Processing math: 100%

0

0
0

文字

分享

0
0
0

把幾何的美戴出去炫耀!來自台灣團隊「單挑概念」的幾何金工——科學開封府系列

Sharkie Lin_96
・2017/06/07 ・1966字 ・閱讀時間約 4 分鐘 ・SR值 493 ・六年級

從「科學」的角度解「開封」印在商品中的知識,就是我們科學開封府的職司。開封府內的胞大仁㜊妱公猻測會不定期介紹各種與科學有關的各種玩意,有時溫柔勸敗,偶爾龍虎狗頭鍘伺候剁手,不管怎樣,請您上座啦!

本次科學開封府邀請了泛科學專欄作者 Shark Lin 來為我們介紹充滿藝數美感的PRISM幾何飾品系列!

從去年秋天開始,我幾乎每天都會上網瀏覽世界數學藝術的相關創作,外國有許多團隊利用衍生藝術(generative art),設計出許多藝數時尚商品,曾在 2016 泛.知識節分享過幾個案例,另一方面也感嘆台灣相關創作較少,沒想到不久後就驚喜發現單挑概念工作室的作品─PRISM幾何飾品。

單挑概念在今年二月舉辦了試戴會(2017),原本以為像是一般的飾品一樣,不過一到現場馬上感受到了金工的魅力,「P01蛻變系列」不僅擁有高質感的外觀,還能夠動手把玩,更有深邃的幾何意涵,一件作品能有如此多層次,真的令人十分驚艷。

PRISM幾何飾品的質感不言自明,為了讓大家了解P01的深刻內涵,我將會詳細介紹其設計巧思與幾何結構。而令人驚奇的是,P01除了能夠以立方體的型式當作墜子,還可以用不規則的超展開作為項鍊或手環。

圖/單挑概念提供
圖/單挑概念提供

雖然網路上有介紹影片與組合教學,到現場P01的不規則展開仍然讓腦袋有點打結,我試著摺疊回立方體研究其幾何結構,花了很多時間還是很難參透,對於不規則展開是如何設計出來的特別感到好奇,畢竟我在研究吠陀立方對稱面法時,曾經畫過上百個立方體反覆思考空間分割,竟然還是沒法完全了解。

-----廣告,請繼續往下閱讀-----

再更仔細看,會注意到P01有三條對角線通過同一個點(可視為原點),其方程式為X=Y, Y=Z, X=Z;與吠陀立方的主對稱面群非常類似,差別是在前者為線、後者為面。

把玩樣品的過程中,P01能夠變型成3個四角錐如下圖。然而,不規則的動態展開仍是個謎,因此我親自走訪了單挑概念工作室,試圖還原設計與發想過程,希望能了解其中的巧思。到底裡面藏了什麼機關呢?

最初,設計師是從平面展開圖去思考如何拆解立方體,在展開後的正方形加上對角線覺得還是過於單調,構思過程中以徒手繪圖搭配電腦軟體,決定再朝立方體的對角線下手,得到了一個底面為正方形的四角錐(五面體)。

設計師當時假設可用四角錐拼成立方體,把多個四角錐的各個面展開畫在紙上,再嘗試拼接、排列、組合,最終發現三個四角錐可組成立方體。

-----廣告,請繼續往下閱讀-----
圖/截取自影片
圖/單挑概念提供

由上圖可知,立方體可以被分成三個四角錐。切法是從一個頂點(可視為原點),沿著三個對稱面切,直到立方體的對角線X=Y=Z為止,切面不超過對角線即可得到。

了解P01的基本元素以後,再來談談不規則的超展開。現在知道立方體由三個四角錐(五面體)構成,理論上飾品攤開來應該有15個面,算一算卻只有13個面,大家可以想一想缺少的2個面分別是四角錐的哪個面,以及在P01的何處?

