0

11
1

文字

分享

0
11
1

隱翅蟲真的有那麼可怕嗎?隱翅蟲皮膚炎又是怎麼一回事?

胡芳碩_96
・2017/12/20 ・1954字 ・閱讀時間約 4 分鐘 ・SR值 519 ・六年級

-----廣告,請繼續往下閱讀-----

最常見的毒隱翅蟲,青翅蟻形隱翅蟲(Paederus fuscipes)。圖/何彬宏

隱翅蟲(科名:Staphylinidae)雖然長得很像白蟻,但牠們其實是一種甲蟲;而其最被人所熟知的是隱翅蟲造成的隱翅蟲皮膚炎(Paederus dermatitis)。不過他們真的有那~麼可怕嗎?在臺灣已經有超過 1000 種已經被命名的隱翅蟲,而其中可能對人類造成傷害的只有少數 20 幾種。

這次就讓我們來一起聊聊關於隱翅蟲皮膚炎的成因以及如何避免,和將隱翅蟲用於農業害蟲防治的相關案例吧。

隱翅蟲皮膚炎的原因是?

隱翅蟲皮膚炎是大家很不喜歡隱翅蟲的一個原因,但為何會染上隱翅蟲皮膚炎呢?首先,我們要先知道「隱翅蟲素」是什麼。

隱翅蟲素的組成結構。 圖/Jörn Piel (2002). A polyketide synthase-peptide synthetase gene cluster from an uncult ured bacterial symbiont of Paederus beetles. PNAS, 99(22):14002-14007.

隱翅蟲素是由毒隱翅蟲體內的共生細菌所產生的一種「醯胺」,它可以有效地抑制 DNA 的合成,並阻斷細胞的分裂導致細胞死亡,進而造成隱翅蟲皮膚炎。皮膚接觸到隱翅蟲素會引發皮膚刺痛、紅腫、水泡等症狀。不過隱翅蟲素並不會分泌在毒隱翅蟲的體表,而是在身體破裂時才有可能將隱翅蟲素釋放出來,因此只有在將毒隱翅蟲打死並讓皮膚沾染到毒隱翅蟲的體液,才會發生隱翅蟲皮膚炎。

-----廣告,請繼續往下閱讀-----

而就如文章開頭所說的,也有其他不具有隱翅蟲素的種類像是梨須隱翅蟲屬(Oedichirus),牠們演化出類似毒隱翅蟲屬(Paederus)的外型,這個外型大大降低了牠們被攻擊的機會。

各種貝氏擬態毒隱翅蟲的隱翅蟲及其棲息環境。 圖/黃福盛。

那該如何防治隱翅蟲呢?

1.夏季夜晚緊閉門窗

與人類較接近的青翅蟻形隱翅蟲(Paederus fuscipes)具有相當強的趨光性,而一般家中所使用的日光燈,夏季時會吸引來大量的青翅蟻形隱翅蟲,在家中若稍有不慎擠壓到的話,可能會使蟲體爆裂,造成體液流出,故可以緊閉門窗,防止青翅蟻形隱翅蟲進入家中。

2.看清楚爬在皮膚上的是什麼,再作處置

人們時常因為覺得身體癢就去抓,或是覺得是蚊蟲叮咬,而直覺性的打下,這其實是相當危險的行為。因為毒隱翅蟲在身上爬時,並不會留下隱翅蟲素,而是身體破裂時才會,所以若見到隱翅蟲在身上爬時,只需輕輕吹掉即可。

3.夏季時若非必要,不要待在草生地附近的光源處

這同樣是為了避免遇到光線吸引而來的青翅蟻形隱翅蟲,而草生地是青翅蟻形隱翅蟲的棲息環境,會有更大量的青翅蟻形隱翅蟲聚集,所以只要避免在光源處,即可降低接觸到青翅蟻形隱翅蟲的機率。

-----廣告,請繼續往下閱讀-----
青翅蟻形隱翅蟲(Paederus fuscipes

隱翅蟲皮膚炎又該如何處理呢?

