科學家群策群力的結果,而不是某個人的獨力之作。而且,原子彈的研製過程充滿各種道德決策,並時時刻刻處於殘酷戰爭的陰影之下。不過,這段歷程的弧線與《科學怪人》的故事弧線基本上如出一轍,而在如此複雜的情境下,更彰顯出抗拒科技甜頭誘惑的必要性。

一九三八年年末,莉澤.邁特納 (Lise Meitner) 和奧圖.弗里施 (Otto Frisch) 發現了原子核裂變的過程,消息很快傳遍全球物理學界。

英美兩國的核子物理學界不僅立刻開始思索各種問題──例如核裂變是否可以打開實際應用的大門、鈾原子核裂變產生的中子數量是否足以形成連鎖反應,以及哪些原料可以提高出現連鎖反應的機會等等──更馬上展開了研究。

-----廣告,請繼續往下閱讀-----

一九四二年十二月,美籍義大利裔物理學家恩里科.費米 (Enrico Fermi) 在芝加哥大學壁球館下方的實驗室中,造出了第一座可以自我維持運作的核子反應爐(使用慢中子),與此同時,負責建造原子彈(一種快速核反應)的曼哈頓計畫也正順利展開。

曼哈頓區區長萊斯利・格羅韋斯少將 (Leslie R. Grooves)頒發功績勳章給物理學家恩里科.費米(Enrico Fermi)。圖/The University of Chicago Library

蜜糖或是毒藥——曼哈頓計劃

曼哈頓計畫由分散各地的研發實驗室共同組成,場址包括田納西州的橡樹嶺 (Oak Ridge) 和華盛頓州的漢福德 (Hanford) 等大型工業區,以及科學家們關在一起研究如何設計並測試第一批原子武器的洛斯阿拉莫斯 (Los Alamos) 國家實驗室。

科學家們祕密前往與世隔絕的洛斯阿拉莫斯實驗室,抵達之後,立刻被嚴令禁止與內部實驗室以外的人討論這項計畫。科學家們關注的焦點是達成目標──打造一個可使用的原子武器──沒有多加思索這件事情是不是個好主意。由於大多數科學家是因為擔心納粹搶先發展出這類武器而投入曼哈頓計畫,這樣的焦點無可厚非。

洛斯阿拉莫斯實驗室坐落在新墨西哥州一座平頂山的林木線上,海拔逾七千英尺,瀰漫著令人飄飄然的工作氛圍:由聰明絕頂的歐本海默 (J. Robert Oppenheimer) 負責主持,過去及未來的諾貝爾獎得主齊聚一堂,在戰爭的壓力下一起工作。實驗室迅速擴充規模,從一九四三年春的一百名科學家,到了大戰結束時,已擁有六千多名研究人員 (Bird and Sherwin 2005, 210) 。

-----廣告,請繼續往下閱讀-----
曼哈頓計劃國家歷史公園中包含的三個地點之一。圖/flickr

洛斯阿拉莫斯的科學家遭遇了一連串技術挑戰,特別是關於如何讓核裂變原料釋放出最大能量;這些原料由橡樹嶺和漢福德負責生產(兩地分別負責生產濃縮鈾和鈽),非常難以蒐集,得來不易 (Rhodes 1986, 460-464) 。然而,到了一九四四年底,最初推動這項計畫的原始動力已大幅減弱。

盟軍成功挺進德國境內後傳來消息,表示德國的原子彈研究,距離成功製造出武器還相差十萬八千里。事實上,德國還無法造出可以運作的核子反應爐,而這是美國在兩年前就已達到的成就。

製造核武的原始動機既已不復存在,對其中一位科學家──波蘭物理學家約瑟夫.羅特布拉特 (Joseph Rotblat) ──來說,這樣的領悟已構成退出計畫的充分理由。他在一九四四年十二月辭去洛斯阿拉莫斯實驗室的工作。

不過離開之前,他被禁止跟實驗室的其他科學家談論他的這項決定 (Brown,2012, 55) 。洛斯阿拉莫斯的科學家進行道德反思的契機就這樣一閃而逝。

-----廣告,請繼續往下閱讀-----
麥田出版_96
24 篇文章 ・ 15 位粉絲
1992,麥田裡播下了種籽…… 耕耘多年,麥田在摸索中成長,然後努力使自己成為一個以人文精神為主軸的出版體。從第一本文學小說到人文、歷史、軍事、生活。麥田繼續生存、繼續成長,希圖得到眾多讀者對麥田出版的堅持認同,並成為讀者閱讀生活裡的一個重要部分。

