0

0
0

文字

分享

0
0
0

數字感有什麼用?他把風靡千年的吠陀方形變立體了!

Sharkie Lin_96
・2016/12/31 ・2593字 ・閱讀時間約 5 分鐘 ・SR值 536 ・七年級

-----廣告,請繼續往下閱讀-----

學心算能幹嘛?

原本以為小時候學心算,只能在數學考試計算速度完勝隔壁同學,結帳的時候跟收銀機比快,殊不知在「算得快」之外,不知不覺中用心算培養出對數字本身的 sense,這份「數字感」加上好奇心還真讓我做了一件特別的事——不是數學系的卻發現也是發明了一個數學原理。

我對數字的好奇與狂熱是從國二時發現位數根(digital root)的規律開始。位數根是把一個正整數各個位數的數字加總直到加到不能再加,也就是最終的數字落在 1 到 9 之間,就好像大家在算生命靈數一樣。以 D(n) 表示整數 n 的位數根,D(9527) = D(9+5+2+7) = D(23) = D(2+3) = 5,5 即為 9527 的位數根。

而源自古印度的吠陀方形(Vedic square),就是將大家熟悉的九九乘法表中每一個數字進行位數根運算,其中位數根所在的位置組成的胚騰(pattern)構成了特定的幾何圖案。吠陀方形後來也影響了伊斯蘭文化,西元 770 年時穆斯林將吠陀方形併入他們的數學知識體系中[1]。

九九乘法表
九九乘法表
吠陀方形中的位數根胚騰[6]
吠陀方形中的位數根胚騰,D1 中灰色是表示位數根為 1 的格子,D2~D9 以此類推。

從二維平面到三維立體

風靡幾千年的吠陀方形和伊斯蘭幾何圖樣都讓我深深著迷,同時也很好奇,在這古老的數學概念中,是否有我不知道的東西?還有沒有新花樣可以玩?我開始翻閱許多與位數根、吠陀方形相關的學術論文,試圖從中找靈感。

-----廣告,請繼續往下閱讀-----

靈感這種東西說來奇妙,有時候總是來自想像不到的地方。這次我的靈感來自一棟被數學元素和演算法啟發的建築,結構設計師塞西爾‧巴爾蒙德(Cecil Balmond)與伊東豊雄(Toyo Ito)設計蛇形藝廊 2002(Serpentine Gallery Pavilion 2002)。巴爾蒙德將簡單的平面正方形元素透過 1/2 → 1/3 的演算法,拓展成一個沒有柱子的盒型幾何建築。

倫敦蛇形藝廊 2002 建築物內觀。圖/Balmond Studio 授權使用
倫敦蛇形藝廊 2002 建築物內觀。圖/Balmond Studio 授權使用

我心想蛇形藝廊 2002 從二維平面到三維立體的過程太漂亮了,而且吠陀方形和伊斯蘭幾何藝術有間接關係也十分有趣。如果說吠陀方形也從平面變成立體會發生什麼事?我試著把九九乘法表向上加一個維度也就是 Z 軸,成為了 三個數字相乘的三維乘法表(9×9×9) 。

這個三維乘法矩陣為單位長度為 9 的立方體,如同吠陀方形為二維乘法表中每個數字進行位數根運算後的結果,我將它取名為「吠陀立方(Vedic cube)」,是整個立方體中各個座標點的數字進行位數根運算後的結果[2]。

999

為了知道吠陀立方中每一個座標點的數值,以函數 D(X, Y, Z) 代表吠陀立方中座標 (X, Y, Z) 該數字的位數根,實際運算時的數學式為 D(X×Y×Z)。例如座標點 (2, 3, 5)在吠陀立方中的數值即為 D(2×3×5) = D(30) = D(3) = 3,其他座標點的計算方式以此類推。

-----廣告,請繼續往下閱讀-----

難想像的三維吠陀立方,就請電腦來幫忙吧!

