0

0
1

文字

分享

0
0
1

分手,真的能夠預測嗎?解析《再見凱薩琳》裡的分手公式與劇情

海苔熊
・2017/08/16 ・7369字 ・閱讀時間約 15 分鐘 ・SR值 498 ・六年級
source:Max Pixel

你是,這樣的人嗎?

  1. 你總是覺得,自己沒有別人說的那麼聰明。
  2. 你總是害怕,自己所擁有的才能或天賦,有一天就會消失殆盡、然後其他人就會不喜歡你了。
  3. 在感情裡面,你總是被拋棄的那一個,並且每次開始交往的時候,就時時刻刻在倒數計時你所殘存的戀愛。
  4. 因為青少年時期被霸凌的經驗,讓你對於人際關係和感情失去的信任,於是你把真實的自己藏起來,只用「假面」在過生活。
  5. 和伴侶分手之後,你很不意外的並沒有感到很難過,因為你早就知道:「如果你太一個人,他就不會很愛你了」,所以這次的分開對你來講殺傷力很小,但不知道為什麼,想起來的時候還是覺得有一種很悲哀的感覺——為自己的防衛感到悲哀。

前幾天收到了《再見凱薩琳》這本書問我是否能推薦,由於是《生命中的美好缺憾》的作者約翰所寫的書,想說應該蠻有趣的,於是就把他帶到花蓮去渡假。裡面的主角,就是擁有上面這些特色的人,沒想到……。

雖然帶這本書去花蓮,不過還是在回來台北的火車上才有時間真正的開始看,剛剛看完之後有幾個很複雜的感覺。基於許多原因,我覺得實在無法推薦這本書。不過,倒是有很多地方值得討論與評論的,所以我特別寫了一篇文章。

__________以下有雷__________

解析「再見凱薩琳」

圖/作者提供

一分鐘讀完這本書(谷X莫):這本書描述男主角天才兒童柯林和他的好基友哈桑利用暑假進行一段公路旅行的過程,對於柯林來說,這是一段走出失戀的旅程。這是他第 19 次和名叫「凱薩琳」的女孩分手,你可以想像你總是和叫「怡君」的女孩交往,但每個都最後都甩了你。而對於哈桑來說,這是一次逃避上大學的旅程,他已經多次休學,這次也想「照舊」繼續休學。他們在開始旅行之柯林後不久就遇到了女主角琳西以及存在感很低的女二卡特蓮娜(不是英雄聯盟裡面的那一個)。

柯林整本書都在研發他的「凱薩琳分手公式」,他想知道為什麼自己一直是被甩的那一個,因緣際會之下與哈桑一起到琳西她家打工,三人一起訪問她們家族事業體的員工,要作一本回憶錄之類的,因此產生了感情,柯林還很幸運地獲邀和琳西一起到她的秘密基地(一個洞穴)喝酒聊天。後來,哈桑和琳西的好友卡特蓮娜在一起、接著琳西的男友(也叫柯林)劈腿卡特蓮娜被抓包,最後哈桑與卡特蓮娜分手,琳西與主角柯林在一起(貴圈真亂 XD),柯林很悲觀得以為他們 4 天之後會分開(照他的理論預測)沒想到竟然沒有,大家幸福快樂、哈桑也準備去上大學了,故事結束。

整本書用了非常多冷僻的註解,包含不同的語言、柯林最喜歡的字母重組遊戲、一些你不知道也不會怎樣的歷史或者是科學知識、以及數學圖形和公式,不過這並不是我「不能推薦」的原因。一言難盡,下面簡單用六個小點解析這本小說,以及說說我個人的想法:

1.用科學「解」失戀

故事的主角柯林根本就是多年前的我呀,當時我也是歷經一場失戀,想要在各種論當中去找出預測分手最適合的數學模型,實際上也找到了一些看起來勉強可以用的模型(請參看《這才是分手の心理學》),但最終發現:

它們並沒有辦法拿來預測「真實」的戀情,因為……所有的模型都是化簡最後的結果,可是一段感情的「生生滅滅」需要考量的變數太多,我們不可能考量到所有的變數。就算把效果最大的變數考慮進去,其中的交互作用也複雜到無法用數學模型來表示。

2.主角柯林:亞斯伯格症?

