0

0
0

文字

分享

0
0
0

藏在柔軟有彈性麵包裡的魔鬼「溴酸鉀」

行政院環境保護署毒物及化學物質局_96
・2017/12/22 ・2385字 ・閱讀時間約 4 分鐘 ・SR值 541 ・八年級

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

撰文/陳衍達│自由寫手

2016 年,印度科學與環境中心(Center of Science and Environment,CSE)的「污染監測實驗室」發布了一項調查:他們買了德里市面上 38 個品牌的麵粉產品到實驗室做分析,結果發現高達 84% 的品牌(32 件)殘留溴酸鉀(Potassium bromate)或碘酸鉀(Potassium iodate)。

而事實上,溴酸鉀在國際癌症研究總署(International Agency for Research on Cancer,IARC)的分類中屬於「對人類懷疑為致癌物」的第 2B 類物質;聯合國糧農組織Food and Agriculture Organization, FAO和世界衛生組織的食品添加物專家委員會Joint FAO/WHO Expert Committee on Food Additives, JECFA更早在 1992 年就已提出指導性的建議,指出溴酸鉀不適合用在麵粉處理上,許多國家也已立法禁止。CSE 的新聞稿發表後,立刻造成民眾恐慌,而印度政府也迅速地在一個月後修法,正式禁止這兩樣物質用於製作麵包。

-----廣告,請繼續往下閱讀-----
去年(2016),印度科學與環境中心檢驗出香噴噴的麵包中含有被列為 2B 類致癌物的「溴酸鉀」。示意圖,非檢驗麵包。圖/Pexel BY CC0 License

揉出麵團中蛋白質的秘密

看到這裡你是否也感到疑惑,人們為什麼要在麵包裡加入溴酸鉀呢?這得從「麵包為什麼有彈性」談起。

五穀根莖類是人類獲取碳水化合物的主要來源,但不曉得大家有沒有發現,我們的兩種主食稻米和小麥,在型態變化的「自由度」上有很大的差異:大多數在去殼、去胚之後就能被煮熟吃掉,但小麥幾乎都會先被磨成麵粉後,才接著被塑造成各種形狀 ── 當然米也可以被做成米粉,偶爾也會有人在牛奶裡面加一些小麥粒,但比例相對並不高。造成這個差異的最大原因,在於小麥含有的蛋白質比例較高,讓麵粉擁有較高的可塑性;而稻米主要由澱粉組成,相對沒有彈性,要做成各種形狀就比較困難。

其中,麵粉的蛋白質統稱為麩質(Gluten),主要由穀蛋白(Glutenin)麩脘(Gliadin)組成。麩脘圓圓胖胖的,對水有較好的親和力,和水一起負責製造一個適合穀蛋白和氧化劑反應的環境;穀蛋白在微觀的尺度上則是長鏈狀的結構,上面有許多可以被氧化的硫氫基(thiol group,-SH),平常沒有水的時候這個長鏈會「揪」在一起,麩脘把水引進來之後才會舒展開。

麩脘(黃色球球)是一種醇溶蛋白(Prolamin,prolamina是西班牙文),在麵粉和水後會協助穀蛋白(Glutenin,glutenina是西班牙文)與氧氣反應,最後它們會糾結在一起變成麩質(Gluten)。 圖/ Marinasauri @ wikimedia, CC BY-SA 4.0

揉麵團的時候,我們把麵粉與水和在一起,讓氧氣在揉製的過程中混進去,將穀蛋白上的硫氫基氧化。兩條穀蛋白上的硫氫基氧化之後,便有機會橋接在一起形成雙硫鍵(disulfide bond,-S-S-),進而增加蛋白質鏈之間的緊密程度。這個反應帶來的影響就是麵團會越揉越有彈性;在下一階段發酵膨脹時也較能夠留住酵母菌生成的二氧化碳,而不至於洩氣塌掉。

-----廣告,請繼續往下閱讀-----

溴酸鉀的崛起與衰亡

不過麻煩的來了,以氧氣氧化硫氫基的速度並不快,在大量生產上不是很理想;於是生產者開始嘗試在麵團中加入更強的氧化劑,而其中,CP 值最高的就屬溴酸鉀了。它的所需用量少(1 公斤麵團只需要不到 0.1 克的溴酸鉀),烤完麵包後又能夠「幾乎」全部反應完。