由於吠陀方形構成許多有趣的幾何圖樣,所以我猜測吠陀立方也有類似的特性。為了了解位數根於三維空間中的分布情形,我利用 Matlab 軟體計算出吠陀立方各個座標點的位數根數值,並且繪出空間中特定位數根散布的情況。下圖為吠陀立方中位數根為 1(digit 1)的點在三維空間中的散布情形及位置,也就是 D(X, Y, Z) = 1 的集合。其他位數根的散布情形可以看我在《國際趣味數學雜誌》 (Recreational Mathematics Magazine)發表的一篇數學論文〈三維空間的位數根胚騰〉[2]。

吠陀立方中位數根為 1 的點散布情形及位置。此胚騰散布的情況相當複雜,一時難以看出這些座標點在空間構成的意義。
吠陀立方中位數根為 1 的點散布情形及位置。此胚騰散布的情況相當複雜,一時難以看出這些座標點在空間構成的意義。

由於三維空間中的圖形相當複雜,一時並不容易看出這些散布點在空間中的規律。接著是我所說的「數字感」發揮的時間了,我將以不同的方法簡化吠陀立方,試圖找出三維空間中吠陀立方裡頭可能出現的胚騰及其意義。

  • 作者註:本文中的「圖樣」大多描述二維空間與吠陀方形的位數根圖樣,「胚騰」則是較為較為廣義,主要用來描述三維空間中吠陀立方中位數根的規律、模式、圖樣等。

把吠陀立方當做是一個 9 層樓高的立方體

除了 D(X×Y×Z) 的算法以外,也可以把吠陀立方當做是一個 9 層樓高類似建築物的立方體,其範圍為 Z = 1 至 Z = 9 的 X-Y 平面,並且以立方體中不同的 Z 軸高度作為「樓層」區別的原則,1 樓(第一層)就是吠陀方形。

1 樓(F1)至 9 樓(F9)的所有數值如下圖,看起來都是數字讓你害怕了嗎?別擔心我們一步一步來看。我們走上 2 樓(F2),這一層樓的數值是 1 樓的數字乘上 2 後再進行位數根運算,其他樓層也就分別是 1 樓的數字乘上樓層數,再算出位數根。

-----廣告,請繼續往下閱讀-----

實際上吠陀立方中的 X, Y, Z 座標互相交換後,其數值仍為相同,就像是九九乘法表裡頭 X 乘上 Y 會等於 Y 乘上 X。為了方便起見,我僅以 Z 軸的高度(X-Y平面)作為區別的原則,但實際上以 Y-Z 平面或是 X-Z 平面為底結果相同。也就是吠陀立方從前看、側看、上看都會長得一樣,世界上長成這樣的東西並不多,可以讓我左看、右看、上看、下看,發現每個立面都不簡單。

999_19
吠陀立方 1 樓至 9 樓的所有數值。

我在此先簡單介紹吠陀立方中位數根的基本特性。當位數根為 1, 2, 4, 5, 7, 8 等六種數值時,會有相似的特性,我將以位數根 1 為例說明此六種數值的情況,以位數根 3 代表 3 與 6,最後將單獨說明位數根 9。

位數根 1 在 1, 2, 4, 5, 7, 8 樓這 6 層中,每一層會出現 6 個數字,因此在吠陀立方裡位數根 1 共有 36 個數字。而 1, 2, 4, 5, 7, 8 這 6 種位數根,在吠陀立方中共有 216 個。

位數根 3 在 1, 2, 4, 5, 7, 8 樓中各有 12 個數字,在 3 樓和 6 樓則各有 18 個,因此共有 108 個。位數根 3 和 6 在吠陀立方中加起來共 216 個數字。

