0

0
0

文字

分享

0
0
0

把幾何的美戴出去炫耀!來自台灣團隊「單挑概念」的幾何金工——科學開封府系列

Sharkie Lin_96
・2017/06/07 ・1966字 ・閱讀時間約 4 分鐘 ・SR值 493 ・六年級

從「科學」的角度解「開封」印在商品中的知識,就是我們科學開封府的職司。開封府內的胞大仁㜊妱公猻測會不定期介紹各種與科學有關的各種玩意,有時溫柔勸敗,偶爾龍虎狗頭鍘伺候剁手,不管怎樣,請您上座啦!

本次科學開封府邀請了泛科學專欄作者 Shark Lin 來為我們介紹充滿藝數美感的PRISM幾何飾品系列!

從去年秋天開始,我幾乎每天都會上網瀏覽世界數學藝術的相關創作,外國有許多團隊利用衍生藝術(generative art),設計出許多藝數時尚商品,曾在 2016 泛.知識節分享過幾個案例,另一方面也感嘆台灣相關創作較少,沒想到不久後就驚喜發現單挑概念工作室的作品─PRISM幾何飾品。

單挑概念在今年二月舉辦了試戴會(2017),原本以為像是一般的飾品一樣,不過一到現場馬上感受到了金工的魅力,「P01蛻變系列」不僅擁有高質感的外觀,還能夠動手把玩,更有深邃的幾何意涵,一件作品能有如此多層次,真的令人十分驚艷。

PRISM幾何飾品的質感不言自明,為了讓大家了解P01的深刻內涵,我將會詳細介紹其設計巧思與幾何結構。而令人驚奇的是,P01除了能夠以立方體的型式當作墜子,還可以用不規則的超展開作為項鍊或手環。

圖/單挑概念提供
圖/單挑概念提供

雖然網路上有介紹影片與組合教學,到現場P01的不規則展開仍然讓腦袋有點打結,我試著摺疊回立方體研究其幾何結構,花了很多時間還是很難參透,對於不規則展開是如何設計出來的特別感到好奇,畢竟我在研究吠陀立方對稱面法時,曾經畫過上百個立方體反覆思考空間分割,竟然還是沒法完全了解。

-----廣告,請繼續往下閱讀-----

再更仔細看,會注意到P01有三條對角線通過同一個點(可視為原點),其方程式為X=Y, Y=Z, X=Z;與吠陀立方的主對稱面群非常類似,差別是在前者為線、後者為面。

把玩樣品的過程中,P01能夠變型成3個四角錐如下圖。然而,不規則的動態展開仍是個謎,因此我親自走訪了單挑概念工作室,試圖還原設計與發想過程,希望能了解其中的巧思。到底裡面藏了什麼機關呢?

最初,設計師是從平面展開圖去思考如何拆解立方體,在展開後的正方形加上對角線覺得還是過於單調,構思過程中以徒手繪圖搭配電腦軟體,決定再朝立方體的對角線下手,得到了一個底面為正方形的四角錐(五面體)。

設計師當時假設可用四角錐拼成立方體,把多個四角錐的各個面展開畫在紙上,再嘗試拼接、排列、組合,最終發現三個四角錐可組成立方體。

-----廣告,請繼續往下閱讀-----
圖/截取自影片
圖/單挑概念提供

由上圖可知,立方體可以被分成三個四角錐。切法是從一個頂點(可視為原點),沿著三個對稱面切,直到立方體的對角線X=Y=Z為止,切面不超過對角線即可得到。

了解P01的基本元素以後,再來談談不規則的超展開。現在知道立方體由三個四角錐(五面體)構成,理論上飾品攤開來應該有15個面,算一算卻只有13個面,大家可以想一想缺少的2個面分別是四角錐的哪個面,以及在P01的何處?

設計師對立方體幾何原理有相當程度的感知,加上突破框架的創意才能發展出不規則設計,拿掉2個面讓展開變得不對稱,主要是為了整體美感與輕量化考量。我個人十分欣賞這樣的不規則設計,帶有沒法一眼看穿的神秘感。

從幾何結構到產品設計不免有些轉化,像是圖中的梯形其實是代表一個大三角形,設計斜桿是為了項鍊與手鍊的扣頭有地方可扣。

幾何本身帶有一種普世性的美感,能夠成為引領時尚的潮流。單挑概念將把立方體轉化成金工飾品P01蛻變系列,除了飾品本身相當精緻與迷人,還可以讓人動手把玩,更蘊藏了許多設計巧思,充分體現了幾何美學的優雅質感與知性內涵。