溴酸鉀化學式及外觀。 左圖/ Asawarraich @ wikimedia BY CC0 右圖/ Ondřej Mangl @ wikimedia BY CC0

筆者回顧了很久以前的論文(是 1979 年呢!)在過去,它其實是被使用最廣的麵團氧化劑呢!但是,添加進食品中的物質難免有殘留風險,加上動物實驗研究指出溴酸鉀會讓老鼠得到癌症,IARC 和 JECFA 最後還是為溴酸鉀的麵包之路宣判了死刑。

那它會出現在臺灣嗎?

其實早在 1994 年,JECFA 提出建議的兩年後,當時的衛生署(即現在的衛生福利部)就已經公告禁用溴酸鉀。可雖然近年來幾乎不曾傳出溴酸鉀被違法使用於麵包製程中,各種不肖業者將工業用原料用於食品、甚至藥品製造的食安事件仍不時登上新聞版面,讓人有些擔心,如果溴酸鉀沒有被更嚴格規範的話,會不會成為下一個食安事件的主角呢?

好消息是,行政院環保署毒物及化學物質局在今年(2017)九月公告了最具食安風險的 13 種優先化學物質為毒性化學物質,其中便包括了溴酸鉀。這代表什麼意思呢?當一項化學物質被列為毒性化學物質時,無論是製造、輸入、使用或販賣,都需申請並經主管機關核可才可以執行,而且必需定期申報運作情形。如此一來,便能更有效地掌握化學品的流向,防止它們進到民眾的口中喔!

-----廣告,請繼續往下閱讀-----

 

參考資料

-----廣告,請繼續往下閱讀-----
文章難易度
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 10 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
小麥麵團可以任我們搓圓捏扁,其實跟小麥蛋白質很有關係!——《麵的科學》
晨星出版
・2020/07/08 ・2983字 ・閱讀時間約 6 分鐘 ・SR值 569 ・九年級

  • 作者/山田昌治;譯者/吳佩俞

小麥蛋白質在麵粉的狀態下是堅硬且不易變形的,不過一旦加水搓揉就會產生變化,成為具有獨特彈性與黏性的物質。這種同時具備彈性與黏性的性質稱為「黏彈性(Viscoelasticity)」。如先前所提到的,因為室溫的水不會造成澱粉糊化,所以可以說這種黏彈性是因為小麥蛋白質才得以出現。

任由我們揉捏的麵糰。圖/pixabay

接下來,我們就針對小麥當中的蛋白質種類及性質加以解說。

小麥蛋白質的水合物稱為「麩質( gluten)」。蛋白質是一種由許多胺基酸聚集構成的串珠狀天然高分子(macromolecule),構造相當複雜。在這裡,我們先省略蛋白質構造的相關說明,把重點放在麩質的物理特性解析,並試著以湯馬斯.奧斯本(Thomas Osborne)的分餾(fractionation)分析法來進行說明。

奧斯本的分餾法是將麩質加入極性(溶解蛋白質的性質)較弱的溶劑當中,接著對溶出的蛋白質性質進行測試檢查,而無法溶出的物質會再繼續浸入極性較弱的溶劑裡,然後再繼續檢查溶出蛋白質的性質,換言之,分餾是一種依序不斷重複進行的手法。使用這種方法可以得知構成小麥蛋白質的蛋白質。也就是表 1-1 的內容。

-----廣告,請繼續往下閱讀-----

表 1-1 奧斯本的分餾法。圖/晨星出版提供

至於這份表格的閱讀方法,則是若為白蛋白(albumin),可溶在水中,不溶於水的球蛋白(globulin)則是溶入鹽水裡,然後這樣就能由上而下依序看出各種蛋白質能夠溶解和不能溶解的溶劑了。