如果不慎染上隱翅蟲皮膚炎不用過於驚慌,在接觸隱翅蟲素的當下應立即以大量清水沖洗,並盡速至皮膚科就診。起初症狀會起水泡、紅腫,大約經過三至四天後傷口會開始乾涸,約一至兩週後就會結痂脫落,有些案例會引起細菌感染,因此若是到皮膚科就診,醫師通常會提供口服抗生素跟類固醇。只要有適當的處理方式,隱翅蟲皮膚炎一般不會引起太大的傷害。

隱翅蟲皮膚炎。 圖/Syed Nurul Rasool Qadir, Naeem Raza, Simeen Ber Rahman (2006). Paederus dermatitis In Sierra Leone. Dermatology Online Journal:12(7):9.

隱翅蟲不是都好壞壞,牠們也能幫助農民

在各式各樣的隱翅蟲中,有相當多的種類是屬於捕食性的肉食隱翅蟲,這使得牠們可以在農業上用於生物防治,國內就有多篇報告指出隱翅蟲用於生物防治的案例。

黃角小黑隱翅蟲(Oligota flavicornis),就是一種喜愛捕食農業害蟲神澤氏葉螨(Tetranychus kanzawai)的隱翅蟲:不管是成蟲還是幼蟲都會以神澤氏葉螨的卵為食,且捕食效率較大多數用於生物防治的昆蟲佳。也有報告指出,青翅蟻形隱翅蟲會以危害水稻田嚴重的害蟲褐飛蝨(Nilaparvata lugens)等多種農業害蟲為食,若是未來能夠提升黃角小黑隱翅蟲、青翅蟻形隱翅蟲的繁殖技術,對於生物防治能夠帶來莫大的幫助。

只要小心預防、仔細觀察,對隱翅蟲其實不用太過恐懼。

-----廣告,請繼續往下閱讀-----

參考資料

  • 何琦琛、陳文華 (2002)。黃角小黑隱翅蟲對神澤氏葉蟎卵量的取食與產卵反應評估。植物保護協會會刊,44(1),15-20。
  • 陳文華、何琦琛 (1993)。黃角小黑隱翅蟲(Oligota flavicornis (Boisduval & Lacordaire))之生活史、捕食量及其在茄園之季節消長。中華昆蟲,13(1),1-8。
  • 黃守宏、鄭清煥、王泰權、陳柏宏 (2015)。溫度對青翅蟻形隱翅蟲(Paederus fuscipes Curti)發育與繁殖之影響。台灣昆蟲學會第36屆年會,2015年10月,台中。
  • Jörn Piel (2002). A polyketide synthase-peptide synthetase gene cluster from an uncult ured bacterial symbiont of Paederus beetles. PNAS, 99(22): 14002-14007.
  • Rolf G. Beutel & Richard A. B. Leschen (2005). Phylogenetic analysis of Staphyliniformia (Coleoptera) based on characters of larvae and adults. Systematic Entomology, 30: 510-548.
  • Syed Nurul Rasool Qadir, Naeem Raza & Simeen Ber Rahman (2006). Paederus dermatitis In Sierra Leone. Dermatology Online Journal, 12(7): 9.





文章難易度
胡芳碩_96
6 篇文章 ・ 8 位粉絲
國立中興大學昆蟲學系畢業,現任臺灣研蟲誌編輯。研究興趣主要為隱翅蟲科 (Staphylinidae) 的系統分類學及擬鍬形蟲科 (Trictenotomidae) 之生物學等。研究文章發表於國內外各大期刊。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

6
0

文字

分享

1
6
0
植物不該被排擠,讓診斷治療成為一種專業
鳥苷三磷酸 (PanSci Promo)_96
・2022/10/12 ・4623字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文由 動植物防疫檢疫局 委託,泛科學企劃執行。

植物醫師制度介紹

氣候變遷是全球本世紀不可忽視的問題,其衍生的新興病蟲害與極端氣候,對作物來說都是嚴重的衝擊,也大大影響作物生產。聯合國為了因應全球氣候變遷與環境惡化,設立了永續發展方針(Sustainable Development Goals,SDGs),其中,第 12 個目標為「負責任生產消費循環,確保永續消費與生產模式」,這個目標與永續農業跟環境友善大大相關,加上近年來國內食安意識提升,今後的農業都將面臨轉型的問題。

全球氣候變遷亦會造成病蟲害相的改變,農民無法單憑過去經驗有效管理,難以事先防範,長期使用化學農藥可能會使有害生物產生抗藥性,也可能對環境造成傷害,為了有效解決臺灣農業面臨的瓶頸,「植物醫師」制度勢在必行。

植物醫師是什麼?