-----廣告,請繼續往下閱讀-----

這是來自我們台灣的設計,令國際驚豔的MIT作品,我個人十分欣賞,在此也推薦給正在收看這篇文章的你和妳。

PRISM 幾何飾品在泛科市集

購買 P00 拼圖系列請由此去→

購買 P01 蛻變系列請由此去→

-----廣告,請繼續往下閱讀-----
文章難易度
Sharkie Lin_96
24 篇文章 ・ 6 位粉絲
在國二無聊的早自習意外發現數學的趣味,因此近來體驗到數學研究、藝術創作、採訪寫作、展覽策劃、資優教育等工作。不是念數學也不是學藝術,但樂於從多元視角聊聊數學的各種姿態,以及進行數學藝術創作,希望能為世界帶來一點樂趣。科普部落格〈鯊奇事務所〉https://medium.com/sharkie-studio,聯絡信箱 sharkgallium@gmail.com

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

3
3

文字

分享

1
3
3
在數學中尋找想像力的自由——《生而為人的13堂數學課》
臉譜出版_96
・2022/03/28 ・2312字 ・閱讀時間約 4 分鐘

  • 作者/ 蘇宇瑞 
  • 原文作者/ Francis Su
  • 譯者/ 畢馨云

存在於數學中的第四個自由,是想像的自由

如果探索是在尋找已經存在的東西,那麼想像就是在建構新的想法,或至少對你來說是新的想法。凡是在沙灘上堆過沙堡的孩子,都知道一桶沙子的無限潛力,同樣的,康托也曾說過:「數學的本質就在於它的自由。」[3](康托在19世紀後期做出開創性的研究成果,讓我們首度對無限的本質有了清楚的了解。)

他的意思是,數學不像科學,研究的主題未必和特定的實物有關,因此數學家在能夠研究的題材上,不像其他科學家那樣受限。數學探險家可以運用她的想像,砌出她心目中的任何一座數學城堡。

拓撲學帶領我們進入想像的空間

我的拓撲學課傳授了想像的實踐。正如前面提到的,拓撲學在研究幾何物件受到連續拉伸時會保持不變的性質。

如果我讓一個物件變形,且沒有引進或移走「洞」,那麼從拓撲學的角度,我並沒有改變它。因此,橄欖球和籃球在拓撲學上是相同的,因為其中一個形狀可以變形成另一個;另一方面,甜甜圈和橄欖球在拓撲學上就是不一樣的,因為你必須在橄欖球上戳一個洞,才可以把它變成甜甜圈。

-----廣告,請繼續往下閱讀-----

拓撲學是很有趣的主題,因為我們可以用奇奇怪怪的方式把東西切割開、黏起來或拉伸,來做出各種很妙的形狀。我們常想像在這些形狀裡面走動,所以稱它們為空間

拓撲學愛好者非常樂在想像他們自己的怪異空間,通常是為了回答某個奇特的問題,例如「是否存在具有這種或那種病態的物件?」。(對,我們在數學上會用到病態一詞,是在描述奇怪或異常的表現,就像在醫學中一樣。)然後會用腦袋聯想出一個例子。

舉例來說,有和田湖(Lakes of Wada):可在地圖上繪出,且邊界完全相同的三個相連區域(「湖」);位於其中一座湖的邊上的任何一點,一定會在所有三座湖的邊上。這個建構是以發明它們的數學家和田健雄(Takeo Wada)的名字命名的。還有夏威夷耳環(Hawaiian earring),這是個華麗的物件,上頭有無限多個逐次變小的環,全相切於一個點。[4]

這個碎形圖有三個區域(深色、中間色和淺色的「湖」),有相同的邊界,但與原始和田湖不同的是,圖中的每個湖都由不連通的水池組成。
圖/生而為人的13堂數學課
夏威夷耳環。圖/生而為人的13堂數學課

亞歷山大角球的病態空間

病態空間(pathological space)有個相當著名的例子(至少在數學家當中很有名),就是亞歷山大角球(Alexander horned sphere)。球是呈泡泡形狀的曲面,正圓球表面的空間具有「單連通」(simply connected)這個性質,意思大致上就是,如果你在球的表面拿著一條繩子,把兩端繫在一起,做成一個圈,那麼所繫成的圈不會卡在球上,永遠可以從球上移走,與球分離。(甜甜圈就截然不同了,它表面的空間不是單連通的:如果把繩子的一端穿過甜甜圈中心的洞,再把兩端繫在一起,你就無法讓繩圈脫離甜甜圈。)

-----廣告,請繼續往下閱讀-----

1924年,J. W. 亞歷山大(J. W. Alexander)在想像他的帶角球時,思考了一個問題:有沒有可能用某種奇特的變形方式,讓泡泡上的相異兩點永遠不會相碰,但泡泡表面的空間又不是單連通的?