-----廣告,請繼續往下閱讀-----

位數根 9 則是在 1, 2, 4, 5, 7, 8 樓那 6 個樓層各有 21 個,3 樓和 6 樓有 45 個,在 9 樓有 81 個,共 297 個。

在吠陀立方中,全部的位數根數量加起來有 729 個,也就是總共的座標點數 9×9×9 。

吠陀立方是受到古印度數學吠陀方形、伊斯蘭幾何圖樣與倫敦蛇形藝廊 2002 的啟發,跨越數千年與東西方文化最終在台灣這個文化交融之地產生的數學。這一篇文章介紹了吠陀立方的定義與基本特性,至於吠陀立方還藏有什麼奧秘,像是每一層樓位數根圖樣的變換原理、以及位數根胚騰的空間幾何關係,留給下回再來分解。

參考資料

-----廣告,請繼續往下閱讀-----
  1. Jones, L. “Mathematics and Islamic art”, Mathematics in School, 18(4), 32–35, 1989.
  2. Lin, C. Y. Digital Root Patterns of Three-Dimensional Space. Recreational Mathematics Magazine, 3(5), 9–31, 2016.

此文作者本系列文章獲得臺北市政府文化局藝文補助

-----廣告,請繼續往下閱讀-----
文章難易度
Sharkie Lin_96
24 篇文章 ・ 6 位粉絲
在國二無聊的早自習意外發現數學的趣味,因此近來體驗到數學研究、藝術創作、採訪寫作、展覽策劃、資優教育等工作。不是念數學也不是學藝術,但樂於從多元視角聊聊數學的各種姿態,以及進行數學藝術創作,希望能為世界帶來一點樂趣。科普部落格〈鯊奇事務所〉https://medium.com/sharkie-studio,聯絡信箱 sharkgallium@gmail.com

0

2
0

文字

分享

0
2
0
地震之島的生存法則!921地震教育園區揭開台灣的防災祕密
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/20 ・4553字 ・閱讀時間約 9 分鐘

為什麼台灣會像坐在搖搖椅上,總是時不時地晃動?這個問題或許有些令人不安,但卻是我們生活在這片土地上的現實。根據氣象署統計,台灣每年有 40,000 次以上的地震,其中有感地震超過 1,000 次。2024年4月3日,花蓮的大地震發生後,台灣就經歷了超過 1,000 次餘震,這些數據被視覺化後形成的圖像,宛如台北101大樓般高聳穿雲,再次引發了全球對台灣地震頻繁性的關注。

地震發生後,許多外國媒體擔心半導體產業會受影響,但更讓他們稱奇的是,台灣竟然能在這麼大的地震之下,將傷害降到這麼低,並迅速恢復。不禁讓人想問,自從 25 年前的 921大地震以來,台灣經歷了哪些改變?哪些地方可能再發生大地震?如果只是遲早,我們該如何做好更萬全的準備?

要找到這些問題的答案,最合適的地點就在一座從地震遺跡中冒出的主題博物館:國立自然科學博物館的 921地震教育園區。

圖:跑道捕捉了地震的瞬間 / 圖片來源:劉志恆/青玥攝影

下一個大地震在哪、何時?先聽斷層說了什麼

1999年9月21日凌晨1點47分,台灣發生了一場規模7.3的大地震,震央在南投縣集集鎮,全台 5 萬棟房子遭震垮,罹難人數超過 2,400 人。其中,台中霧峰光復國中校區因車籠埔斷層通過,地面隆起2.6公尺,多棟校舍損毀。政府決定在此設立921地震教育園區,保留這段震撼人心的歷史,並作為防災教育的重要基地。園區內兩處地震遺跡依特性設置為「車籠埔斷層保存館」和「地震工程教育館」。

-----廣告,請繼續往下閱讀-----

車籠埔斷層保存館建於原操場位置,為了保存地表破裂及巨大抬升,所以整體設計不採用樑柱結構,而是由82根長12公尺、寬2.4公尺、重約10噸的預鑄預力混凝板組成,外觀為曲線造型,技術難度極高,屬國內外首見,並榮獲多項建築獎。而地震工程教育館保留了原光復國中受損校舍,讓民眾親眼見證地震的驚人破壞力,進一步強調建築結構與安全的重要性。毀損教室旁設有由園區與「國家地震工程研究中心」共同策劃的展示館,透過互動展示,讓參觀者親手操作,學習地震工程相關知識。

