0

0
0

文字

分享

0
0
0

把幾何的美戴出去炫耀!來自台灣團隊「單挑概念」的幾何金工——科學開封府系列

Sharkie Lin 林峽宇_96
・2017/06/07 ・1966字 ・閱讀時間約 4 分鐘 ・SR值 493 ・六年級

從「科學」的角度解「開封」印在商品中的知識,就是我們科學開封府的職司。開封府內的胞大仁㜊妱公猻測會不定期介紹各種與科學有關的各種玩意,有時溫柔勸敗,偶爾龍虎狗頭鍘伺候剁手,不管怎樣,請您上座啦!

本次科學開封府邀請了泛科學專欄作者 Shark Lin 來為我們介紹充滿藝數美感的PRISM幾何飾品系列!

從去年秋天開始,我幾乎每天都會上網瀏覽世界數學藝術的相關創作,外國有許多團隊利用衍生藝術(generative art),設計出許多藝數時尚商品,曾在 2016 泛.知識節分享過幾個案例,另一方面也感嘆台灣相關創作較少,沒想到不久後就驚喜發現單挑概念工作室的作品─PRISM幾何飾品。

單挑概念在今年二月舉辦了試戴會(2017),原本以為像是一般的飾品一樣,不過一到現場馬上感受到了金工的魅力,「P01蛻變系列」不僅擁有高質感的外觀,還能夠動手把玩,更有深邃的幾何意涵,一件作品能有如此多層次,真的令人十分驚艷。

PRISM幾何飾品的質感不言自明,為了讓大家了解P01的深刻內涵,我將會詳細介紹其設計巧思與幾何結構。而令人驚奇的是,P01除了能夠以立方體的型式當作墜子,還可以用不規則的超展開作為項鍊或手環。

圖/單挑概念提供
圖/單挑概念提供

雖然網路上有介紹影片與組合教學,到現場P01的不規則展開仍然讓腦袋有點打結,我試著摺疊回立方體研究其幾何結構,花了很多時間還是很難參透,對於不規則展開是如何設計出來的特別感到好奇,畢竟我在研究吠陀立方對稱面法時,曾經畫過上百個立方體反覆思考空間分割,竟然還是沒法完全了解。

-----廣告,請繼續往下閱讀-----

再更仔細看,會注意到P01有三條對角線通過同一個點(可視為原點),其方程式為X=Y, Y=Z, X=Z;與吠陀立方的主對稱面群非常類似,差別是在前者為線、後者為面。

把玩樣品的過程中,P01能夠變型成3個四角錐如下圖。然而,不規則的動態展開仍是個謎,因此我親自走訪了單挑概念工作室,試圖還原設計與發想過程,希望能了解其中的巧思。到底裡面藏了什麼機關呢?

最初,設計師是從平面展開圖去思考如何拆解立方體,在展開後的正方形加上對角線覺得還是過於單調,構思過程中以徒手繪圖搭配電腦軟體,決定再朝立方體的對角線下手,得到了一個底面為正方形的四角錐(五面體)。

設計師當時假設可用四角錐拼成立方體,把多個四角錐的各個面展開畫在紙上,再嘗試拼接、排列、組合,最終發現三個四角錐可組成立方體。

-----廣告,請繼續往下閱讀-----
圖/截取自影片
圖/單挑概念提供

由上圖可知,立方體可以被分成三個四角錐。切法是從一個頂點(可視為原點),沿著三個對稱面切,直到立方體的對角線X=Y=Z為止,切面不超過對角線即可得到。

了解P01的基本元素以後,再來談談不規則的超展開。現在知道立方體由三個四角錐(五面體)構成,理論上飾品攤開來應該有15個面,算一算卻只有13個面,大家可以想一想缺少的2個面分別是四角錐的哪個面,以及在P01的何處?