老實說一開始在讀這本書的時候,覺得非常卡卡 der 凍茲凍茲,受限於他裡面跟文化有關的用字。我對於裡面許多讀起來覺得不好笑的諧音或者是拼字遊戲,感到很苦惱(跟陳澄波本人一樣感到很苦惱),並且嚴重的阻礙的閱讀,我想這個如果換成我們中文其他的一些諧音,可能會比較接近我們的文化,不過畢竟是翻譯書,也無法苛求阿(阿不然你來翻譯阿~)。

另一種可能是,或許我對於美國、阿拉伯、德國等等的文化了解很有限,所以真的不太能夠了解故事當中兩個主角哈桑和柯林開的一些玩笑。不過,我倒是很能夠理解柯林有點像是亞斯伯格症的特徵(當然,這只是我個人的猜測,畢竟作者也沒有設定他是亞斯),例如會專注在一些非常小的事情,而且有非常低的社會化能力,沒有辦法察言觀色、而且沒有辦法容忍不公平不正義的事情。如果你懷疑你是,可以參考 Baron-Cohen、Wheelwright、Hill、Raste 與 Plumb 等人(2001)「亞斯柏格成人量表」,由國內設計團隊 Re-lab 製作50題清晰易填的線上檢測。

3.基友哈桑:逃避型人格?

我覺得蠻特別的是,就是傳說中的「逃避型人格」的人(和逃避依戀有一些重疊,但不完全等同)(Johnson、Murray,2008岡田尊司,2017a2017b),人生所擅長的事情就是「逃避情緒」與「自我設障」。

  • 「逃避情緒」:根據胡展誥(2017)的定義,長期逃避情緒的種「情緒殭屍」有幾種特徵──
    • 問題解決至上:深信「情緒」是庸人自擾、毫無必要的阻礙物。
    • 超理智:對每件事都只是理性分析利弊、評估成效,毫無情感成分。
    • 說不出口:除了煩悶之外,無法清楚表達自己當下的情緒。
  • 自我設障(self-handicapping):「什麼事都不做」來避免可能的失敗(就像你期中考之前會通宵打電動,這樣考差了就可以說「我只是因為不念啦,認真起來連我自己都怕!」;考好了更秋,「恁爸沒念都考這樣了,你們這些小嫩B!」)(Jones、Berglas,1978),有這款情形,掐卡0800-……。不過最讓我最感動的是,在故事的最後,他終於了解自己一直以來的逃避,並且嘗試要做出和以往不一樣的事情。

4.女主角琳西:情緒殭屍

在我看起來是一個不相信愛情、或者可能是逃避依戀(岡田尊司,2017a)的人。或許受到爸媽離婚的影響(Mustonen、Huurre、Kiviruusu、Haukkala與Aro,2011)、或許人生當中發生一些事情(例如求學時代曾經被排擠)(吳姵瑩,2017)而影響到他對自我的感覺以及安全感,她選擇把心鎖起來,不再對任何人付出真心,可是也因為這樣,她在和「另外一個柯林」(故事當中另外一個同名配角,身材魁梧)分手之後,沒有感覺到有任何的悲傷—— 然而,這才是最大的悲傷——那些自以為把感覺隔離開來就不會感覺到痛苦的人,實際上,也失去了快樂的可能。她把自己變成沒有任何感受的情緒殭屍(胡展誥,2017),卻也傷害了要進入她內心的人。

5.關於男女主角的感情

這本書當中,我覺得最可惜的是,對於男女主角感情的刻劃稍微少了一點,如果按照過往主角柯林的感情經驗來說,我猜想這段感情雖然在故事結束之前還沒有分開,但應該會走上他過往的「凱薩琳曲線」(柯林鑽研出來的定理,用來預測一段感情的生生滅滅,不過大部分都是悲劇收場),原因有兩個:

其實他們根本沒有真正非常了解彼此。會在一起,只是因為兩個人曾經在秘密基地黑暗的洞穴裡面,交換彼此的秘密、自我揭露(Self disclosure)。做了親密的行為(碰碰額頭),就好像很愛彼此的樣子,可能只是一開始的假象。