國立自然科學博物館地質學組研究員蔣正興博士表示,面積上,台灣是一個狹長的小島,卻擁有高達近4000公尺的山脈,彰顯了板塊激烈擠壓、地質活動極為活躍的背景。回顧過去一百年的地震歷史,從1906年的梅山地震、1935年的新竹-台中地震,到1999年的921大地震,都發生在台灣西部,與西部的活動斷層有密切關聯,震源位於淺層,加上人口密度較高,因此對台灣西部造成了嚴重的災情。

而台灣東部是板塊劇烈擠壓的區域,地震震源分佈更廣。與西部相比,雖然東部地震更頻繁,但由於人口密度相對較低,災情相對較少。此外,台灣東北部和外海也是地震多發區,尤其是菲律賓海板塊往北隱沒至歐亞板塊的隱沒地震帶,至沖繩海槽向北延伸,甚至可能影響到台北下方,發生直下型地震,這種地震因震源位於城市正下方,危害特別大,加上台北市房屋非常老舊,若發生直下型地震,災情將非常嚴重。

除了台北市,蔣正興博士指出在台灣西部,我們特別需要關注的就是彰化斷層的影響,該斷層曾於1848年發生巨大錯動。此外,我們也需要留意西南部的地震風險,如 1906 年的梅山地震。此兩條活動斷層距今皆已超過 100 年沒活動了。至於東部,因為存在眾多活動斷層,當然也需要持續注意。

-----廣告,請繼續往下閱讀-----

我們之所以擔心某些斷層,是因為這些區域可能已經累積了相當多的能量,一旦達到臨界點,就會釋放,進而引發地震。地質學家通常會沿著斷層挖掘,尋找過去地震的證據,如受構造擾動沉積物的變化,然後透過定年技術來確定地震發生的時間點,估算出斷層的地震週期,然而,這些數字的計算過程非常複雜,需要綜合大量數據。

挑戰在於,有些斷層的活動時間非常久遠,要找到活動證據並不容易。例如,1906年的梅山地震,即使不算久遠,但挖掘出相關斷層的具體位置仍然困難,更不用說那些數百年才活動一次的斷層,如台北的山腳斷層,因為上頭覆蓋了大量沉積物,要找到並研究這些斷層更加困難。

儘管我們很難預測哪個斷層會再次活動,我們仍然可以預先對這些構造做風險評估,從過往地震事件中找到應變之道。而 921 地震教育園區,就是那個可以發現應變之道的地方。

圖:北棟教室毀損區 / 圖片來源:劉志恆/青玥攝影

921 後的 25 年

在園區服務已 11 年的黃英哲擔任志工輔導員,常代表園區到各地進行地震防災宣導。他細數 921 之後,台灣進行的六大改革。制定災害防救法,取代了總統緊急命令。修訂了建築法規,推動斷層帶禁限建與傳統校舍建築改建。組建災難搜救隊伍,在面對未來災害時能更加自主應對。為保存文化資產,增設了歷史建築類別,確保具有保存價值的建築物得到妥善照料。

-----廣告,請繼續往下閱讀-----

最後,則是推行防災教育。黃英哲表示,除了在學校定期進行防災演練,提升防災意識外,更建立了921地震教育園區,不僅作為教育場所,也是跨部門合作的平台,例如與交通部氣象署、災害防救辦公室、教育部等單位合作,進行全面的防災教育。園區內保留了斷層線的舊址,讓遊客能夠直觀地了解地震的破壞力,最具可看性;然而除此之外,園區也是 921 地震相關文物和資料的重要儲存地,為未來的地震研究提供了寶貴的資源。

