1983 年的今天,美國的生化學家穆利斯 (Kary Mullis, 1944-) 從位於舊金山灣區的公司下班後,載著也是化學家的女友珍妮佛沿著蜿蜒山路開往紅杉區,準備在林中小屋度過週末。他四年前才來 Cetus 公司從事 DNA 的大量合成複製,這雖然是種苦力的工作,但他還是甘之如飴,畢竟這可比前一個殺鼠取腦的工作有趣多了。
不過他還是不時在想難道沒有更好的辦法嗎?現在的做法得先用限制酶剪開 DNA,取得想要的片段,然後用連接酶將此片段插入質體,接著再將質體送入大腸桿菌細胞中,等大腸桿菌大量繁殖後,再從中分離純化出所要的 DNA 片段。整個過程繁瑣耗時又效率不佳。
車燈照著漆黑的路面,身旁的女友已熟睡,穆利斯的腦袋繼續想著這個問題。突然一個絕妙的想法逐漸成形:DNA 交纏的雙股在高溫下會分開,稍微降溫後加入事先準備好的「引子」;引子是短短的單股 DNA,其序列恰與目標片段的首尾兩端互補,所以會黏結到這兩個位置,就像用括號把句子前後括弧起來。於是我們有了兩個單股的 DNA 模板,此時再放進 DNA 聚合酶,使 DNA 材料結合到模板上,結果就形成兩個與目標片段一模一樣的 DNA。如此繼續如法炮製下去,所要的 DNA 就會 2、4、8、16、⋯⋯不斷地倍增,兩小時之內就可以得到上億個 DNA!
穆利斯興奮地把車停到路邊,顧不得會吵醒珍妮佛,彎身從她前面的置物箱中找出紙筆,將整個步驟寫下來。於是一個從此改變生物科技產業的發明於焉誕生,這個稱為「聚合酶連鎖反應」(Polymerase Chain Reaction, 簡稱 PCR)的方法大幅縮短合成 DNA 所需的時間,還能做到自動化,從此即使只有一點點 DNA 樣本,也能輕易大量複製以供各種實驗,從生物學、醫學、藥物研發、遺傳學,人類學到犯罪學都因此受益而突飛猛進。紐約時報如此比喻它的重要性:「生物學從此分為前 PCR 時期與後 PCR 時期。」穆利斯也因此獲得 1993 年的諾貝爾化學獎。
-----廣告,請繼續往下閱讀-----
如果是電影,此時應該就打上 “The End”;不過若是傳記電影,通常還會在片尾打出字卡,交代主角後來如何。那麼穆利斯後來呢?呃──我只能說他越來越不像科學家。他不相信愛滋病與 HIV 病毒有關、不相信臭氧層破洞與氣候變遷,他認為這些都是環保份子、科學家與政府機構為了自身利益編出來的謊言。但他倒是相信占星學、相信迷幻藥令他心智大開,甚至宣稱他曾在那間林中小屋遇見外星生物。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。