阿植回到務農的老家,撞見父親神情焦慮,來往左鄰右舍之間。一問之下才知道是家裡的農作物生病了,葉子上面都是病斑,父親拿著一罐農藥對阿植說:「上次隔壁家阿榮的田裡用了這個,病害馬上都好了欸。」

-----廣告,請繼續往下閱讀-----

「阿爸,雖然都是葉子長斑點,不一定是一樣的病啊。就像都是咳嗽發燒,也不一定就是流感。」阿植說完,父親皺起眉頭:「啊不然要怎樣?難不成要找醫師來看嗎?有植物的醫師喔?」

「現在還真的有!」阿植接著說:「正在立法的《植物醫師法》,讓植物病蟲害的精準診斷治療成為國家認可的重要專業,未來由植物醫師提供專業諮詢與建議,農民在田間遇到問題時,就不會再求助無門!」

人生病了要找醫師,動物生病了要找獸醫師,顧名思義,植物醫師是以植物為標的進行診斷、治療的專業人員,能夠對於植物有害生物或生理障礙給予正確的診斷,並提供防治技術及資材使用之指導。因此,植物醫師要診斷治療的對象是「植物」。

《植物醫師法》的立法目的為「提升植物保護水準,強化植物防疫檢疫及高風險農藥之使用管理,建立植物醫師專業服務體系」。未來植物醫師的執業機構包括植物診療機構、農會、農業生產運銷合作社,以及農業試驗研究機構、設有農業科系之大專院校、農藥生產或販賣業者等。

-----廣告,請繼續往下閱讀-----

植物醫師最重要的工作,是對植物病蟲害進行「正確診斷,對症防治」,並針對農民種植的植物種類、栽培方式等提供客製化的建議。

過往農民遇到病蟲害問題時,時常求助於當地的農業試驗機關,然而機關內的研究人員服務對象眾多,一則無法即時地處理所有農民的諮詢,二來額外的業務量可能導致本身的研究工作進度延宕;植物醫師加入地方農業的運作體系,不但可以讓試驗單位人員致力於研究工作,同時還可以提供農民更即時、更完善的服務,達成三贏的局面。

因此,植物醫師的出現與加入,可以說是相當具有理念與實質上的意義!

對症做出診斷,找到正確有效的治療方式

「總之就是要噴農藥啊,還要聽植物醫師那麼多建議」,聽完阿植的說明,父親還是想直接施用化學農藥,阿植擋下父親手上的農藥,說:

-----廣告,請繼續往下閱讀-----

「植物醫師提供精確的診斷之後,也會提出適合的治療方法,這些治療方法未必會使用化學農藥,就像你手痛去看醫生,診斷後很可能只要做復健療程就好,根本不需要吃藥。」

「不噴農藥還能做什麼?」父親一臉茫然。

「植物醫師會運用自身植物保護的專業知識,在減少化學農藥使用的情況下達到病蟲害防治的目標,協助農民朝環境友善的農法前進。」父親聽完阿植的說明後說:「最近大家都怕吃到化學農藥殘留的農產品,如果能少用那還真不錯,而且還可以保障我們這些第一線實際噴藥的農民。」

受過專業訓練並通過國家考試認可的植物醫師,對於農民遇到的疑難雜症,均可給予即時且準確的判斷,並且提供防治建議,節省農民四處打聽詢問的時間。

-----廣告,請繼續往下閱讀-----

此外,植物醫師執行的在地輔導和推廣作物有害生物綜合管理(Integrated Pest Management, IPM),能協助農民逐漸朝向環境友善的農法前進。

有害生物綜合管理指的是利用多元防治方法控制有害生物族群,透過監測掌握防治時機,有害生物密度低時使用物理防治、生物防治或非化學農藥的友善資材進行預防,當有使用化學農藥需求時,儘量使用低風險的化學農藥,且依照核准登記的方法進行正確且合理的使用,並在保障農民正常收益的條件下,維持生態平衡,減少對環境的衝擊。

2017 年起,農委會推出「化學農藥十年減半」的政策,配套推出農藥購買實名制、友善環境資材補助等措施;植物醫師在這項重大政策下的角色,即是以植物醫師的專業知識,指導農民正確診斷,搭配 IPM 策略,減少農民栽培作物中化學農藥的使用量。

用更少的化學農藥,卻能達到相同的病蟲害防治效果;不僅如此,農產品供應鏈最末端的消費者,還可以吃得更安心,這絕對是皆大歡喜的結果。

-----廣告,請繼續往下閱讀-----

植物醫師怎麼訓練?