  • 白蛋白

白蛋白的主要成分為澱粉酶抑制劑,不過其特性是只會抑制動物性澱粉酶,並不會對植物性澱粉酶產生抑制。許多研究學者都認為這可能是小麥種子為了避免被動物和昆蟲吃掉,才會發展出此種防禦特性。這也是大家說生吃小麥麵粉會讓胃腸不適的原因之一。

  • 球蛋白

所謂的「球蛋白」,就是無法溶入水中、但卻能以「食鹽水」萃取出的「餾分」。目前已經知道這是一種可溶於鹽水的蛋白質。雖然佔比極低,僅有 3 %,不過球蛋白擁有 α-澱粉酶、β-澱粉酶、蛋白酶(protease)等許多對於植物維持生命活動極為重要的酵素

-----廣告,請繼續往下閱讀-----
  • 麥膠蛋白

使用比食鹽水極性更強的「酒精溶液」萃取出的餾分,稱為麥膠蛋白(gliadin)。這種蛋白質具有黏性,置於斜面上會如泥流般滑動。麥膠蛋白與下面提到的麥穀蛋白(glutenin)都與小麥麵粉麵團展現的黏彈性有著密切的關聯。

  • 麥穀蛋白

麥穀蛋白是一種無法溶解於酒精溶液的蛋白質,不過卻可以溶在比酒精溶液更強烈的「醋酸溶液」當中。這種蛋白質與極富彈力的性質有著密切的關聯。所謂的極富彈性,就是意味著施加力道後,只要不再使力就會恢復原狀的性質。

小麥麵團黏彈性的祕密

在小麥蛋白質中,佔有關鍵地位的就是極具彈性的麥穀蛋白和富有黏性的麥膠蛋白。那麼,麥穀蛋白又為何會富有彈性呢?

我們在前面曾提過,小麥是生長在沙漠高原地帶並持續進化的植物。在這樣的環境中,與水同為小麥所必須的氮應該會出現常態性缺乏的情況。不過,即使在如此嚴苛的環境,有時還是會因為降雨而以銨離子(ammonium ion)與硝酸鹽離子(nitrate ion)的形式來取得氮的供給。

雖然無法獲得大量的補充,但小麥還是會盡其所能地留下這些氮的養分並加以儲存。銨離子雖然會保持原狀,但硝酸鹽離子一旦轉換成銨離子,就會改以麩胺酸(glutamic acid)及麩醯胺酸(glutamine)這類胺基酸的形式儲存在種子當中。

-----廣告,請繼續往下閱讀-----
含量(質量%)
麩胺酸 34.7
脯胺酸 11.8
絲胺酸 4.4
天門冬胺酸 3.7
甘胺酸 3.4
精胺酸 3.1
丙胺酸 2.6
蘇胺酸 2.4
離胺酸 1.9
芳香族胺基酸 11.0
含硫胺基酸
(branched-chain amino acid)
4.1
支鏈胺基酸
(ammonia)
13.1
3.8
合計 100

小麥麩質的胺基酸組成

麩胺酸與麩醯胺酸都是蛋白質的原料,利用這些原料所合成的蛋白質即被稱為儲藏蛋白(storage protein)。因此,小麥種子當中的蛋白質就是由麩胺酸、麩醯胺酸,以及作為誘導體的脯胺酸(proline)以極高比率所構成的。

麥穀蛋白加水揉和,結構開始變化

如同圖① 所顯示的,麥穀蛋白的構造是兩條帶子於末端互相連結。因為麥殼蛋白也是一種蛋白質,所以這種「帶子」其實是由胺基酸連結成為一長串而形成的。

麥穀蛋白的構造。圖/晨星出版提供

-----廣告,請繼續往下閱讀-----

我們在前面提過,麥殼蛋白的構成胺基酸因含有較多麩醯胺酸,所以乾燥狀態下會因麩醯胺酸彼此結合而變成兩條軌道般的形狀。此時加水揉和的話,水分就會進入這兩條軌道之間,成為圖② 那樣的小圓圈。