0

0
0

文字

分享

0
0
0
如何拿捏科研中的那把道德尺?談 CRISPR/Cas9 技術用於人體的適當性 ──《科學月刊》
科學月刊_96
・2019/01/23 ・2845字 ・閱讀時間約 5 分鐘 ・SR值 570 ・九年級

  • 林翰佐/銘傳大學生物科技學系副教授,科學月刊總編輯。

最近生命科學界爆發一宗廣受關注的事件:

中國科學家賀建奎博士將 CRISPR/Cas9 活體基因編輯技術用於人類胚胎的編輯,並經植入孕母著床懷孕後,於日前成功產下 2 名基因體受到修改的女嬰。

賀建奎博士宣稱,該計畫主要針對具有人類免疫缺陷病毒(HIV,即一般人俗稱的愛滋病毒)感染的夫妻,研究其對胎兒垂直感染的可能性,並藉由將受精卵中名為 CCR5 基因剔除來達到防治之目的。

賀博士似乎對此研究信心滿滿,但透過網路視頻的發表與媒體專訪披露之後,反而引發科學界與社會的震驚。在中國,數百名科學家幾乎在第一時間便聯署聲明譴責,稱此瘋狂的實驗存在著嚴重的生命倫理問題,並要求政府補上監管漏洞。聲明更直言該實驗在技術上沒有任何創新,唯一的突破是科學家的倫理道德底線。

賀建奎博士將 CRISPR/Cas9 活體基因編輯技術用於人類胚胎的編輯。
圖/wikipedia

-----廣告,請繼續往下閱讀-----

顯然,這樣的研究跨越了科學界普世道德標準。即便是一般社會人士,相信對於這樣的研究也會感到有所不妥。不過生命科學的相關研究道德尺度在哪裡?其實這仍有嚴謹的脈絡可循。

 

人體試驗的普世道德標準

探索生命一直是人類積極發展的科學議題,在人類進化的歷程當中,科學研究方向大抵朝向增進人類福祉為目標,但其中也不乏一些黑歷史,像是二次世界大戰時期納粹德國對集中營中的猶太人及日本 731 部隊對戰俘所做一系列不人道的人體試驗,這些研究顯然有其道德上的不公義性。不過,即便在承平時期,科學研究也有出岔錯的時候,例如美國發生塔斯基吉梅毒試驗 (Tuskegee syphilis experiment),原本立意良善的梅毒治療研究,在時空環境的改變下演變成為殘忍的見死不救。這些血淋淋的案例一再地揭示,以人類為主體的研究,似乎應該有明確的道德規範,藉以防止這類事情的不斷的重演。

參加塔斯基吉梅毒實驗的試驗者。
圖/wikipedia

有鑑於此,國際相關研究社群開始著手訂定人體試驗所應遵守的倫理規範。這些規範雖並非全然具有法律上的約束力,但這些凝聚國際團體共識的議定界定了普世對人體試驗中倫理的基本要求,因此幾經更迭修改,許多規範仍沿用至今,例如紐倫堡宣言 (Nuremberg Code)、赫爾辛基宣言 (Declaration of Helsinki) 及貝爾蒙特報告書 (Belmont Report) 等。

-----廣告,請繼續往下閱讀-----

基本上,這些宣言與報告楬櫫人體試驗中應該遵行的 3 項重要的倫理基礎,分別為:

  1. 對人的尊重 ── 包括對人權的維護以及對受試個人的尊重。
  2. 善意的對待 ── 窮盡實驗的設計與執行降低對實驗者的傷害。
  3. 公平正義。

這些意涵也被各國的立法單位所重視,並將精神落實於立法之中,例如目前臺灣的「醫療法」中,即規定「人體試驗委員會」的設立,針對凡涉及人體及其組織檢體的研究進行實質上的審查,透過審核機制的管控確保研究計畫的品質,並保障對受試者的尊重以及各種權力的維護。

人類胚胎的研究與對社會的衝擊

人類胚胎的研究一直是生命科學研究上道德的邊緣地帶,爭議的觀點有很多,除了部分宗教裡對於「人」形成的見解之外,更廣泛的關注在於胚胎是否應視為人而賦予其等同於人的權利