堪稱園區元老,在園區服務將近 19 年,主要負責日語解說工作的陳婉茹認為,園區最大的特色是保存了斷層造成的地景變化,如抬升的操場和毀壞的教室場景,讓造訪的每個人直觀地感受地震的威力,尤其是對於年輕的小朋友,即使他們沒有親身經歷過,也能透過這些真實的展示認識到地震帶來的危險與影響。

陳婉茹回憶,之前有爸媽帶著小學低年級的小朋友來參觀,原本小朋友並不認真聽講,到處跑來跑去,但當他看到隆起的操場,立刻大聲說這他在課本看過,後來便聚精會神地聽完 40 分鐘的解說。

圖:陳婉茹在第一線負責解說工作 / 圖片來源:921地震教育園區

除了每看必震撼的地景,園區也透過持續更新策展,邀請大家深入地震跟防災的各個面向。策展人黃惠瑛負責展示設計、活動規劃、教具設計等工作。她提到,去年推出的搜救犬特展和今年的「921震災啓示展」與她的個人經歷息息相關。921 大地震時的她還是一名台中女中的住宿生,當時她儘管驚恐,依舊背著腿軟的學姊下樓,讓她在策劃這些展覽時充滿了反思。

-----廣告,請繼續往下閱讀-----

在地震體驗平臺的設計中,黃惠瑛強調不僅要讓觀眾了解災害的破壞力,更希望觀眾能從中學到防災知識。她與設計師合作,一樓展示區採用了時光機的概念,運用輕鬆、童趣的風格,希望遊客保持積極心態。二樓的地震體驗平臺結合六軸震動臺和影片,讓遊客真實感受921地震的情境。她強調,這次展覽的目標是全民,設計上避免了血腥和悲傷的元素,旨在讓觀眾帶著正向的感受離開,並重視防災意識。

圖:地震體驗劇場 / 圖片來源:921地震教育園區

籌備今年展覽的最大挑戰是緊迫的時間。從五月開始,九月完成,為了迅速而有效地與設計師溝通,黃惠瑛使用了AI工具如ChatGPT與生成圖像工具,來加快與設計師溝通的過程。

圖:黃惠瑛與設計師於文件中討論設計/ 圖片來源:921地震教育園區

蔣正興博士說,當初學界建議在此設立地震教育園區,其中一位重要推手是法國地質學家安朔葉。他曾在台灣指導十位台灣博士生,這些博士後來成為地質研究的中堅力量。1999年921大地震後,安朔葉教授立刻趕到台灣,認為光復國中是全球研究斷層和地震的最佳觀察點,建議必須保存。為紀念園區今年成立20週年,在斷層館的展示更新中,便特別強調安朔葉的貢獻與當時的操場圖。

此外,作為 20 週年的相關活動,今年九月也將與日本野島斷層保存館簽署合作備忘錄(MOU),強化合作並展示台日合作歷史。另一重頭戲則是向日本兵庫縣人與自然博物館主任研究員加藤茂弘致贈感謝狀,感謝他不遺餘力,長期協助園區斷層保存館的剖面展品保存工作。

-----廣告,請繼續往下閱讀-----
右圖:法國巴黎居禮大學安朔葉教授。左圖:兵庫縣立人與自然博物館主任研究員加藤茂弘
/ 圖片來源:921地震教育園區

前事不忘,後事之師

盡力保存斷層跟受創校舍,只因不想再重蹈覆徹。蔣正興博士表示,921地震發生在車籠埔斷層,其錯動形式成為全球地質研究的典範,尤其是在研究斷層帶災害方面。統計數據顯示,距離車籠埔斷層約100公尺內,住在上盤的罹難率約為1%,而下盤則約為0.6%。這說明住在斷層附近,特別是上盤,是非常危險的。由於台灣主要是逆斷層活動,這一數據清楚告訴我們,在上盤區域建設居住區應特別小心。