起先亞歷山大認為,不管哪個變形泡泡的表面都一定是單連通的。[5]但後來他舉出了一個表面不是單連通的例子!他的假想結構可以描述如下(這不完全是他的結構,但在拓撲學上是相同的):取一個泡泡,擠出兩個「角」,接著再從每個角擠出一對捏起的手指,且讓這兩對捏起的手指幾乎相扣在一起。因為捏起的手指並沒有完全相碰,所以你可以在更小的尺度上重複這個步驟,從前面各組手指擠出一對細小的捏合手指,相扣但沒完全相碰。像這樣繼續做下去,做到極限,就會得到亞歷山大角球。

環繞在其中一個初始角底部的繩圈,無法從帶角球脫離,原因正是相扣手指鉗的極限過程。如果指鉗在某個階段結束,沒有做到極限,那麼繩圈就很容易脫落了。這種令人驚奇的結構,不僅需要靠想像力思考,還需運用想像力去驗證帶角球在極限時確實仍是一個球。

亞歷山大角球。圖/生而為人的13堂數學課

你可以想像把圖放大,去看接連各層級的捏角的碎形本質:在細節的每個層級,景象看起來都相同。

-----廣告,請繼續往下閱讀-----

想像力是我們的超能力

想像的自由為數學注入了夢幻般的特性。許個願,瞧!你的夢想成真了。

如果在每個階段我們都有機會運用想像力,數學學習的樂趣會多出多少?你不必從事高等數學,就能運用想像力。

在算術中,我們可以嘗試建構出帶有奇特性質的數;能被你出生年月日的所有數字整除的最小數字是多少?你能不能找出連續十個不是質數的數?

在幾何學中,我們可以設計出屬於自己的圖案,探究它們的幾何性質;你喜歡的圖案裡有哪些對稱性?

-----廣告,請繼續往下閱讀-----

在統計學中,我們可以考慮一個資料集,想出有創造力的視覺化方法;哪些方法的特點最好?

如果你是從枯燥的教科書上學數學,那就看看能不能把問題改造一下,以提升你的想像力,這麼做就是在讓你鍛鍊想像的自由。

摘自《生而為人的13堂數學課:透過數學的心智體驗與美德探索,讓你成為更好的人的練習》,2022 年 1 月,臉譜出版
-----廣告,請繼續往下閱讀-----
所有討論 1
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

4
1

文字

分享

0
4
1
影印紙的巧妙比例!摺摺摺~摺出四角錐──《藝數摺學》
臉譜出版_96
・2019/10/21 ・2146字 ・閱讀時間約 4 分鐘 ・SR值 469 ・五年級

  • 作者/李政憲

對應課程:八年級「勾股定理」、九年級「相似形」、「生活中的立體圖形」
需要材料:A4或B4影印紙

為什麼影印紙要設計成這個長寬比例?

  • 你知道生活中常用的影印紙的長寬比例是多少嗎?

請拿起一張影印紙(A4 或 B4 皆可),依照圖 1 和圖 2 的方式摺摺看,就會發現在圖 1 中摺出來的等腰直角三角形的斜邊(圖中虛線),和影印紙的長邊竟然是相等的。

而又由於影印紙的短邊就是等腰直角三角形的一股長,假設短邊長為 1,等腰直角三角形的斜邊長就會是\(\sqrt{2}\),又斜邊與長邊等長,因此影印紙的長邊與短邊的長度比就是 \(\sqrt{2}\):1 了。

圖 1

圖 2

-----廣告,請繼續往下閱讀-----
  • 至於影印紙為什麼要設計成 \(\sqrt{2}\):1 這個比例呢?

其實有個很重要的原因。請不妨再拿一張相同大小的影印紙,對半裁切後將其中一半旋轉 90 度,再與另一張完整影印紙的左上方兩邊對齊,你會發現兩張長方形的對角線恰可連成一直線(如圖 3~4),也就是兩個長方形彼此是相似的(因為兩多邊形相似的條件為:對應角相等,且對應邊成比例)。

若我們假設原紙張的短邊為 1,長邊為 x,則我們可以列出 x:1=1:\(\frac{x}{2}\)的算式,故 \(x^{2}\)=2,便可得出 x=\(\sqrt{2}\) 的結果。

也就是若我們將影印紙沿長邊中點連線對半裁切(或將大小相等的兩張影印紙以長邊拼合)得到的紙張,將與原影印紙的比例相同。

圖 3

-----廣告,請繼續往下閱讀-----

圖 4

如此一來,若我們影印時需要縮小圖形,就只需要將原影印紙作長邊對半裁切,則縮小的影印紙與原影印紙的大小比例相同,原作品大小與影印出來的結果也會彼此相似,放大時也是同樣的道理。

而透過影印紙的巧妙比例,我們可以製作出一些十分有趣的作品。讓我們先從一個簡單的四角錐開始做起吧!