設計師對立方體幾何原理有相當程度的感知,加上突破框架的創意才能發展出不規則設計,拿掉2個面讓展開變得不對稱,主要是為了整體美感與輕量化考量。我個人十分欣賞這樣的不規則設計,帶有沒法一眼看穿的神秘感。

從幾何結構到產品設計不免有些轉化,像是圖中的梯形其實是代表一個大三角形,設計斜桿是為了項鍊與手鍊的扣頭有地方可扣。

幾何本身帶有一種普世性的美感,能夠成為引領時尚的潮流。單挑概念將把立方體轉化成金工飾品P01蛻變系列,除了飾品本身相當精緻與迷人,還可以讓人動手把玩,更蘊藏了許多設計巧思,充分體現了幾何美學的優雅質感與知性內涵。

-----廣告,請繼續往下閱讀-----

這是來自我們台灣的設計,令國際驚豔的MIT作品,我個人十分欣賞,在此也推薦給正在收看這篇文章的你和妳。

PRISM 幾何飾品在泛科市集

購買 P00 拼圖系列請由此去→

購買 P01 蛻變系列請由此去→

-----廣告,請繼續往下閱讀-----
文章難易度
Sharkie Lin_96
24 篇文章 ・ 6 位粉絲
在國二無聊的早自習意外發現數學的趣味,因此近來體驗到數學研究、藝術創作、採訪寫作、展覽策劃、資優教育等工作。不是念數學也不是學藝術,但樂於從多元視角聊聊數學的各種姿態,以及進行數學藝術創作,希望能為世界帶來一點樂趣。科普部落格〈鯊奇事務所〉https://medium.com/sharkie-studio,聯絡信箱 sharkgallium@gmail.com

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

3
3

文字

分享

1
3
3
在數學中尋找想像力的自由——《生而為人的13堂數學課》
臉譜出版_96
・2022/03/28 ・2312字 ・閱讀時間約 4 分鐘

  • 作者/ 蘇宇瑞 
  • 原文作者/ Francis Su
  • 譯者/ 畢馨云

存在於數學中的第四個自由,是想像的自由

如果探索是在尋找已經存在的東西,那麼想像就是在建構新的想法,或至少對你來說是新的想法。凡是在沙灘上堆過沙堡的孩子,都知道一桶沙子的無限潛力,同樣的,康托也曾說過:「數學的本質就在於它的自由。」[3](康托在19世紀後期做出開創性的研究成果,讓我們首度對無限的本質有了清楚的了解。)

他的意思是,數學不像科學,研究的主題未必和特定的實物有關,因此數學家在能夠研究的題材上,不像其他科學家那樣受限。數學探險家可以運用她的想像,砌出她心目中的任何一座數學城堡。

拓撲學帶領我們進入想像的空間

我的拓撲學課傳授了想像的實踐。正如前面提到的,拓撲學在研究幾何物件受到連續拉伸時會保持不變的性質。

如果我讓一個物件變形,且沒有引進或移走「洞」,那麼從拓撲學的角度,我並沒有改變它。因此,橄欖球和籃球在拓撲學上是相同的,因為其中一個形狀可以變形成另一個;另一方面,甜甜圈和橄欖球在拓撲學上就是不一樣的,因為你必須在橄欖球上戳一個洞,才可以把它變成甜甜圈。

-----廣告,請繼續往下閱讀-----

拓撲學是很有趣的主題,因為我們可以用奇奇怪怪的方式把東西切割開、黏起來或拉伸,來做出各種很妙的形狀。我們常想像在這些形狀裡面走動,所以稱它們為空間

拓撲學愛好者非常樂在想像他們自己的怪異空間,通常是為了回答某個奇特的問題,例如「是否存在具有這種或那種病態的物件?」。(對,我們在數學上會用到病態一詞,是在描述奇怪或異常的表現,就像在醫學中一樣。)然後會用腦袋聯想出一個例子。

舉例來說,有和田湖(Lakes of Wada):可在地圖上繪出,且邊界完全相同的三個相連區域(「湖」);位於其中一座湖的邊上的任何一點,一定會在所有三座湖的邊上。這個建構是以發明它們的數學家和田健雄(Takeo Wada)的名字命名的。還有夏威夷耳環(Hawaiian earring),這是個華麗的物件,上頭有無限多個逐次變小的環,全相切於一個點。[4]

這個碎形圖有三個區域(深色、中間色和淺色的「湖」),有相同的邊界,但與原始和田湖不同的是,圖中的每個湖都由不連通的水池組成。
圖/生而為人的13堂數學課
夏威夷耳環。圖/生而為人的13堂數學課

亞歷山大角球的病態空間

病態空間(pathological space)有個相當著名的例子(至少在數學家當中很有名),就是亞歷山大角球(Alexander horned sphere)。球是呈泡泡形狀的曲面,正圓球表面的空間具有「單連通」(simply connected)這個性質,意思大致上就是,如果你在球的表面拿著一條繩子,把兩端繫在一起,做成一個圈,那麼所繫成的圈不會卡在球上,永遠可以從球上移走,與球分離。(甜甜圈就截然不同了,它表面的空間不是單連通的:如果把繩子的一端穿過甜甜圈中心的洞,再把兩端繫在一起,你就無法讓繩圈脫離甜甜圈。)

-----廣告,請繼續往下閱讀-----

1924年,J. W. 亞歷山大(J. W. Alexander)在想像他的帶角球時,思考了一個問題:有沒有可能用某種奇特的變形方式,讓泡泡上的相異兩點永遠不會相碰,但泡泡表面的空間又不是單連通的?