2018年花蓮米崙斷層地震就是一個例證。

在921地震後,政府在斷層帶兩側劃設了「地質敏感區」。因為斷層活動週期較長,全球大部分地區難以測試劃設敏感區的有效性,但台灣不同,斷層活動十分頻繁。例如 1951 年,米崙斷層造成縱谷地震,規模達 7.3,僅隔 67 年後,在 2018 年再次發生花蓮地震,這在全球是罕見的,也因此 2016 年劃設的地質敏感區,在 2018 年的地震中便發現,的確更容易發生地表破裂與建築受損,驗證了地質敏感區劃設的有效性。

圖:黃英哲表示曾來園區參訪的兒童寄來的問候信,是他認真工作的動力 / 圖片來源:921地震教育園區

在過去的20年裡,921地震教育園區不僅見證了台灣在防災教育上的進步,也承載著無數來訪者的情感與記憶。每一處地震遺跡,每一項展示,都在默默提醒我們,那段傷痛歷史並未走遠。然而,我們對抗自然的力量,並非源自恐懼,而是源自對生命的尊重與守護。當你走進這座園區,感受那因地震而隆起的操場,或是走過曾經遭受重創的教室,你會發現,這不僅僅是歷史的展示,更是我們每一個人的責任與使命。

-----廣告,請繼續往下閱讀-----

來吧,今年九月,走進921地震教育園區,一起在這裡找尋對未來的啓示,為台灣的下一代共同築起一個更堅固、更安全的家園。

圖:今年九月,走進921地震教育園區 / 圖片來源:劉志恆/青玥攝影

延伸閱讀:
高風險? 家踩「斷層帶、地質敏感區」買房留意
「我摸到台灣的心臟!」法國地質學家安朔葉讓「池上斷層」揚名國際
百年驚奇-霧峰九二一地震教育園區|天下雜誌

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

0
2

文字

分享

1
0
2
地表最速乘法傳說!碰到大得要命的數字,這是最快的乘法方式
UniMath_96
・2019/05/30 ・3729字 ・閱讀時間約 7 分鐘 ・SR值 484 ・五年級

  • 文/郭君逸 │國立臺灣師範大學數學系副教授

編按:說到乘法,我們很快都會想到國小的共同回憶「九九乘法表」。背誦它對我們來說可能是一位數相乘最快的解方,多位數我們就用直式乘法運算。但如果是超超超超超超超級多位數互相相乘呢?有沒有更快的方法?

對於人腦來說可能大位數的乘法已經沒有意義,但對於電腦來說,有新的乘法方式可是大大的不一樣!三月時有數學家發表了有史以來將大數字相乘最快的新乘法方式,讓我們一起來一探究竟吧!

從「九九加法表」與「九九乘法表」談起

我們在國小時的數學,一開始就會先學「數數」,要會數 1、2、3、⋯接下來才能學加法,例如:8+5 就是 8 往後數 5 個…9, 10, 11, 12, 13,所以 8+5=13。但每次都這樣做建構式的加法太慢,成不了大事,於是大家就背了「九九加法表」(雖然老師沒提這個表,但事實上大家的確都背了!)來快速處理一位數的加法,後來再學直式加法搭配進位,就能夠計算多位數的加法。

source:李家同臉書網誌

學習乘法也是差不多的歷程。正整數的乘法其實本質就是「重複做很多次加法」,例如 6 × 4 其實就等於 6+6+6+6 或是 4+4+4+4+4+4,但很快地我們馬上就會發現這樣做建構式的乘法,速度太慢,成不了大事,於是大家就背了「九九乘法表」來快速處理一位數的乘法,然後再學直式乘法搭配進位,來處理多位數的乘法。

加法跟乘法我們都可以做到高位數,但究竟是加法比較快,還是乘法較快呢?

-----廣告,請繼續往下閱讀-----

「九九加法表」、「九九乘法表」都幾?