「人家醫師有學校醫學系在教,啊植物醫師是要怎麼訓練?」阿植開始跟父親介紹起植物醫師的養成過程。

「植物醫師也有相關的教育系統喔!像是植物醫學系就整合了農藝、園藝、土環、昆蟲、植病等農業學科的內容,有跨領域的知識才能對植物的生長健康有全面的了解。」

目前,臺灣一共有臺灣大學、中興大學、嘉義大學、屏東科技大學等 4 所大學設置植物病理、昆蟲、植物醫學系與植物醫學碩士學位學程等植物保護相關科系,並均成立植物教學醫院。

為了解決農民耕種時遇到的問題,不論是植物的營養還是病蟲害的類型與特性,通通都必須了解;以中興大學的植物醫學學程為例,除了學程本身必修課程,還有修課前必須具備的基礎「先修課程」,而這類先修課,多半是農業相關科系在大學期間指定學習的課程。

-----廣告,請繼續往下閱讀-----

為了將課堂的課程與實際作物狀況有效銜接,植物醫師的訓練歷程中必須包含大量的實務訓練,植物醫師實習內容有實地訪診、輔導化學農藥減量,協助農民有效防範作物遭遇的病蟲害等,一面解決問題,一面學習處理問題,快速累積經驗。以屏東科技大學為例,該校的植物醫學系明訂學生的畢業條件包含每周 5 天,共 18 周的實習要求,且積極與不同領域的組織合作,提供學生更多樣化的實習單位,達到產學共利的目的。

「除了植物醫學系等相關科系在學時期的訓練,農委會更持續擴大招募農業相關科系畢業的優秀人才成為『儲備植物醫師』,透過職前培訓和媒合服務場域的在職培訓,強化專業能力訓練,讓植物醫師制度推動更順暢!」

自 110 年起農委會防檢局積極辦理「儲備植物醫師」計畫,讓通過遴選的儲備植物醫師進駐農會或公所,到第一線服務農民增加實務經驗、掌握農民的需求,也讓農民親身體驗農委會推動植物醫師制度所能帶來的好處。

氣候變遷及其造成的災害,程度是難以估計的,但值得慶幸的是,人們研發的各項農業科技,逐漸朝向環境與人共好的方向前進;若要讓技術面的效益最大化,法規及制度面的完備勢在必行。植物醫師制度與《植物醫師法》的推動,或許是個必然,但要推廣與落實這個制度,也絕對是條漫長的道路。

-----廣告,請繼續往下閱讀-----

植物醫師制度比較

國際應用生物科學中心(CABI)是一個國際非營利組織。結合全球 40 多個國家工作的 CABI 科學家團隊「通過解決農業和環境問題來改善全世界人民的生活」。為解決包括病蟲害造成的農作物損失、破壞農業生產和生物多樣性的侵入性雜草和害蟲,以及全球缺乏科學研究等問題。CABI 正積極推動植物醫師(Plant Doctor)制度,援助開發中國家執行植物保護工作。其中,CABI 已於亞洲、非洲及拉丁美洲等地,成立超過 65 處「全球植物健康診所」(Global Plant Clinic, GPC),提供即時植物保護服務。

植物醫師制度的推動已逾十年;在植物醫師法尚未完成立法前,農委會鼓勵導入專區實作策略,擴大招聘儲備植物醫師進駐農會或公所,強化防疫工作基層人力,辦理作物診療,有害生物綜合管理及協助特定病蟲害監測及緊急防疫等事項。期待以農立國的臺灣,未來在植物醫師法通過後,有更多植物醫師的加入,持續為農業永續與食品安全把關。

這樣看來,植物醫師與植物醫師法確實是需要存在,其他國家也有相似的制度在運作著,特別有一點值得一提,臺灣即將是世界上第一個訂定《植物醫師法》專法的國家!