設計師對立方體幾何原理有相當程度的感知,加上突破框架的創意才能發展出不規則設計,拿掉2個面讓展開變得不對稱,主要是為了整體美感與輕量化考量。我個人十分欣賞這樣的不規則設計,帶有沒法一眼看穿的神秘感。

從幾何結構到產品設計不免有些轉化,像是圖中的梯形其實是代表一個大三角形,設計斜桿是為了項鍊與手鍊的扣頭有地方可扣。

幾何本身帶有一種普世性的美感,能夠成為引領時尚的潮流。單挑概念將把立方體轉化成金工飾品P01蛻變系列,除了飾品本身相當精緻與迷人,還可以讓人動手把玩,更蘊藏了許多設計巧思,充分體現了幾何美學的優雅質感與知性內涵。

-----廣告,請繼續往下閱讀-----

這是來自我們台灣的設計,令國際驚豔的MIT作品,我個人十分欣賞,在此也推薦給正在收看這篇文章的你和妳。

PRISM 幾何飾品在泛科市集

購買 P00 拼圖系列請由此去→

購買 P01 蛻變系列請由此去→

-----廣告,請繼續往下閱讀-----
文章難易度
Sharkie Lin 林峽宇_96
24 篇文章 ・ 6 位粉絲
在國二無聊的早自習意外發現數學的趣味,因此近來體驗到數學研究、藝術創作、採訪寫作、展覽策劃、資優教育等工作。不是念數學也不是學藝術,但樂於從多元視角聊聊數學的各種姿態,以及進行數學藝術創作,希望能為世界帶來一點樂趣。科普部落格〈鯊奇事務所〉https://medium.com/sharkie-studio,聯絡信箱 sharkgallium@gmail.com

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

3
3

文字

分享

1
3
3
在數學中尋找想像力的自由——《生而為人的13堂數學課》
臉譜出版_96
・2022/03/28 ・2312字 ・閱讀時間約 4 分鐘

  • 作者/ 蘇宇瑞 
  • 原文作者/ Francis Su
  • 譯者/ 畢馨云

存在於數學中的第四個自由,是想像的自由

如果探索是在尋找已經存在的東西,那麼想像就是在建構新的想法,或至少對你來說是新的想法。凡是在沙灘上堆過沙堡的孩子,都知道一桶沙子的無限潛力,同樣的,康托也曾說過:「數學的本質就在於它的自由。」[3](康托在19世紀後期做出開創性的研究成果,讓我們首度對無限的本質有了清楚的了解。)

他的意思是,數學不像科學,研究的主題未必和特定的實物有關,因此數學家在能夠研究的題材上,不像其他科學家那樣受限。數學探險家可以運用她的想像,砌出她心目中的任何一座數學城堡。

拓撲學帶領我們進入想像的空間

我的拓撲學課傳授了想像的實踐。正如前面提到的,拓撲學在研究幾何物件受到連續拉伸時會保持不變的性質。

如果我讓一個物件變形,且沒有引進或移走「洞」,那麼從拓撲學的角度,我並沒有改變它。因此,橄欖球和籃球在拓撲學上是相同的,因為其中一個形狀可以變形成另一個;另一方面,甜甜圈和橄欖球在拓撲學上就是不一樣的,因為你必須在橄欖球上戳一個洞,才可以把它變成甜甜圈。

-----廣告,請繼續往下閱讀-----

拓撲學是很有趣的主題,因為我們可以用奇奇怪怪的方式把東西切割開、黏起來或拉伸,來做出各種很妙的形狀。我們常想像在這些形狀裡面走動,所以稱它們為空間

拓撲學愛好者非常樂在想像他們自己的怪異空間,通常是為了回答某個奇特的問題,例如「是否存在具有這種或那種病態的物件?」。(對,我們在數學上會用到病態一詞,是在描述奇怪或異常的表現,就像在醫學中一樣。)然後會用腦袋聯想出一個例子。

舉例來說,有和田湖(Lakes of Wada):可在地圖上繪出,且邊界完全相同的三個相連區域(「湖」);位於其中一座湖的邊上的任何一點,一定會在所有三座湖的邊上。這個建構是以發明它們的數學家和田健雄(Takeo Wada)的名字命名的。還有夏威夷耳環(Hawaiian earring),這是個華麗的物件,上頭有無限多個逐次變小的環,全相切於一個點。[4]

這個碎形圖有三個區域(深色、中間色和淺色的「湖」),有相同的邊界,但與原始和田湖不同的是,圖中的每個湖都由不連通的水池組成。
圖/生而為人的13堂數學課
夏威夷耳環。圖/生而為人的13堂數學課

亞歷山大角球的病態空間

病態空間(pathological space)有個相當著名的例子(至少在數學家當中很有名),就是亞歷山大角球(Alexander horned sphere)。球是呈泡泡形狀的曲面,正圓球表面的空間具有「單連通」(simply connected)這個性質,意思大致上就是,如果你在球的表面拿著一條繩子,把兩端繫在一起,做成一個圈,那麼所繫成的圈不會卡在球上,永遠可以從球上移走,與球分離。(甜甜圈就截然不同了,它表面的空間不是單連通的:如果把繩子的一端穿過甜甜圈中心的洞,再把兩端繫在一起,你就無法讓繩圈脫離甜甜圈。)

-----廣告,請繼續往下閱讀-----

1924年,J. W. 亞歷山大(J. W. Alexander)在想像他的帶角球時,思考了一個問題:有沒有可能用某種奇特的變形方式,讓泡泡上的相異兩點永遠不會相碰,但泡泡表面的空間又不是單連通的?