用影印紙做出四角錐

首先請拿一張影印紙, 如圖 5、6 分別在長短邊各摺出其中點連線後,再摺出長邊中點與原矩形的四個端點的連線,如圖 7、8。

-----廣告,請繼續往下閱讀-----

李老師小聲說:「如果想節省空間與紙張,讀者也可將 A4 尺寸的影印紙,應用其 \(\sqrt{2}\):1 的特性,將其裁切為等比例的兩等份或四等份,再進行後續的摺製與組裝。」

圖 5

圖 6

圖 7

圖 8

-----廣告,請繼續往下閱讀-----

接下來如圖 9,將最後摺製的四條連線由谷線改為山線,且左右兩交叉點的連線不摺(圖中實線處),即可依山谷線分佈完成如圖 10 的四角錐。

圖 9

圖 10

由於這個作品目前無法定型,建議可以翻至背面,將內縮突起的直角三角形,分別摺製其兩銳角的角平分線(如圖 11、12),即可將圖 10 放於平面時作簡單固定如圖 13,而若要固定得更完整,也可以口紅膠或膠水將中間的鈍角三角形接合面黏貼,就不會有容易移動的情形了。

-----廣告,請繼續往下閱讀-----

圖 11

圖 12

圖 13

接下來按照上面方式摺製共六個四角錐,並用膠帶將其對應邊接合如圖 14,即可將六個四角錐翻摺形成一個正立方體如圖 15,且此六個角錐的頂點恰重合於正立方體的中心處。

-----廣告,請繼續往下閱讀-----

李老師小聲說:「事實上,圖 14 是其中一種正方體展開圖的組合方式,各位不妨試試與圖 14 不同的其他組合方式,也是很有趣的哦!」

圖 14

圖 15

不曉得各位有沒有覺得很神奇呢?我們以幾張生活中隨手可得的影印紙,幾道簡單的摺痕,就可以完成一個正立方體,這也代表每個角錐恰是正方體體積的六分之一!這是為什麼呢?

  • 為了討論這個問題,我們不妨看一下圖 16。

若將正方體從中心點與八個頂點連線,可將此正方體切割為六個角錐,假設這個正方體的邊長為 1,則可計算出其底部正方形的對角線為 \(\sqrt{2}\),再根據勾股定理,可以算得此正方體最遠的兩頂點間的距離為 \(\sqrt{3}\),也就是此四角錐的稜長為 \(\frac{\sqrt{3}}{2}\) 。

-----廣告,請繼續往下閱讀-----

圖 16

圖 17

接下來我們再看圖 17 的四角錐展開圖,根據剛剛摺製的過程,長邊的一半即為正方體的邊長=1,應用影印紙的比例,我們可以得知短邊長為 \(\sqrt{2}\),故其稜長(即長邊中點與四個端點連線段長的一半)為 \(\frac{\sqrt{3}}{2}\),也就是說這麼摺製出來的四角錐就和上面從正方體切割出的角錐稜長相等、底面積也相等囉!

李老師小聲說:「亦可考慮以平行線截等比例線段,求得角錐的高度為正方體邊長的一半來說明。」

——本文摘自泛科學 2019 年 10 月選書《藝數摺學》,2019 年 9 月,臉譜出版

 

 

 

 

-----廣告,請繼續往下閱讀-----
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

0
0

文字

分享

0
0
0
把幾何的美戴出去炫耀!來自台灣團隊「單挑概念」的幾何金工——科學開封府系列
Sharkie Lin_96
・2017/06/07 ・1966字 ・閱讀時間約 4 分鐘 ・SR值 493 ・六年級

從「科學」的角度解「開封」印在商品中的知識,就是我們科學開封府的職司。開封府內的胞大仁㜊妱公猻測會不定期介紹各種與科學有關的各種玩意,有時溫柔勸敗,偶爾龍虎狗頭鍘伺候剁手,不管怎樣,請您上座啦!

本次科學開封府邀請了泛科學專欄作者 Shark Lin 來為我們介紹充滿藝數美感的PRISM幾何飾品系列!