《植物醫師法》的起草,最早可追溯至 2008 年,當時農委會徵詢各界意見,歸納農藥業者、醫師、教授,以及各方意見後,方決定推行。目前的草案,不但參考了國內的《獸醫師》法及其他相關法規,也參考美國、日本的培訓、考照制度,期望在執行面培育「接地氣」的專業人才,在制度面建立完整的考試及任用機制,並且在法律面提供植物醫師們完善的保障。

參酌美國、日本植物保護制度的優點後,再依臺灣的情況加以調整,期望這樣的法律與制度設立,能給予國內植物醫師應有的權責與保障;更長遠來看,或許有朝一日就是他國向我們學習的時候了。

(動植物防疫檢疫局 廣告)

參考資料

  1. 立法院-推動植物醫師制度相關問題之研析
  2. 【植物醫師】「未來植醫」的自我期許:要醫作物也醫人心-農傳媒
  3. 【植物醫師】當農民習慣免費諮詢,以藥養醫是否成必然?-農傳媒
  4. 【植物醫師】實習植醫試辦 3 年,孫岩章:懂實務還會算效益,農民才有感
  5. 【植物醫師】如何與農藥仙仔競爭?實務經驗是關鍵!-農傳媒
  6. 【植物醫師】興大植物醫院年後開張,為作物土壤抓病灶-農傳媒
  7. 儲備植物醫師為農民把關獲肯定農委會明年擬擴大召募
  8. 農委會徵「植物醫師」 底薪 36K+年終 1.5 月
  9. 植物醫師出招,三星蔥和雲林蒜頭農藥大減!學者籲推動立法刻不容緩
  10. 植物生病了該怎麼辦?淺談「植物醫師」制度-PanSci 泛科學
  11. 作物生產整合管理(農委會)
  12. 「植物醫師」在農村,美濃的第一次實驗
  13. 植物保護技師證照推動介紹(農委會)
  14. 斗南鎮農會安全食材守護者
  15. 水稻主要病蟲害整合性管理(IPM)
  16. 立法院第 10 屆第 4 會期經濟委員會第 9 次全體委員會議
  17. 立法院議案關係文書 院總第 1053 號 委員提案第 26002 號(PDF)
  18. 農委會苦推立法十三年立法院終於進一小步降農損、拚出口該許植物醫師一個名分-今周刊
  19. 植醫四校育才之道!從課綱到實習,全面落實學用合一-農傳媒
所有討論 1
鳥苷三磷酸 (PanSci Promo)_96
200 篇文章 ・ 308 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

6
1

文字

分享

1
6
1
隱翅蟲的毒液生化武器,演化上如何組裝而成?
寒波_96
・2022/01/17 ・3910字 ・閱讀時間約 8 分鐘

隱翅蟲是一群小型甲蟲的總稱;牠們以毒聞名,卻不見得都具有毒性。有些隱翅蟲會生產毒液儲存在身體裡,需要時噴射攻擊。毒液不只是嚇唬人的工具,像是跟螞蟻搶地盤這類場合,生化武器能發揮實在的優勢。

本文沒有真實隱翅蟲的圖像,閱讀時不用擔心。

隱翅蟲毒液的用途之一:攻擊螞蟻。圖/參考資料 1

隱翅蟲的毒液包含毒素和溶劑兩部分,有意思的是,兩者是獨立生產;溶劑本身沒有毒,毒素單獨存在也沒多少毒性。兩者極為依賴彼此,生產線卻是獨立運作,此一狀況是怎麼形成的?一項新研究投入大筆資源,便探討其演化過程。

「毒」加「液」才有毒液

這項研究探討的隱翅蟲叫作 Dalotia coriaria,為求簡化,本文之後稱之為「隱翅蟲」。它的毒素並非導致隱翅蟲皮膚炎的隱翅蟲素 (pederin) ,切莫混淆。

隱翅蟲的毒液發射器位於背上,體節的 A6、A7 之間,這兒有部分表皮細胞特化成儲存囊壁,並分泌脂肪酸衍生物作為溶劑。而毒素為配備苯環的化學物質 benzoquinone(苯醌),簡稱 BQ;另有一群細胞專門生產 BQ,再運送到儲存囊,和其中的脂肪酸衍生物混合後形成毒液。