另外,柯林與琳西某種程度上都是自卑的人。根據我的了解,一個人的自卑不太可能在「瞬間」就有所轉變。雖然他們兩個人都體會到,自己對於其他人的不信任、對於感情的失望,也願意嘗試看看新的感情,不過,我認為他們真正的生命課題並沒有解決,所以這段感情看起來有一個不錯的開始,但我猜測應該結束不會太慢。雖然不是柯林自己的定理所預測出來的4天,但有可能不會超過40天或者是400天。另外,他們這樣的感情我們在心理學上面稱作「籃板球戀愛」(Rebound Relationship)(Brumbaugh、Fraley,2014Spielmann、MacDonald與Wilson,2009Wolfinger,2007),通常是指在分手之後不久立刻開啟的另外一段新的關係,當事人往往會和過去的極端感情作比較,尤其是柯林,一定會把琳西和他前面19個凱薩琳進行比較──然後發現,舊愛還是最美。

6.關於數學公式

圖/作者提供

其實我覺得這是這本書最大的賣點,不過也是最大的敗筆。一開始我覺得會不會是我才疏學淺,沒有辦法真正理解公式,還拿出了紙認真的計算了一下,後來發現我可能真的資質駑鈍,完全無法理解這個天才兒童的想法。不過還好,這本書的最後面竟然有提供解答,真是讓我看得津津有味。看到後面的解答才突然想到,這個D根本不是常數,而是變數,難怪我會得不到解答。

不過我覺得非常可惜的是,作者在書當中所用的公式和裡面的劇情好像是截然劃分的兩個世界,作者並沒有在書中的19個凱薩琳分手的案例當中指出,他們是如何讓這些係數影響了彼此的互動,也沒有辦法說服我這幾個不同的係數他何以是最重要的係數。當然,作者在最後有提到,這個公式其實是他的數學家好朋友編纂出來的,而他自己的數學非常差,也難怪我們會發現公式和劇情之間有這麼大的隔閡,畢竟要用自己不熟悉的方式來串連劇情,其實很不容易。

真的存在所謂的「戀愛公式」嗎?

好啦,既然我曾經也想要找所謂的「戀愛公式」但為什麼我會覺得沒有辦法推薦這本書呢?

上面這個是柯林最終版本的數學公式,用來預測兩個人到底最後是誰會甩了誰,其中,y 如果越接近零(不論是正的還是負的),表示這段關係越接近分手,而 y 等於零的時候,就表示一段戀情的結束(或者開始)。這個曲線如果開口朝下,就表示是女性甩掉男性(以異性戀為例),如果開口朝上,就表示是男性甩掉女性。

柯林用了幾個不同的指標來建構這個公式(以下整理自書的 159 頁到 160 頁)

圖/作者提供

公式引自書中 p.240,由賴以威老師協助繪製而成。

  1. 年齡( A ) =[(男生的年齡+女生的年齡)/2]-5
  2. 人氣差異(C)=(女生的人氣指數—男生的人氣指數)/75,其中,人氣指數是介於 1~1000 的數字。在我的理解上,應該是指這一個人有多受到同儕或朋友的歡迎。
  3. 魅力差異(H)=(女生認為這個男生有多吸引她—男生認為這個女生有多吸引他),這個評估吸引力的分數會介於 0~5 之間,數字越大表示他認為這個人越省他
  4. 拋棄者/被拋棄者差異(D)=(女生習慣當拋棄者的機率-男生習慣當拋棄者的機率),由於是機率,所以括弧內這兩個數字應該都是介於 0~1 之間的數字。這個概念應該是,沒有人會一直永遠當拋棄者或者是被拋棄者,例如說,在 10 次戀愛當中,你大概有 8 次是當提出分手的那一個,那麼你的數字就是 0.8;如果你的前女友總是被甩的那一個(假設你是個男的),那麼她的數字就是 0,而這裡算出來的 D=0-0.8=-0.8
  5. 內向者/外向者差異(P)=(女性的外向程度-男性的外向程度),(唸的兩個數字以 0~5 分來估計,分數越高表示這個人越外向,越低表示越內向。
  • 8/17  週四晚上 21:00-2200, 數感實驗室賴以威老師將要破解此公式,有興趣的朋友請鎖定我們粉專直播囉!
圖/作者提供

這個公式,可信嗎?