起先亞歷山大認為,不管哪個變形泡泡的表面都一定是單連通的。[5]但後來他舉出了一個表面不是單連通的例子!他的假想結構可以描述如下(這不完全是他的結構,但在拓撲學上是相同的):取一個泡泡,擠出兩個「角」,接著再從每個角擠出一對捏起的手指,且讓這兩對捏起的手指幾乎相扣在一起。因為捏起的手指並沒有完全相碰,所以你可以在更小的尺度上重複這個步驟,從前面各組手指擠出一對細小的捏合手指,相扣但沒完全相碰。像這樣繼續做下去,做到極限,就會得到亞歷山大角球。

環繞在其中一個初始角底部的繩圈,無法從帶角球脫離,原因正是相扣手指鉗的極限過程。如果指鉗在某個階段結束,沒有做到極限,那麼繩圈就很容易脫落了。這種令人驚奇的結構,不僅需要靠想像力思考,還需運用想像力去驗證帶角球在極限時確實仍是一個球。

亞歷山大角球。圖/生而為人的13堂數學課

你可以想像把圖放大,去看接連各層級的捏角的碎形本質:在細節的每個層級,景象看起來都相同。

-----廣告,請繼續往下閱讀-----

想像力是我們的超能力

想像的自由為數學注入了夢幻般的特性。許個願,瞧!你的夢想成真了。

如果在每個階段我們都有機會運用想像力,數學學習的樂趣會多出多少?你不必從事高等數學,就能運用想像力。

在算術中,我們可以嘗試建構出帶有奇特性質的數;能被你出生年月日的所有數字整除的最小數字是多少?你能不能找出連續十個不是質數的數?

在幾何學中,我們可以設計出屬於自己的圖案,探究它們的幾何性質;你喜歡的圖案裡有哪些對稱性?

-----廣告,請繼續往下閱讀-----

在統計學中,我們可以考慮一個資料集,想出有創造力的視覺化方法;哪些方法的特點最好?

如果你是從枯燥的教科書上學數學,那就看看能不能把問題改造一下,以提升你的想像力,這麼做就是在讓你鍛鍊想像的自由。

摘自《生而為人的13堂數學課:透過數學的心智體驗與美德探索,讓你成為更好的人的練習》,2022 年 1 月,臉譜出版
-----廣告,請繼續往下閱讀-----
所有討論 1
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

4
1

文字

分享

0
4
1
影印紙的巧妙比例!摺摺摺~摺出四角錐──《藝數摺學》
臉譜出版_96
・2019/10/21 ・2146字 ・閱讀時間約 4 分鐘 ・SR值 469 ・五年級

  • 作者/李政憲

對應課程:八年級「勾股定理」、九年級「相似形」、「生活中的立體圖形」
需要材料:A4或B4影印紙

為什麼影印紙要設計成這個長寬比例?

  • 你知道生活中常用的影印紙的長寬比例是多少嗎?

請拿起一張影印紙(A4 或 B4 皆可),依照圖 1 和圖 2 的方式摺摺看,就會發現在圖 1 中摺出來的等腰直角三角形的斜邊(圖中虛線),和影印紙的長邊竟然是相等的。

而又由於影印紙的短邊就是等腰直角三角形的一股長,假設短邊長為 1,等腰直角三角形的斜邊長就會是\(\sqrt{2}\),又斜邊與長邊等長,因此影印紙的長邊與短邊的長度比就是 \(\sqrt{2}\):1 了。

圖 1

圖 2

-----廣告,請繼續往下閱讀-----
  • 至於影印紙為什麼要設計成 \(\sqrt{2}\):1 這個比例呢?