雖說我國《民法》中規定「人之權利能力,始於出生,終於死亡。」,但並不意味著可對未出生的人類胚胎得以高唱科學為名為所欲為。在 1997 年透過核轉殖技術成功培育出第一隻高等哺乳動物「桃莉羊」,隨即引發人類社會的重視,其中的原因就是意識到人類科技的進展以迅雷不及掩耳的速度發展至今,已有操弄胚胎,改變生命的可能。發明人威爾穆特博士 (Sir Ian Wilmut) 在成名之後旋即受到梵蒂岡天主教教宗的召見垂詢,足見其影響性。即便這類高等動物的複製技術未來商機無限,科學家宣稱可以透過預定的方式訂做一個 mini me,作為未來器官移植的備料庫,但更多反對的聲浪也接踵而至,例如這樣直接取用他人器官的方式是否合法的問題。

-----廣告,請繼續往下閱讀-----

第一個成功複製的哺乳動物,複製羊桃莉。
圖/wikipedia

生命科技進展對社會的另一次震撼教育發生於人類胚胎幹細胞 (embryonic stem cells) 的相關研究,所謂胚胎幹細胞係指位於囊胚期 (blastocyst) 胚胎中位於特定區域;內細胞團 (inner cell mass) 中游離出來的細胞。先前的研究顯示,胚胎幹細胞具有多元分化 (pluripotency),可以透過誘導技術分化成人體內任何一種型態的細胞,故具有相當的醫療未來性。

然而,人類胚幹細胞株的建立必須透過破壞一顆胚胎來獲得,這種殺生式的救人科學在道德層面上有著尷尬的地位。美國國會曾於 1996 年通過所謂的迪基維克法案 (Dickey-Wicker Amendment),禁止聯邦的經費資助足以製造或摧毀人類胚胎幹細胞用之研究,企圖從金源上來限縮該領域的發展,然而囿於龐大的醫療商機,確保戰略上的科技競爭優勢,該法案已於 2009 年由美國聯邦法案明令廢止。

讓我們再回到賀博士的問題

談到這裡,相信讀者會明顯的感受到問題的渾沌性,所有論述似乎只有原則與道德上的說明,而無明確的、法律上的明文規定

-----廣告,請繼續往下閱讀-----

看起來的確如此,科技進展如此迅速與日益複雜,立法部門很難跟上腳步;另從實務的角度來看,法律保障的對象仍以現身在世者,在民主國家的政權當中更可能進一步的限縮於那些具有投票資格的選民,畢竟其為所謂的「民意基礎」,花心思在一個並不存在的個體為其設立法律謀求應有的福祉,並不是立法機構的首要任務。所以一切的把關機制,完全存乎研究主事者一心。

CRISPR/Cas 9 技術無疑是 21 世紀生物科學界最偉大的發現之一,透過這項技術可以實踐在世界上絕大多數生物體內誘導基因體的修改。然而此技術的不確定性也是眾所周知──整個技術如同拿霰彈槍獵鳥,除了目標,也會有「脫靶」造成其他基因被誤擊的可能──對人類胚胎而言,這意味著致癌機率的增加及未來衍生之代謝疾病發生的可能性。

更離譜的是,該實驗的設計與問題解決之間並沒有存在著必然性,反而有極大的機會衍生更多的問題。流行病學中研究中所論及的是擁有特殊亞型之 CCR5 基因的白血球可以降低 HIV 病毒感染的特性,但賀博士的作法是極端地利用 CRISPR 技術將 CCR5 基因的運作硬生生停止, CCR5 基因在器官發育等生理機轉中均扮演著重要的角色,僅為防止 HIV 病毒入侵的可能就大費周章的摘除宛如削足適履。

筆者認為,除了急功近利,實在看不出這樣的研究真正的學術價值。人體胚胎研究不比實驗動物,我們必須為出生的生命負責,不知道賀博士是否有想過這樣更深層的意義?

-----廣告,請繼續往下閱讀-----

人體胚胎研究不比實驗動物,我們必須為出生的生命負責。
圖/pixabay

延伸閱讀

  1. 臺灣學術倫理教育資源中心
  2. 林翰佐,〈物種基因剔除技術爆炸性的新突破 ─ CRISPR/Cas9 技術淺談〉,《科學月刊》,第 552 期,2015 年 12 月。

 

 

〈本文轉載自《科學月刊》2019年1月號〉

一個在資訊不值錢的時代中,試圖緊握那知識餘溫的科普雜誌。

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3494 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。