-----廣告,請繼續往下閱讀-----

生產毒素和溶劑的細胞,是兩類完全不一樣的細胞,各有不同的演化歷史。隱翅蟲的祖先,沒有毒素也沒有溶劑,兩者都可謂演化上的創新 (novelty) 。

一類細胞製毒,另一類細胞產液,兩者合作才有毒液。圖/參考資料 1

論文將生產溶劑的細胞稱為「溶劑細胞」;分析成分得知溶劑總共有 4 種,是碳數介於 10 到 12 的脂肪酸衍生物。合成脂肪酸,本來就是各種生物的必備技能,但是溶劑細胞製作的脂肪酸衍生物,原料並非一般常見的脂肪酸。

脂肪酸的合成,都是以 2 個碳的基礎材料開始,作為類似 PCR 中引子 (primer) 的角色,然後由 FAS(全名 fatty acid synthase)這類酵素一次加上 2 個碳,2、4、6、8 碳一直加上去。人類的 FAS 通常會製作長度為 16 碳的棕櫚酸,昆蟲則會造出 14、16、18 碳的最終產物。

隱翅蟲的溶劑細胞中,脂肪酸衍生物只有 10 到 12 個碳,比 FAS 一般的產物更短。奇妙的是,這兒的脂肪酸並非由 14 或 16 個碳縮短而來,而是溶劑細胞內 FAS 的最終產物直接就是 12 個碳。

隱翅蟲毒液的組成物,碳鏈長度介於 10 到 12 個碳,4 種脂肪酸加工而成的衍生物作為溶劑;3 種 BQ 作為毒素。圖/參考資料 1

改造脂肪酸合成線路,製作溶劑

要闡明其中奧妙,必需先稍微認識昆蟲的脂肪酸合成系統。昆蟲有一群特殊的脂肪酸衍生物,稱為「表皮碳氫化合物(cuticular hydrocarbon,簡稱 CHC)」,具有防止水分散失、費洛蒙等作用。

-----廣告,請繼續往下閱讀-----

表皮碳氫化合物多半由 oenocyte 所製造(類似人類的肝細胞),在 FAS 酵素催化形成 14 到 18 個碳長的脂肪酸以後,繼續由延長酶 (elongase) 增加長度,去飽和酶 (desaturase) 加上雙鍵,最後經過兩道尾端的還原手續,分別由 FAR(全名 fatty acyl-CoA reductase)和 CYP4G(全名 cytochrome p450 family 4 subfamily G)兩類酵素執行,產生通常介於 20 到 40 個碳長的產物。

隱翅蟲溶劑細胞和 oenocyte 的脂肪酸生產線的比較,兩邊多數酵素種類是重複的,但是每一類酵素都有好幾個,兩邊各自使用的酵素不一樣。圖/參考資料 1

隱翅蟲和其他昆蟲一樣,oenocyte 細胞內有完整的表皮碳氫化合物生產線,每一步驟的酵素一應俱全。比對可知,溶劑細胞內也有一條脂肪酸衍生物的產線,顯然是由表皮碳氫化合物的生產線改版而成。

隱翅蟲至少有 4 個 FAS 基因,3 個負責製作一般的脂肪酸和表皮碳氫化合物,只有一個特定的 FAS 參與溶劑生產,專職在溶劑細胞中大量表現,製造 12 碳的脂肪酸,最後也由 FAR 和 CYP4G 收尾形成衍生物。值得一提,已知產物長度為 12 碳的 FAS 酵素相當罕見。

溶劑細胞和表皮碳氫化合物的生產線,兩者都有 FAS、FAR、CYP4G 三類酵素,但是在溶劑細胞作用的三種酵素,都不管其他細胞的脂肪酸合成。除此之外,有時候還有另一種酵素 α-esterase 的參與。依靠這些專門在溶劑細胞工作的酵素們,隱翅蟲能生成 4 種溶劑。

-----廣告,請繼續往下閱讀-----
溶劑細胞內,4 種脂肪酸衍生物的合成過程。acetyl-CoA 作為引子,由 FAS 以 malonyl-CoA 為材料,一次加上 2 個碳,再分別經還原酶或 α-esterase 加工。圖/參考資料 1