本書作者的朋友(也就是一個數學家)在書的最後面有交代這些公式的創作原理,不過就算我們還沒有看到公式,光是看這個設定可能就會有許多的問題:例如,一個人的內外向可以用單一向度來表示嗎?有沒有可能有人是同時內向又同時外向的人?上面這些要素真的涵蓋了所有交往的時候重要的條件嗎?

如果我們再仔細看這一個公式,會發現更多問題。在心理學上面,我們必須交代兩個數字相減的意義(其實這個和以往在做伴侶研究的邏輯是相符合的,有興趣可以參閱此文), 以及為什麼要除以某個數字、加上幾次方(可是書裡面都沒有交代),其實主要就是基於這點,沒有辦法推薦這本書。

雖然我理解這本書的初衷或許就是再告訴我們:愛情是不能夠用公式來預測的,不過,作為讀者的樂趣立場,以及心理學研究者,我還是比較希望他可以去解釋每一個係數的形成原因以及結果,在這本書的最後面,作者的朋友(也就是那位協助他的數學家)附錄給的那個網站,裡面 John Gottman 提到的一些公式也和作者的這個公式完全不一樣(至少使用的要素不同),所以如果說是參考來的,我覺得也有一點不太一致(有興趣的可以參考這幾篇論文)(Bakeman、Gottman,1997Gottman,2014),或是以威老師的這篇文章

另外,柯林的公式其實離目前親密關係的研究,相去非常遙遠(沒辦法,畢竟他只是一個學生,也不能夠太苛求他)。

舉例來說,我讚同有些人在感情上面就是習慣當拋棄者或者是被拋棄者,也就是 D 這個數字的確有可能會坐落在一個常態分配上面,的確是一個合理的參數;其他的數值我覺得也挺合理的,不過有2個最重要的參數,是目前研究當中發現效果量很大的:

  1. 自我揭露:其實就是你講一點你的秘密,我一點我的秘密,也就是男女主角在秘密基地裡面做的事情。許多研究顯示他是會增加兩個人之間親密感的好方法。但在柯林的公式中,並沒有考慮到此因素
  2. 面對衝突的時候的溝通:然而,上面這個要素通常只會預測兩個人在一起的速度,而沒有辦法預測兩個人「是否能夠快樂的在一起」。其實如果你觀察那十九個凱薩琳,你就會發現同樣一件重要的事情就是,柯林從頭到尾沒有真正學會去處理溝通這件事情,這也是為什麼我預測他其實和琳西也不會太久哈哈哈。

然而,在柯林上面最新的(而且看起來很酷炫的)公式當中,沒有把這兩個重要的條件擺進去,是我覺得非常可惜的原因,某種程度上也解釋了,為何後來他的公式沒有辦法預測他們兩個人是否會在第四天分手。琳西喜歡他這個公式,充其量只是認為看起來很酷而已,以及他覺得兩個人有一種同病相憐的怪咖的感覺(其他還有很多預測分手的因子,柯林都沒有考量,有興趣的人可以參看下圖)(Le、Dove、Agnew、Korn與Mutso,2010)。

預測分手效果量最大的變項排序。圖/作者提供

預測柯琳戀的結局

換言之,這樣的結局只說明了幾件事情:

  1. 兩個人或許(在漆黑的洞穴裡面)卸下了一些自己的心房,但仍然在感情最開始的交換秘密的階段,可能表面上看起來很甜蜜,但能不能夠撐過後面的風雨就不得而知了。
  2. 我認為很大一種可能是,這個新的對象也會走向前面19個凱薩琳一模一樣的結局——在柯林還沒有學會如何好好的人際交往以及溝通之前。
  3. 這兩個人之間會互相吸引,我猜還有一個重要的因素是來自於,他們對於感情的看法都比較悲觀,而這個悲觀形成了某一種吸引力,讓兩個人有一種「同病相憐」的感覺。不過,根據我的了解,對於關係的悲觀,其實是來自於對於關係的缺乏安全感,以及低自尊。就像是兩個男主角在吵架的時候,你可以很明顯的看到,這兩個大男孩,其實都是很沒有自信的人。在這樣的情況下開始一段戀情,可能會有許多辛苦以及需要調整的地方。