麥穀蛋白的構造。圖/晨星出版提供

如果再繼續加入大量水分,即會出現如同圖③ 的大圓圈。看到這張圖,大家應該就能夠感受到小麥麵粉具有的彈性了。

麥穀蛋白的構造。圖/晨星出版提供

-----廣告,請繼續往下閱讀-----

擁有泥土般黏性的小麥麵團

另一方面,若從分子等級來觀察,可以發現麥膠蛋白呈現微小球狀,直覺上就給人似彈珠滾來滾去那種滑動的感覺,所以在目視程度時,就會有如泥土般地溢流移動。這種泥土般流動的性質稱為「黏性」。

因此,麥穀蛋白的彈性與麥膠蛋白的黏性彼此混合在一起後,就形成了小麥麵粉麵團的性質。從這層意義來看,小麥麵粉麵團的物理性質也可以稱為黏彈性質。

麥殼蛋白、麥膠蛋白的每一個單位(domain,結構域)大小約僅有數奈米(奈米:10億分之1公尺),不過,這些結構域會因各種相互作用而連結起來,並且聚合(polymerization)成為目視程度尺寸的薄膜般構造。

我是一坨充分揉和的小麥麵團。圖/晨星出版提供

-----廣告,請繼續往下閱讀-----

上圖就是將小麥麵粉與水混合並充分搓揉後的麵團狀態。這點從麵團延展性極佳,且呈現為可透光至對側的薄膜就能看得出來。

掌控空間、溫度與時間,做出專屬口感

麵團之所以延展良好,其實是來自於結構域彼此結合的相互作用,但其中原因為何正是長年研究小麥學者們的課題。目前知道的是這與名為交聯(cross-link)的結合作用有著密切的關係。

因為交聯效應而聚合體化(macropolymer)示意圖。圖/晨星出版提供

因為交聯的形成屬於一種化學反應,所以也會依循化學反應的一般規則。換言之,只要充分混合拌勻,就能提高與反應相關部分的促發機率,進而開展交聯作用。這種情況就稱之為「空間效果」。

-----廣告,請繼續往下閱讀-----

另外,我們也可以說溫度較高時亦較容易進行化學反應。這種情況被稱為溫度效果。還有,花費較多時間也能使化學反應持續進展。這個情況則稱之為時間效果。

空間效果、溫度效果,以及時間效果這三大原則,對於思考麩質的形成與控制是很有幫助的。

舉例來說,烤點心時,如果充分揉和麵團,就會做出脆硬口感的餅乾,但若只是稍加搓揉,就會成為鬆軟口感的點心。不同揉製方法帶來不同口感,應該就是交聯作用的空間效果。此外,製作烏龍麵時,也是有個充分揉和後放上一晚靜置醒麵的作業,這個程序的重點應該就是交聯作用的時間效果了。

——本文摘自《麵的科學:麵粉如何創造豐富的口感、香氣和美味》,2020 年 3 月,晨星出版

-----廣告,請繼續往下閱讀-----

0

0
0

文字

分享

0
0
0
Subway 麵包裡有鞋底成分,純屬標題殺人
果殼網_96
・2014/02/20 ・2151字 ・閱讀時間約 4 分鐘 ・SR值 554 ・八年級

作者:CFSA_鍾凱

流言:

Subway 承認在北美出售的食物中有種叫 Azodiacarbonamide 的化學製品,一種麵粉漂白劑,也被用於瑜伽墊和鞋底,在歐盟、澳大利亞等地被明令禁止用於食物。世衛組織曾將它與呼吸、過敏和哮喘等聯繫在一起。CNN 稱市面上大部分麵包都有這種成分,包括星巴克和麥當勞。

000

真相:

「Subway 承認食物中有鞋底成分」的新聞,乍一看很嚇人。想到之前「老皮鞋酸奶」的新聞,這回連鞋底也上場了。仔細一瞧,原來是一群美國人搞了一項表決,要求禁用一種叫偶氮二甲酰胺的食品添加劑。

人們對食品品質的追求可謂永無止境,以前吃飽就行,現在不僅要吃好,還要色香味俱全。正是食客們對色澤、口感的挑剔,造就了一大批「改良劑」,比如麵粉增白劑、麵粉增筋劑。其中有一種食品添加劑「文武雙全」, 既可以增筋,又可以漂白,這就是偶氮二甲酰胺。