其實有個很重要的原因。請不妨再拿一張相同大小的影印紙,對半裁切後將其中一半旋轉 90 度,再與另一張完整影印紙的左上方兩邊對齊,你會發現兩張長方形的對角線恰可連成一直線(如圖 3~4),也就是兩個長方形彼此是相似的(因為兩多邊形相似的條件為:對應角相等,且對應邊成比例)。

若我們假設原紙張的短邊為 1,長邊為 x,則我們可以列出 x:1=1:\(\frac{x}{2}\)的算式,故 \(x^{2}\)=2,便可得出 x=\(\sqrt{2}\) 的結果。

也就是若我們將影印紙沿長邊中點連線對半裁切(或將大小相等的兩張影印紙以長邊拼合)得到的紙張,將與原影印紙的比例相同。

圖 3

-----廣告,請繼續往下閱讀-----

圖 4

如此一來,若我們影印時需要縮小圖形,就只需要將原影印紙作長邊對半裁切,則縮小的影印紙與原影印紙的大小比例相同,原作品大小與影印出來的結果也會彼此相似,放大時也是同樣的道理。

而透過影印紙的巧妙比例,我們可以製作出一些十分有趣的作品。讓我們先從一個簡單的四角錐開始做起吧!

用影印紙做出四角錐

首先請拿一張影印紙, 如圖 5、6 分別在長短邊各摺出其中點連線後,再摺出長邊中點與原矩形的四個端點的連線,如圖 7、8。

-----廣告,請繼續往下閱讀-----

李老師小聲說:「如果想節省空間與紙張,讀者也可將 A4 尺寸的影印紙,應用其 \(\sqrt{2}\):1 的特性,將其裁切為等比例的兩等份或四等份,再進行後續的摺製與組裝。」

圖 5

圖 6

圖 7

圖 8

-----廣告,請繼續往下閱讀-----

接下來如圖 9,將最後摺製的四條連線由谷線改為山線,且左右兩交叉點的連線不摺(圖中實線處),即可依山谷線分佈完成如圖 10 的四角錐。

圖 9

圖 10

由於這個作品目前無法定型,建議可以翻至背面,將內縮突起的直角三角形,分別摺製其兩銳角的角平分線(如圖 11、12),即可將圖 10 放於平面時作簡單固定如圖 13,而若要固定得更完整,也可以口紅膠或膠水將中間的鈍角三角形接合面黏貼,就不會有容易移動的情形了。

-----廣告,請繼續往下閱讀-----

圖 11

圖 12

圖 13

接下來按照上面方式摺製共六個四角錐,並用膠帶將其對應邊接合如圖 14,即可將六個四角錐翻摺形成一個正立方體如圖 15,且此六個角錐的頂點恰重合於正立方體的中心處。

-----廣告,請繼續往下閱讀-----

李老師小聲說:「事實上,圖 14 是其中一種正方體展開圖的組合方式,各位不妨試試與圖 14 不同的其他組合方式,也是很有趣的哦!」

圖 14

圖 15

不曉得各位有沒有覺得很神奇呢?我們以幾張生活中隨手可得的影印紙,幾道簡單的摺痕,就可以完成一個正立方體,這也代表每個角錐恰是正方體體積的六分之一!這是為什麼呢?

  • 為了討論這個問題,我們不妨看一下圖 16。

若將正方體從中心點與八個頂點連線,可將此正方體切割為六個角錐,假設這個正方體的邊長為 1,則可計算出其底部正方形的對角線為 \(\sqrt{2}\),再根據勾股定理,可以算得此正方體最遠的兩頂點間的距離為 \(\sqrt{3}\),也就是此四角錐的稜長為 \(\frac{\sqrt{3}}{2}\) 。

-----廣告,請繼續往下閱讀-----

圖 16

圖 17

接下來我們再看圖 17 的四角錐展開圖,根據剛剛摺製的過程,長邊的一半即為正方體的邊長=1,應用影印紙的比例,我們可以得知短邊長為 \(\sqrt{2}\),故其稜長(即長邊中點與四個端點連線段長的一半)為 \(\frac{\sqrt{3}}{2}\),也就是說這麼摺製出來的四角錐就和上面從正方體切割出的角錐稜長相等、底面積也相等囉!

李老師小聲說:「亦可考慮以平行線截等比例線段,求得角錐的高度為正方體邊長的一半來說明。」

——本文摘自泛科學 2019 年 10 月選書《藝數摺學》,2019 年 9 月,臉譜出版

 

 

 

 

-----廣告,請繼續往下閱讀-----
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。