如何走出一段失戀

如果有人也正經歷一段失戀,然後正在想要怎麼樣才能夠走出來,那麼這一本書將會是一個很好的示範。

等等,先別高潮,這並不是說本書教你如何走出失戀,也並不是因為當事人用了什麼神奇的招式,使得他得以走出這個悲傷,而是幾乎所有的人都會用自己所習慣的方式來面對悲傷(例如,這個天才兒童柯林習慣的方法是不斷地重組字彙、不斷地專研他所謂的定理)——這個事情本身沒有太大的幫助,真的。後來真正發生效果的,或許是在這些「重複」當中所產生的一些新奇的事情——去打獵山豬、被蜜蜂咬、被別人踢睪丸、進入一個大工廠的倒閉事件、訪談那些與自己年紀相去甚遠的老人們、在一個漆黑的洞穴裡面喝著純釀威士忌、和好基友進行一場看起來似乎沒有盡頭卻一開始就走到盡頭的公路旅行等等。

其實你可以跳過上面一段,那是寫給文青看的哈哈。

想要變好?你只要跟柯林一樣找下一個對象在一起就好了。研究發現,相較於上面這些狗屁倒灶的事情,找到下一個對象,往往是走出失戀,效果最大的方法。有新伴的人比起沒有新伴的人,感到更幸福、更有自信、前一段感情的殘渣越少、越不會與前任藕斷絲連(Brumbaugh、Fraley,2014)。雖然我很不想承認(因為這樣似乎顯示我們這些心理學家的失戀介入好像沒什麼用),不過這的確是事實。

其實你也可以跳過上面這一段(好啦但是這一段不要跳過),因為我漸漸發現,如果我們用數字來測量,當然可以很明顯的看到「認識新的對象」、「和新的人在一起」有正向的影響,例如當事人可能會對自己的看法比較正面、不會再和前任情人糾纏、不會再反覆想起前一段感情當中的起伏、比較少的失落等等,但是——有些東西是無法用數字所測量出來的。例如,你在失戀過後一直到遇到下一個人之前,這段時間心情的起伏、對於自我的整理、因為失戀促使你去做的一些愚蠢或者是從來沒有嘗試過的事情,其實都會成為你人生當中很重要的一部分。

真正重要的並不是「有沒有走過失戀」、 是否真的和心中的「那個凱薩琳好好、完整的說再見」,而是在離開前任之後,你有沒有展開另外一種,和以往截然不同的人生;有沒有辦法接受自己只是一個平凡人、接受其實自己真的「沒有很完美」的那種失落。

這個沒有辦法用數字或用統計來測量的、屬於你的故事,才是對你來說,最重要的小事。

延伸閱讀

  • Bakeman, R.、Gottman, J. M.(1997)。Observing interaction: An introduction to sequential analysis。:Cambridge university press。
  • Baron-Cohen, S.、Wheelwright, S.、Hill, J.、Raste, Y.、Plumb, I. (2001)。 The “Reading the Mind in the Eyes” Test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism。J Child Psychol Psychiatry, 42(2),頁 241-251。
  • Brumbaugh, C. C.、Fraley, R. C. (2014)。 Too fast, too soon? An empirical investigation into rebound relationships。Journal of Social and Personal Relationships。 doi: 10.1177/0265407514525086
  • Gottman, J. M.(2014)。What predicts divorce?: The relationship between marital processes and marital outcomes。:Psychology Press。
  • Johnson, B.、Murray, K.(2008)。搞定怪咖情人(Crazy Love:Dealing With Your Partner’s Problem Personality)(柯乃瑜譯)。台灣:印刻。
  • Jones, E. E.、Berglas, S. (1978)。 Control of attributions about the self through self-handicapping strategies: The appeal of alcohol and the role of underachievement。Personality and Social Psychology Bulletin, 4(2),頁 200-206。 doi: 10.1177/014616727800400205
  • Le, B.、Dove, N. L.、Agnew, C. R.、Korn, M. S.、Mutso, A. A. (2010)。 Predicting nonmarital romantic relationship dissolution: A meta-analytic synthesis。Personal Relationships, 17(3),頁 377-390。 doi: 10.1111/j.1475-6811.2010.01285.x
  • Mustonen, U.、Huurre, T.、Kiviruusu, O.、Haukkala, A.、Aro, H. (2011)。 Long-term impact of parental divorce on intimate relationship quality in adulthood and the mediating role of psychosocial resources。Journal of Family Psychology, 25(4),頁 615。
  • Spielmann, S. S.、MacDonald, G.、Wilson, A. E. (2009)。 On the Rebound: Focusing on Someone New Helps Anxiously Attached Individuals Let Go of Ex-Partners。Personality and Social Psychology Bulletin, 35(10),頁 1382-1394。 doi: 10.1177/0146167209341580
  • Wolfinger, N. H. (2007)。 Does the rebound effect exist? Time to remarriage and subsequent union stability。Journal of Divorce & Remarriage, 46(3-4),頁 9-20。
  • 吳姵瑩(2017)。做自己最好的陪伴:找回安全感,讓你內在小孩不害怕、不寂寞的療癒五堂課。台北:遠流出版。
  • 岡田尊司(2017a)。孤獨的冷漠:逃避型依戀障礙的分析與修復(邱香凝譯)。台灣:聯合文學。
  • 岡田尊司(2017b)。戀愛這種病:解讀自我與對方的人格,診斷愛情的現在與未來(張婷婷譯)。台灣:時報出版。
  • 胡展誥(2017)。別讓負面情緒綁架你:30個覺察+8項練習,迎向自在人生。台灣:寶瓶文化。