從去年秋天開始,我幾乎每天都會上網瀏覽世界數學藝術的相關創作,外國有許多團隊利用衍生藝術(generative art),設計出許多藝數時尚商品,曾在 2016 泛.知識節分享過幾個案例,另一方面也感嘆台灣相關創作較少,沒想到不久後就驚喜發現單挑概念工作室的作品─PRISM幾何飾品。

單挑概念在今年二月舉辦了試戴會(2017),原本以為像是一般的飾品一樣,不過一到現場馬上感受到了金工的魅力,「P01蛻變系列」不僅擁有高質感的外觀,還能夠動手把玩,更有深邃的幾何意涵,一件作品能有如此多層次,真的令人十分驚艷。

PRISM幾何飾品的質感不言自明,為了讓大家了解P01的深刻內涵,我將會詳細介紹其設計巧思與幾何結構。而令人驚奇的是,P01除了能夠以立方體的型式當作墜子,還可以用不規則的超展開作為項鍊或手環。

圖/單挑概念提供

-----廣告,請繼續往下閱讀-----

圖/單挑概念提供

雖然網路上有介紹影片與組合教學,到現場P01的不規則展開仍然讓腦袋有點打結,我試著摺疊回立方體研究其幾何結構,花了很多時間還是很難參透,對於不規則展開是如何設計出來的特別感到好奇,畢竟我在研究吠陀立方對稱面法時,曾經畫過上百個立方體反覆思考空間分割,竟然還是沒法完全了解。

再更仔細看,會注意到P01有三條對角線通過同一個點(可視為原點),其方程式為X=Y, Y=Z, X=Z;與吠陀立方的主對稱面群非常類似,差別是在前者為線、後者為面。

把玩樣品的過程中,P01能夠變型成3個四角錐如下圖。然而,不規則的動態展開仍是個謎,因此我親自走訪了單挑概念工作室,試圖還原設計與發想過程,希望能了解其中的巧思。到底裡面藏了什麼機關呢?

-----廣告,請繼續往下閱讀-----

最初,設計師是從平面展開圖去思考如何拆解立方體,在展開後的正方形加上對角線覺得還是過於單調,構思過程中以徒手繪圖搭配電腦軟體,決定再朝立方體的對角線下手,得到了一個底面為正方形的四角錐(五面體)。

設計師當時假設可用四角錐拼成立方體,把多個四角錐的各個面展開畫在紙上,再嘗試拼接、排列、組合,最終發現三個四角錐可組成立方體。

圖/截取自影片

圖/單挑概念提供

-----廣告,請繼續往下閱讀-----

由上圖可知,立方體可以被分成三個四角錐。切法是從一個頂點(可視為原點),沿著三個對稱面切,直到立方體的對角線X=Y=Z為止,切面不超過對角線即可得到。

了解P01的基本元素以後,再來談談不規則的超展開。現在知道立方體由三個四角錐(五面體)構成,理論上飾品攤開來應該有15個面,算一算卻只有13個面,大家可以想一想缺少的2個面分別是四角錐的哪個面,以及在P01的何處?

設計師對立方體幾何原理有相當程度的感知,加上突破框架的創意才能發展出不規則設計,拿掉2個面讓展開變得不對稱,主要是為了整體美感與輕量化考量。我個人十分欣賞這樣的不規則設計,帶有沒法一眼看穿的神秘感。

從幾何結構到產品設計不免有些轉化,像是圖中的梯形其實是代表一個大三角形,設計斜桿是為了項鍊與手鍊的扣頭有地方可扣。

-----廣告,請繼續往下閱讀-----

幾何本身帶有一種普世性的美感,能夠成為引領時尚的潮流。單挑概念將把立方體轉化成金工飾品P01蛻變系列,除了飾品本身相當精緻與迷人,還可以讓人動手把玩,更蘊藏了許多設計巧思,充分體現了幾何美學的優雅質感與知性內涵。

這是來自我們台灣的設計,令國際驚豔的MIT作品,我個人十分欣賞,在此也推薦給正在收看這篇文章的你和妳。

PRISM 幾何飾品在泛科市集

購買 P00 拼圖系列請由此去→

購買 P01 蛻變系列請由此去→

-----廣告,請繼續往下閱讀-----

-----廣告,請繼續往下閱讀-----
文章難易度
Sharkie Lin_96
24 篇文章 ・ 6 位粉絲
在國二無聊的早自習意外發現數學的趣味,因此近來體驗到數學研究、藝術創作、採訪寫作、展覽策劃、資優教育等工作。不是念數學也不是學藝術,但樂於從多元視角聊聊數學的各種姿態,以及進行數學藝術創作,希望能為世界帶來一點樂趣。科普部落格〈鯊奇事務所〉https://medium.com/sharkie-studio,聯絡信箱 sharkgallium@gmail.com