-----廣告,請繼續往下閱讀-----

偶氮甲酰胺其實很安全

偶氮二甲酰胺其實也只是一個後起之秀。以前麵製品不夠筋道的時候,人們添加一種叫做溴酸鉀的東西,但是後來科學家發現溴酸鉀是一種致癌物,於是它被廢棄。可大家還是想吃有勁道的麵製品怎麼辦?科學家找到了偶氮二甲酰胺這個接班人。這一點類似於皮蛋工藝中的硫酸銅替代鉛丹,相對來說能避免影響人體健康。

偶氮二甲酰胺和乾麵粉可以相安無事,但加上水一和,偶氮二甲酰胺就迅速釋放活性氧,自己轉變為更加穩定的聯二脲。釋放出來的活性氧可以奪取蛋白質巰基(-SH)上的氫原子,兩個失去「氫伴侶」的巰基相依為命成為二硫鍵(-SS-)。這些二硫鍵就像搭建在蛋白分子間的橋樑,使蛋白質形成立體網狀結構,於是麵就更有勁道、有彈性。

偶氮二甲酰胺的性能優異,但安全性如何呢?國際權威機構糧農組織/世界衛生組織食品添加劑聯合專家委員會(Joint FAO/WHO Expert Committee on Food Additives,JECFA)於1966年就對偶氮二甲酰胺作出了評估,結論就是「很安全」,給出的安全劑量是0-45毫克/千克。到目前為止,還沒有足夠有力的研究質疑這一結論。中國目前的食品添加劑標準就是依此規定的:麵粉可以使用偶氮二甲酰胺,限量為45毫克/千克。美國FDA將偶氮二甲酰胺定為「GRAS」,也是很安全,所以美國、加拿大都在用它,使用量的上限(美國)和中國一樣。

那偶氮二甲酰胺產生的聯二脲會不會有問題呢?研究表明,聯二脲在烘焙條件下很穩定。它在體內是一種惰性物質:毒性很低,在消化道裡不被消化酶破壞,可以很快通過糞便和尿液排出,不會累積在我們的臟器中,也沒有發現致癌、致腫瘤或影響生殖。

-----廣告,請繼續往下閱讀-----

偶氮二甲酰胺處理過的麵粉會不會使蛋白質營養破壞、流失?研究發現,用偶氮二甲酰胺處理麵粉後,氨基酸構成沒有明顯變化,而且維生素B1、B2和菸酸等成分都沒有變化,所以這一擔憂也是沒必要的。

日常接觸與職業暴露大不同

對於偶氮二甲酰胺的安全性,國際上確實出現了一些「爭議」。比如聯合國環境計劃署曾經在1999年對偶氮二甲酰胺的職業暴露做過分析(很多資料來自英國),他們認為在職業暴露的條件下(比如生產、運輸),偶氮二甲酰胺的確有可能誘發哮喘。但對普通消費者而言,日常接觸不太可能達到職業暴露的量。更重要的是,引起這些呼吸道症狀的原因是吸入,而不是吃到肚子裡。因此這種風險在普通消費者身上是很難複製出來的。

也有文獻報導,偶氮二甲酰胺可能會產生氨基甲酸乙酯、氨基脲等物質。但這些研究都沒有足夠有力的證據來推翻偶氮甲酰胺的安全性結論,畢竟主要產物是聯二脲。比如氨基二甲酸乙酯,在一些酒中(例如黃酒)含量高得多。「潛在致癌」的氨基脲是在高溫焙烤下產生的,不過很多食品 ​​經高溫處理都會產生另一種潛在致癌物丙烯酰胺。模擬實驗中,用偶氮二甲酰胺處理過的麵粉烤製麵包後,氨基脲大約是200微克/千克,而高溫處理的食物中丙烯酰胺是幾十至上千微克/千克。(國際癌症研究機構(IARC)的致癌物分級中,氨基脲為3類,不明確是否導致人類癌症;丙烯酰胺為2A類,很可能導致人類癌症。更多相關分類的含義請參閱〈打破致癌物的核威懾 〉)