起先亞歷山大認為,不管哪個變形泡泡的表面都一定是單連通的。[5]但後來他舉出了一個表面不是單連通的例子!他的假想結構可以描述如下(這不完全是他的結構,但在拓撲學上是相同的):取一個泡泡,擠出兩個「角」,接著再從每個角擠出一對捏起的手指,且讓這兩對捏起的手指幾乎相扣在一起。因為捏起的手指並沒有完全相碰,所以你可以在更小的尺度上重複這個步驟,從前面各組手指擠出一對細小的捏合手指,相扣但沒完全相碰。像這樣繼續做下去,做到極限,就會得到亞歷山大角球。

環繞在其中一個初始角底部的繩圈,無法從帶角球脫離,原因正是相扣手指鉗的極限過程。如果指鉗在某個階段結束,沒有做到極限,那麼繩圈就很容易脫落了。這種令人驚奇的結構,不僅需要靠想像力思考,還需運用想像力去驗證帶角球在極限時確實仍是一個球。

亞歷山大角球。圖/生而為人的13堂數學課

你可以想像把圖放大,去看接連各層級的捏角的碎形本質:在細節的每個層級,景象看起來都相同。

-----廣告,請繼續往下閱讀-----

想像力是我們的超能力

想像的自由為數學注入了夢幻般的特性。許個願,瞧!你的夢想成真了。

如果在每個階段我們都有機會運用想像力,數學學習的樂趣會多出多少?你不必從事高等數學,就能運用想像力。

在算術中,我們可以嘗試建構出帶有奇特性質的數;能被你出生年月日的所有數字整除的最小數字是多少?你能不能找出連續十個不是質數的數?

在幾何學中,我們可以設計出屬於自己的圖案,探究它們的幾何性質;你喜歡的圖案裡有哪些對稱性?

-----廣告,請繼續往下閱讀-----

在統計學中,我們可以考慮一個資料集,想出有創造力的視覺化方法;哪些方法的特點最好?

如果你是從枯燥的教科書上學數學,那就看看能不能把問題改造一下,以提升你的想像力,這麼做就是在讓你鍛鍊想像的自由。

摘自《生而為人的13堂數學課:透過數學的心智體驗與美德探索,讓你成為更好的人的練習》,2022 年 1 月,臉譜出版
-----廣告,請繼續往下閱讀-----
所有討論 1
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

4
1

文字

分享

0
4
1
影印紙的巧妙比例!摺摺摺~摺出四角錐──《藝數摺學》
臉譜出版_96
・2019/10/21 ・2146字 ・閱讀時間約 4 分鐘 ・SR值 469 ・五年級

-----廣告,請繼續往下閱讀-----

  • 作者/李政憲

對應課程:八年級「勾股定理」、九年級「相似形」、「生活中的立體圖形」
需要材料:A4或B4影印紙

為什麼影印紙要設計成這個長寬比例?

  • 你知道生活中常用的影印紙的長寬比例是多少嗎?

請拿起一張影印紙(A4 或 B4 皆可),依照圖 1 和圖 2 的方式摺摺看,就會發現在圖 1 中摺出來的等腰直角三角形的斜邊(圖中虛線),和影印紙的長邊竟然是相等的。

而又由於影印紙的短邊就是等腰直角三角形的一股長,假設短邊長為 1,等腰直角三角形的斜邊長就會是\sqrt{2},又斜邊與長邊等長,因此影印紙的長邊與短邊的長度比就是 \sqrt{2}:1 了。

圖 1

圖 2

-----廣告,請繼續往下閱讀-----
  • 至於影印紙為什麼要設計成 \sqrt{2}:1 這個比例呢?