到底要算幾次?加法與乘法運算次數比較

若是一位數對一位數的話,當然是一樣快,因為「九九加法表」跟「九九乘法表」我們都倒背如流了;但當「2 位數加 2 位數」與「2 位數乘 2 位數」來比呢?

明顯乘法的運算次數一定比加法多,光直式乘法最後的 522+3480 就超越了 87+46 的加法數,何況還要做 7×6, 8×6, 7×4, 8×4 四次乘法;然後 7×6 與 8×6 也要做一個加法才能算出 522,7×4 與 8×4 也一樣。

一般來說 n 位數加 n 位數,連進位都算進去的話,要做 2n-1 次一位數加法;但 n 位數乘 n 位數的話,最多會用到 2n(n-1)的一位數加法,與 n2 次的一位數乘法。可見,乘法的運算次數是隨著位數的平方成長,所以計算乘法比較慢。

-----廣告,請繼續往下閱讀-----

數學家Andrey Kolmogorov。圖/wikipedia

Karatsuba以加減法取代乘法,加快運算速度?

1960年,俄羅斯的大數學家 Andrey Kolmogorov 在一次研究討論中提出他的猜測(n 位數的乘法必須用到至少 n2 數量級的一位數乘法),例如 2 位數乘以 2 位數必須進行 4 次一位數乘法,他認為不能再快了。

結果一個禮拜後他的學生 Anatoly Karatsuba 就推翻這項猜測,找到僅需 3 次一位數乘法的計算。以 87×46 為例,Karatsuba 的方法是這樣的,先算十位相乘 8×4=32,與個位相乘 7×6=42,這個部份與傳統直式乘法一樣,但他卻只用了一次乘法就算出了 8×6和 7×4 且同時把它們加起來。我們先把傳統直式乘法改成如下:

中間的方框就是要計算 8×6 加 7×4,Karatsuba巧妙的用 (8+7)×(4+6)- 8×4-7×6 來達到同樣的效果。注意到,上式中只有第一個乘號要算,後兩個剛剛已經算過了,也就是說 Karatsuba 用一個加法與兩個減法取代了一個乘法。讀者這時可能會想說,拿一個一位數乘法去換三個加減法,又不是頭殼壞去,這樣不是反而慢嗎?

-----廣告,請繼續往下閱讀-----

我們來看一下 4 位數的情況, 2531×1467 一樣先算 25×14 與 31×67,然後中間的 25×67+31×14 用 (25+31)×(14+67)-25×14-31×67 計算,最後加總起來。

如同前面的分析,此處一樣用到三個二位數乘法,而每個二位數乘法又用到三個一位數乘法,所以總共用到 3×3 =9 次一位數乘法。因此一般 位數的乘法,用這種技巧,可以只用到

3logn=nlog3=n1.58

個一位數乘法。位數越高,用到的一位數乘法數就會越接近 n1.58 的常數倍。對於人來說,因為把一個乘法換三個加減法,並沒有比較快,何況還要遞迴的操作;但是,對電腦而言就不是這樣了。

-----廣告,請繼續往下閱讀-----

電腦的本質上是二進位的系統。圖/pixabay

電腦運算的本質:二進位

電腦的本質上是二進位的系統 (哪有!我用電腦這麼多年,沒看到什麼二進位啊!那是現在電腦發展很快,事實上隨便顯示一張小圖、或一個字,背後都做了數百萬次的二進位運算。)而電腦的加法是用位元的邏輯運算來達成(也就是 AND、OR、XOR、NOT、Shift 這些東西來組成的),而位元邏輯運算超快,詳細我們就不說了,總之電腦的加法非常快。

那電腦的乘法,真的是用 Karatsuba 的方法嗎?其實也不是,我們先來看一下 8 位元的電腦怎麼做乘法好了。以 11 乘以 14 來說,化成二進位變成 00001011 與 00001110 (前面要補 0,因為 8 位元的電腦它就是用 8 個位元儲存數字。)