當然出於謹慎的考慮,歐盟、澳紐等國要規避上述可能的風險,禁用偶氮二甲酰胺倒也無可厚非。但使用某一食品添加劑或禁用某一食品添加劑本就是各國自己的選擇,譬如,果凍裡山梨酸鉀的允許量,歐盟就是中國的2倍;中國禁用的過氧化苯甲酰(一種麵粉增白劑)在美加等國仍照常使用。

-----廣告,請繼續往下閱讀-----

至於說偶氮二甲酰胺是工業成分,這其實挺正常的,食品添加劑中的磷酸鹽、亞硫酸鹽、EDTA等,個個都是工業領域的高強好手。其實只要消費者還喜歡彈力十足的麵製品,食品工業就需要麵粉增筋劑。如果現在想淘汰偶氮二甲酰胺,得找到一個比它更好的接班人

好消息是科學家們正在試驗用酶製劑、多醣等新方法改良麵製品。相信將來一定會有更多、更經濟實惠的選擇。Subway 近日已經表態準備停用偶氮二甲酰胺,但偶氮二甲酰胺依然是一種合法的食品添加劑。Subway 的聲明,一方面可能是迎合消費者的需求,更重要的是,他們很可能已經有了更好的替代品,否則放棄一個合法的食品添加劑,導致產品失去消費者喜愛的口感,似乎不是商家的明智選擇。

參考資料:

  1. wikipedia:Azobisformamide​
  2. Concise International Chemical Assessment Document 16: AZODICARBONAMIDE
  3. FAO Nutrition Meetings Report Series No. 40A,B,C WHO/Food Add./67.29
  4. Semicarbazide Formation in Azodicarbonamide-Treated Flour: A Model Study
  5. 食品安全國家標準食品添加劑使用標準GB2760-2011

 

轉載自果殼網

-----廣告,請繼續往下閱讀-----
果殼網_96
108 篇文章 ・ 9 位粉絲
果殼傳媒是一家致力於面向公眾倡導科技理念、傳播科技內容的企業。2010年11月,公司推出果殼網(Guokr.com) 。在創始人兼CEO姬十三帶領的專業團隊努力下,果殼傳媒已成為中國領先的科技傳媒機構,還致力於為企業量身打造面向公眾的科技品牌傳播方案。

0

0
0

文字

分享

0
0
0
藏在柔軟有彈性麵包裡的魔鬼「溴酸鉀」
行政院環境保護署毒物及化學物質局_96
・2017/12/22 ・2385字 ・閱讀時間約 4 分鐘 ・SR值 541 ・八年級

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

撰文/陳衍達│自由寫手

2016 年,印度科學與環境中心(Center of Science and Environment,CSE)的「污染監測實驗室」發布了一項調查:他們買了德里市面上 38 個品牌的麵粉產品到實驗室做分析,結果發現高達 84% 的品牌(32 件)殘留溴酸鉀(Potassium bromate)或碘酸鉀(Potassium iodate)。

而事實上,溴酸鉀在國際癌症研究總署(International Agency for Research on Cancer,IARC)的分類中屬於「對人類懷疑為致癌物」的第 2B 類物質;聯合國糧農組織Food and Agriculture Organization, FAO和世界衛生組織的食品添加物專家委員會Joint FAO/WHO Expert Committee on Food Additives, JECFA更早在 1992 年就已提出指導性的建議,指出溴酸鉀不適合用在麵粉處理上,許多國家也已立法禁止。CSE 的新聞稿發表後,立刻造成民眾恐慌,而印度政府也迅速地在一個月後修法,正式禁止這兩樣物質用於製作麵包。