數感宇宙探索課程,現正募資中!

相關標籤: 分手 預測愛情
文章難易度
海苔熊
70 篇文章 ・ 447 位粉絲
在多次受傷之後,我們數度懷疑自己是否失去了愛人的能力,殊不知我們真正失去的,是重新認識與接納自己的勇氣。 經歷了幾段感情,念了一些書籍,發現了解與頓悟總在分手後,希望藉由這個平台分享一些自己的想法與閱讀心得整理,幫助(?)一些跟我一樣曾經或正在感情世界迷網的夥伴,用更健康的觀點看待愛情,學著從喜歡自己開始,到敏感於周遭的重要他人,最後能用自己的雙手溫暖世界。 研究領域主要在親密關係,包括愛情風格相似性,遠距離戀愛的可能性,與不安全依戀者在網誌或書寫中所透露出的訊息。 P.s.照片中是我的設計師好友Joy et Joséphine


0

0
0

文字

分享

0
0
0

一生最重要的數學教育:小學數學——《數學,這樣看才精采》

天下文化_96
・2022/05/22 ・4053字 ・閱讀時間約 8 分鐘
圖/envato elements

2014 年底一篇新聞報導的題目〈6 分之 1 中小學生學力不及格〉,讓人感覺怵目驚心。還好看完內文之後,才知標題有誤導的嫌疑,其實計算不及格比率的基數並不是全體中小學生。

教育當局實施中小學生補救教學方案,針對各班國文、英文、數學排名倒數 35% 的學生,檢測他們上學年的基本學力,不及格的學生在家長同意下,才得以接受課後的補救教學。如果用全體中小學生為基數來計算,則 35% 的六分之一約為 5.83%。以小學數學而言,施測學生不及格比率如表 26-1。

可以非常明顯的看出,從小學二年級到六年級的數學,原本成績已經在後段的學生裡,不及格人數直線上升達到約四分之一之多。因為小學數學教育對每個人的一生都極端有用,如此的不及格比率是不能接受的。

論學習環境之重要性

小學數學如何有用呢?斯坦(Sherman K. Stein)在《幹嘛學數學?》這本書的第 10 章,報導了美國各行各業需要的數學能力。他參考《職業調查完全手冊》將數學能力分為 6 級,其中第 1、2 級涵蓋小學程度的數學。

以 1992 年美國勞動人力 1 億 2 千 1 百萬來觀察,斯坦發現三分之二的人只需 1、2 級數學程度即可謀生。本來第 10 章的用意在於文末引用美國勞工統計局《職業展望季報》的話:「數學能力愈強的人,不但可以選擇的就業機會愈多,也愈能把工作做好。」但是,從另外一個角度來看,其實恰好凸顯了小學數學對於大多數職工的重要性。