演化上,隱翅蟲並沒有捨棄原本的脂肪酸生產線,整套都還存在;相對地,隱翅蟲在少數特定細胞新增一條產線,不影響原本的重要部門。這是隱翅蟲在遺傳和細胞層次的演化創新。

改造粒線體代謝線路,生產毒素

類似的狀況,也在毒素生產線觀察到。隱翅蟲的毒素,也是由原本有重要功能的古老生產線,調整再改版而成。

論文將生產毒素的細胞稱為「BQ 細胞」,這部分沒有溶劑細胞了解的那麼詳盡,不過經由碳的穩定同位素追蹤,還是得知毒素原料來自食物中的氨基酸:酪胺酸 (tyrosine) ,經過一系列加工後形成 BQ。

這條生產線上有個關鍵酵素叫作 laccase,它一般的功能是參與 Coenzyme Q10,也就是 ubiquinone 的合成。這是粒線體有氧代謝中的重要成分,對生存不可或缺。和其他甲蟲相比,隱翅蟲多出一個 laccase 酵素,專門在 BQ 細胞表現,將 HQ (hydroquinone) 催化成 BQ 作為毒素。

由此看來,隱翅蟲祖先演化出溶劑和毒素的道理是一樣的。

-----廣告,請繼續往下閱讀-----

溶劑方面,以舊的表皮碳氫化合物生產線為基底,改用多個新酵素基因,形成新的生產線。毒素方面,源自古老的粒線體代謝線路,同樣加入新的酵素基因,改版後變成毒素產線。兩者各自皆為遺傳與細胞層次的新玩意,合在一起則衍生出功能上的演化創新。

由粒線體代謝線路改版而成的 BQ 毒素生產線,有一個專職生產毒素的 laccase(Dmd)酵素參與。圖/參考資料 1

組合新功能,一步一步累積有利變異

這項研究有許多潛在的討論方向,有興趣的讀者可以自行鑽研。像是生物學研究者能估計所有實驗耗資多少,感受自己的微渺(例如為了分辨不同細胞的作用,論文使用大量昂貴的「單細胞轉錄組 single cell transcriptome」進行分析)。這邊只提兩點。

第一點有趣的問題是:隱翅蟲的溶劑和毒素要同時存在才有效果,可是演化上是哪個先出現呢?論文推測是溶劑細胞先出現。

假如只有 BQ 這類毒素存在,殺傷效果非常差(論文用果蠅幼蟲做實驗),但是溶劑細胞的產物,即使不作為 BQ 的溶劑,脂肪酸衍生物也可以有其他用途,像是潤滑油之類的,或是扮演別種物質的溶劑。

想來新的脂肪酸生產線比較可能先出現,扮演某些不是太重要的角色,接著再加入 BQ;毒素加上溶劑,兩者合體產生新的強大功能,脂肪酸生產線又由於獲得新功能而調整優化,最終形成現在的樣貌。

替隱翅蟲帶來優勢的毒液,由兩個原本獨立的部門組合而成。圖/參考資料 1

第二點有趣的是,這回發現產物為 12 碳的 FAS 酵素。乍看沒什麼,影響卻很關鍵。

-----廣告,請繼續往下閱讀-----

FAS 這類酵素的差異,在於催化生成的脂肪酸最終產物有幾個碳(或是說,可以加到幾個碳那麼長);已知幾乎皆為 14、16、18 個碳,隱翅蟲的溶劑細胞表現的 FAS 卻是 12 個碳。好像只差一點,然而實際測試發現,脂肪酸衍生物超過 13 個碳,作為 BQ 溶劑的效果便會差一大截。

也就是說,隱翅蟲倘若沒有脂肪酸產物僅 12 碳長的 FAS,儘管仍然可以生成溶劑,毒性將弱化不少。由此推想,隱翅蟲如今威力強大的毒液,並非透過少數變化一次到位,而是逐漸累積有利變異的結果。

想得更遠一點,由兩種細胞合作衍生而成的毒液,可以視為由多種細胞合夥,複雜器官的最簡單版本。原本不相關的各式細胞們,持續累積一個一個微小的改變,也有機會組合發展成複雜的組織或器官。

延伸閱讀

參考資料

  1. Evolutionary assembly of cooperating cell types in an animal chemical defense system.
  2. A beetle chemical defense gland offers clues about how complex organs evolve

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 1
寒波_96
193 篇文章 ・ 1066 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。