-----廣告,請繼續往下閱讀-----

去年(2016),印度科學與環境中心檢驗出香噴噴的麵包中含有被列為 2B 類致癌物的「溴酸鉀」。示意圖,非檢驗麵包。圖/Pexel BY CC0 License

揉出麵團中蛋白質的秘密

看到這裡你是否也感到疑惑,人們為什麼要在麵包裡加入溴酸鉀呢?這得從「麵包為什麼有彈性」談起。

五穀根莖類是人類獲取碳水化合物的主要來源,但不曉得大家有沒有發現,我們的兩種主食稻米和小麥,在型態變化的「自由度」上有很大的差異:大多數在去殼、去胚之後就能被煮熟吃掉,但小麥幾乎都會先被磨成麵粉後,才接著被塑造成各種形狀 ── 當然米也可以被做成米粉,偶爾也會有人在牛奶裡面加一些小麥粒,但比例相對並不高。造成這個差異的最大原因,在於小麥含有的蛋白質比例較高,讓麵粉擁有較高的可塑性;而稻米主要由澱粉組成,相對沒有彈性,要做成各種形狀就比較困難。

其中,麵粉的蛋白質統稱為麩質(Gluten),主要由穀蛋白(Glutenin)麩脘(Gliadin)組成。麩脘圓圓胖胖的,對水有較好的親和力,和水一起負責製造一個適合穀蛋白和氧化劑反應的環境;穀蛋白在微觀的尺度上則是長鏈狀的結構,上面有許多可以被氧化的硫氫基(thiol group,-SH),平常沒有水的時候這個長鏈會「揪」在一起,麩脘把水引進來之後才會舒展開。

-----廣告,請繼續往下閱讀-----

麩脘(黃色球球)是一種醇溶蛋白(Prolamin,prolamina是西班牙文),在麵粉和水後會協助穀蛋白(Glutenin,glutenina是西班牙文)與氧氣反應,最後它們會糾結在一起變成麩質(Gluten)。 圖/ Marinasauri @ wikimedia, CC BY-SA 4.0

揉麵團的時候,我們把麵粉與水和在一起,讓氧氣在揉製的過程中混進去,將穀蛋白上的硫氫基氧化。兩條穀蛋白上的硫氫基氧化之後,便有機會橋接在一起形成雙硫鍵(disulfide bond,-S-S-),進而增加蛋白質鏈之間的緊密程度。這個反應帶來的影響就是麵團會越揉越有彈性;在下一階段發酵膨脹時也較能夠留住酵母菌生成的二氧化碳,而不至於洩氣塌掉。

溴酸鉀的崛起與衰亡

不過麻煩的來了,以氧氣氧化硫氫基的速度並不快,在大量生產上不是很理想;於是生產者開始嘗試在麵團中加入更強的氧化劑,而其中,CP 值最高的就屬溴酸鉀了。它的所需用量少(1 公斤麵團只需要不到 0.1 克的溴酸鉀),烤完麵包後又能夠「幾乎」全部反應完。

溴酸鉀化學式及外觀。 左圖/ Asawarraich @ wikimedia BY CC0 右圖/ Ondřej Mangl @ wikimedia BY CC0

-----廣告,請繼續往下閱讀-----

筆者回顧了很久以前的論文(是 1979 年呢!)在過去,它其實是被使用最廣的麵團氧化劑呢!但是,添加進食品中的物質難免有殘留風險,加上動物實驗研究指出溴酸鉀會讓老鼠得到癌症,IARC 和 JECFA 最後還是為溴酸鉀的麵包之路宣判了死刑。

那它會出現在臺灣嗎?

其實早在 1994 年,JECFA 提出建議的兩年後,當時的衛生署(即現在的衛生福利部)就已經公告禁用溴酸鉀。可雖然近年來幾乎不曾傳出溴酸鉀被違法使用於麵包製程中,各種不肖業者將工業用原料用於食品、甚至藥品製造的食安事件仍不時登上新聞版面,讓人有些擔心,如果溴酸鉀沒有被更嚴格規範的話,會不會成為下一個食安事件的主角呢?

好消息是,行政院環保署毒物及化學物質局在今年(2017)九月公告了最具食安風險的 13 種優先化學物質為毒性化學物質,其中便包括了溴酸鉀。這代表什麼意思呢?當一項化學物質被列為毒性化學物質時,無論是製造、輸入、使用或販賣,都需申請並經主管機關核可才可以執行,而且必需定期申報運作情形。如此一來,便能更有效地掌握化學品的流向,防止它們進到民眾的口中喔!

 

參考資料

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 10 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/