其實有個很重要的原因。請不妨再拿一張相同大小的影印紙,對半裁切後將其中一半旋轉 90 度,再與另一張完整影印紙的左上方兩邊對齊,你會發現兩張長方形的對角線恰可連成一直線(如圖 3~4),也就是兩個長方形彼此是相似的(因為兩多邊形相似的條件為:對應角相等,且對應邊成比例)。

若我們假設原紙張的短邊為 1,長邊為 x,則我們可以列出 x:1=1:\frac{x}{2}的算式,故 x^{2}=2,便可得出 x=\sqrt{2} 的結果。

也就是若我們將影印紙沿長邊中點連線對半裁切(或將大小相等的兩張影印紙以長邊拼合)得到的紙張,將與原影印紙的比例相同。

圖 3

-----廣告,請繼續往下閱讀-----

圖 4

如此一來,若我們影印時需要縮小圖形,就只需要將原影印紙作長邊對半裁切,則縮小的影印紙與原影印紙的大小比例相同,原作品大小與影印出來的結果也會彼此相似,放大時也是同樣的道理。

而透過影印紙的巧妙比例,我們可以製作出一些十分有趣的作品。讓我們先從一個簡單的四角錐開始做起吧!

用影印紙做出四角錐

首先請拿一張影印紙, 如圖 5、6 分別在長短邊各摺出其中點連線後,再摺出長邊中點與原矩形的四個端點的連線,如圖 7、8。

-----廣告,請繼續往下閱讀-----

李老師小聲說:「如果想節省空間與紙張,讀者也可將 A4 尺寸的影印紙,應用其 \sqrt{2}:1 的特性,將其裁切為等比例的兩等份或四等份,再進行後續的摺製與組裝。」

圖 5

圖 6

圖 7

圖 8

-----廣告,請繼續往下閱讀-----

接下來如圖 9,將最後摺製的四條連線由谷線改為山線,且左右兩交叉點的連線不摺(圖中實線處),即可依山谷線分佈完成如圖 10 的四角錐。

圖 9

圖 10

由於這個作品目前無法定型,建議可以翻至背面,將內縮突起的直角三角形,分別摺製其兩銳角的角平分線(如圖 11、12),即可將圖 10 放於平面時作簡單固定如圖 13,而若要固定得更完整,也可以口紅膠或膠水將中間的鈍角三角形接合面黏貼,就不會有容易移動的情形了。

-----廣告,請繼續往下閱讀-----

圖 11

圖 12

圖 13

接下來按照上面方式摺製共六個四角錐,並用膠帶將其對應邊接合如圖 14,即可將六個四角錐翻摺形成一個正立方體如圖 15,且此六個角錐的頂點恰重合於正立方體的中心處。

-----廣告,請繼續往下閱讀-----

李老師小聲說:「事實上,圖 14 是其中一種正方體展開圖的組合方式,各位不妨試試與圖 14 不同的其他組合方式,也是很有趣的哦!」

圖 14

圖 15

不曉得各位有沒有覺得很神奇呢?我們以幾張生活中隨手可得的影印紙,幾道簡單的摺痕,就可以完成一個正立方體,這也代表每個角錐恰是正方體體積的六分之一!這是為什麼呢?

  • 為了討論這個問題,我們不妨看一下圖 16。

若將正方體從中心點與八個頂點連線,可將此正方體切割為六個角錐,假設這個正方體的邊長為 1,則可計算出其底部正方形的對角線為 \sqrt{2},再根據勾股定理,可以算得此正方體最遠的兩頂點間的距離為 \sqrt{3},也就是此四角錐的稜長為 \frac{\sqrt{3}}{2}

-----廣告,請繼續往下閱讀-----

圖 16

圖 17

接下來我們再看圖 17 的四角錐展開圖,根據剛剛摺製的過程,長邊的一半即為正方體的邊長=1,應用影印紙的比例,我們可以得知短邊長為 \sqrt{2},故其稜長(即長邊中點與四個端點連線段長的一半)為 \frac{\sqrt{3}}{2},也就是說這麼摺製出來的四角錐就和上面從正方體切割出的角錐稜長相等、底面積也相等囉!

李老師小聲說:「亦可考慮以平行線截等比例線段,求得角錐的高度為正方體邊長的一半來說明。」

——本文摘自泛科學 2019 年 10 月選書《藝數摺學》,2019 年 9 月,臉譜出版

 

 

 

 

-----廣告,請繼續往下閱讀-----
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。