2016 年美國東北大學社會學教授韓德爾(Michael J. Handel)發表論文〈人們上班時做什麼?〉。調查顯示幾乎所有人在工作中都需要用一些基本數學;但是除了計數與四則運算以外,其他數學題材的使用率便會降低。約有三分之二的人需用分數、小數、百分比,有 22% 的人會用層次稍高一些的數學,例如代數。按照韓德爾的分類,歸入低階白領職業的人,使用超過小學程度數學的比率甚至低於 10%。

調查顯示,多數勞工上班時都會使用到基礎小學數學。圖/envato elements

從這些美國的調查與統計資料可看出,對相當大數量的勞動人口而言,最有用的數學就是小學教的數學。即使他們後來接受了中學的數學教育,那些知識也幾乎派不上用場,只是數學程度高會比較容易通過人才篩選的關卡。

小學數學既然重要,臺灣學生學習的狀況又如何呢?

「國際數學與科學趨勢調查」(Trends in International Mathematics and Science Study,簡稱 TIMSS)每四年舉辦一次,對象為四年級與八年級(國中二年級)學生,目的在瞭解數學與科學領域學習成就的發展趨勢,以及文化背景及教育制度的相關性。臺灣歷屆數學成績排名如表 26-2。

成績穩定名列前茅,看來應該得到喝采。然而 TIMSS 還調查學生喜不喜歡數學、學生對於學習數學的自信,以及學生認為數學有沒有用等等這些涉及學習態度的項目。2019 年的調查中四年級共有 58 個受測單位;八年級共有 39 個受測單位。表 26-3 列出臺灣學生回應負面選項的百分比以及排名。

臺灣小學四年級學生在不喜歡數學與學習沒有自信方面,都是國際平均的兩倍左右。雖然學習成就不錯,但是學習心態不健康,難怪到八年級認為數學無用的人數比例竟然高居國際冠軍。其實歷屆評量中顯現成績與態度的反差,似乎成為臺灣數學教育的常態,如此常態其實是非常令人憂心的一種病態。

因為小學數學教育不像國、高中那樣受到升學的嚴重影響,所以四年級學童負面態度的原因,必須從學習環境去瞭解。臺灣大學數學系翁秉仁教授指出:

「在臺灣,一般家長雖然怕數學,卻很喜歡『干預』小學老師的教學。家長多半覺得自己會小學數學,因此可以『盡一份心』。但是他們干預的方式很簡單,看到孩子不會做習題,就指導學生怎麼算;厲害一點的,更直接把國中方法搬下來,卻不做任何解釋。

問題是,除了數學老師之外的成人,多半覺得數學就是公式和計算,不需要解釋(『反正你這樣算就對了!』)還會因此據理力爭,為小孩向老師爭取分數,造成許多教學困擾。」

除了家長的干預外,不少學生還在補習班接受不斷套公式計算的折磨,後果是抵消了老師正常教學的成效。這種幫倒忙的做法,除了歸咎於把公式背誦等同數學學習,更基本的原因是對於兒童智力發展的欠缺理解。特別是「家長多半覺得自己會小學數學」,而輕忽了其中精微細緻的概念層次。

以色列理工學院教授阿哈羅尼(Ron Aharoni),在離散數學方面的成就國際知名,但他願意花時間去小學教數學以瞭解實況。因為他有高深數學修養,以及研究創新經驗,才能針對小學數學發人所不能發的真知灼見。

在他的書《小學算術教什麼,怎麼教:家長須知,也是教師指南》裡,他說:「我教小學時領悟出來一個道理,就是小學數學一點也不單純,除了美之外還有深度。」換句話說:「小學數學雖然不深奧,但包含智慧;雖然不複雜,卻有深意。」

數學家阿哈羅尼認為,小學數學並不單純,反而兼具美與深度。圖/envato elements

所以要正確認識小學數學的重要性,首先應該建立對小學數學的虔敬之意。家長及教師具有這種鄭重其事的心態,才能貼近孩童感受他們學習中遭遇的困惑,才能發揮啟蒙嚮導作用,並且從旁鼓舞好奇、探索、精進的士氣。

社會文化影響改革走向

近二十餘年來,教育改革一直是臺灣社會關注的議題,不過民眾對於教改效果似乎貶過於褒。在 1996 年到 2003 年間,小學數學課程標準也出現過強調知識建構的時期,然而因為引起非常大的爭議不得不叫停。據臺灣勤益大學劉柏宏教授的觀察:

「臺灣近幾年對建構式數學的討論與美國『數學戰爭』的某些過程雖不盡相同,但其背後內涵確實有幾分相似之處。不論在數學界或數學教育界,美國的走向都緊緊牽動臺灣的發展。美國『數學戰爭』雖已緩和但尚未結束,而臺灣的課程爭議也還沒落幕。」

美國的「數學戰爭」起源於 1989 年美國數學教師協會(National Council of Teachers of Mathematics,簡稱 NCTM)公布的《學校數學課程與評量標準》,其中倡議的中小學數學教育改革方向深受建構主義影響。這套《標準》及根據它所編寫的教科書,受到相當多專業數學家的強烈批評,媒體因而用「數學戰爭」描述雙方論辯的激烈程度。

這場戰爭最終導致《各州共同核心標準》(Common CoreStates Standards,簡稱 CCSS)於 2010 年公布,規範了從幼兒園到高中的數學課程。採用此標準的地方達到 41 州、首都華盛頓,以及 4 個海外領地。CCSS 的數學標準強調聚焦、一貫與嚴謹三原則,既注重概念理解也不輕忽實作應用,整體看來比 NCTM 主導期的課程難度加大。雖然 CCSS 得到專業數學團體的熱烈支持,但是反對的勢力仍然存在,由聯邦經費支持的標準化測驗尤其為人所詬病。

美國的數學戰爭牽動著台灣的數學教育。圖/envato elements

數學內容雖然普世相同,但是數學教育深受社會與文化因素的影響,必然與各國的具體國情有關。像是法國菁英層次與普通民眾之間,包括數學教育在內的很多方面,都存在著巨大鴻溝。

曾經得過菲爾茲獎的法國明星國會議員維拉尼(Cédric Villani)在 2018 年 2 月完成一份報告,認為一般人民接受的數學教育幾近災難。他在 21 條改革建議中,強調了提高中小學數學教師水準的迫切性。類似阿哈羅尼在「以色列人人數學有成就基金會」採取的措施,維拉尼的報告也把新加坡的數學教學做為值得學習的楷模。

英國方面的狀況是教室紀律鬆懈,使用教科書比例低落,因而造成數學學習成效欠佳。2016 年英國政府以四年為期,計劃提撥經費給全英格蘭近半數學校,預計培育 700 名種子教師,還要廣泛向上海、新加坡、香港學習,進行數學教學改革。

法國與英國都認為應提高小學數學教師水準。圖/envato elements

為什麼這些國家都要向新加坡學習呢?主要是因為新加坡不僅在 TIMSS 總是名列前茅,在另外一項國際評量 PISA 中也表現出眾。PISA 是《國際學生能力評量計畫》(Programme for International Student Assessment)的簡稱,每三年針對 15 歲學生進行一次跨國評量,藉以瞭解各國學生在「閱讀素養」、「數學素養」與「科學素養」上的能力。

2015 年有 72 個參加評量單位,新加坡在每一素養專案上都獨占鰲頭。2018 年則每項都居第二名,僅輸給從中國取樣的北京、上海、江蘇、浙江組合隊伍。

PISA 評量的目標是各科「素養」,注重理解、應用、解決問題的能力,也是學生進入社會必須具備的能力。評量題目與日常生活相關,同時說明試題的情境,讓學生作答時能把思考與情境聯繫起來。臺灣最新的《十二年國民基本教育課程綱要》,也要著重培養下一代的核心素養,為終身學習奠定基礎與職業生涯發展做好準備,可說是呼應 PISA 引導的教育發展方向。

在注重素養的時代,家長必須先自我教育,才能用正確的觀點、恰當的誘導、健康的態度,協助孩童獲得應有的數學能力。小學教師們也應該加強自我改善的力道,積極參加教師培訓或增能活動,開創書面作業以外的動手實作或身體活動,幫助學生體會出生活周遭處處可發現數學的蹤跡,如此才能使每個人一生最重要的數學教育沒有白白耗費時間與精力。

——本文摘自《數學,這樣看才精彩:李國偉的數學文化講堂》,2022 年 4 月,天下文化出版。


數感宇宙探索課程,現正募資中!

天下文化_96
56 篇文章 ・ 19 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。