這不就是直式乘法嗎?這樣哪有比較快?有的。因為人類習慣十進位,所以要背「九九乘法表」;電腦用的是二進位,所以要背「一一乘法表」!!沒錯,所以等於不用背,二進位的直式乘法,其實只是被乘數的平移,然後加起來而已,換句話說,其實乘法,也是一堆位元邏輯運算而已,所以也是超快的。

-----廣告,請繼續往下閱讀-----

那 Karatsuba 的方法用在哪呢?用在很大很大的數字相乘的時候。電腦的乘法雖快,但 8 位元電腦,最大就只能處理 2⁸-1=255 以內的乘法,乘完後超過 255 的話就不能處理了,16位元電腦最大可以處理到 65535 以內的數,而現在的64位元電腦就可以處理到……一個非常大的數,呵呵。

那超過電腦能處理的數的話,到頭來,還是要用傳統的方法來處理,為了不要讓數字太大,我們以 8 位元的電腦為例,處理數字就會看成 256 進位來處理,533×499 就會變成

所以當數字大的時候,這時 Karatsuba 的方法就有用了。

值得一提的是,當電腦硬體從 8 位元升級到 16 位元時,軟體若沒有改成 65536 進位的話,而用 16 位元電腦來存 255 以內的數,前面就會補了更多的 0,處理起反而會浪費時間。而若軟體有跟著處理成 65536 進位的話,533×499 就會變只有位元邏輯運算而已,會超快。這就是為什麼電腦硬體剛進入 64 位元時代時,軟體沒有跟上的話,執行程式反而變慢的原因。

-----廣告,請繼續往下閱讀-----

歷經三十年的演算法改進

OK,我們再回來乘法的問題。Karatsuba 的方法,在數字大的時候的確可以加快乘法,以一千位數的乘法來說,此法的速度大約是傳統乘法的 17 倍。

隔年,1963 年,A. L. Toom改進到了 ;後來 1966 年 Arnold Schönhage 用了新的方法推進到;1969 年 Knuth(沒錯,就大家所知道的Knuth),改進到

後來 1971 年,Schönhage 捲土重來,與 Volker Strassen 利用快速傅立葉變換改進為 O(nlogn log logn),此為有名的 Schönhage–Strassen algorithm,在差不多三萬位數以上的乘法,會比 Karatsuba 方法還要快。此法也是目前大數字乘法的主流,著名的梅森質數搜尋網(Great Internet Mersenne Prime Search,在 2018 年 12 月找到第 51 個)就是用 Schönhage–Strassen algorithm 來達到快速乘法。

隔了三十幾年,一直到了2007年,Martin Fürer一樣是用快速傅立葉變換,將複雜度下降到了O(n (log n) 16log*n),其中 log*就是 n 取幾次 log 會讓這個數小於 1,這是一個成長很慢的函數,基本上可以視它為常數了。

-----廣告,請繼續往下閱讀-----

最後最後,David Harvey 與 Joris Van Der Hoeven 寫了幾篇的論文,把這個結果改成 O(n(logn)8log*n),然後 O(n(log n)4log*n),直到 2019 年,終於證明了 Schönhage 與 Strassen 的猜測 O(n log n)。

Volker Strassen 的大矩陣乘法

值得一提的是,Volker Strassen 除了是「大整數乘法」的始祖外,他也是「大矩陣乘法」的始祖(筆者寫到這裡,不自覺的跪了下來)。以 2×2 的矩陣來說,傳統計算

時,由於 x = ae + bg, y = af + bh, z=ce + dg, w=cf+dh,總共需要 8 次的乘法,但 1969 年,Strassen說,先計算下面 7 個值,

然後讀者可以自行驗證

因此只用了 7 個乘法就完成了。天啊!這是怎麼想到的!

一般 n×n 矩陣乘法,用 Strassen algorithm 只需要 O(nlog7) = O(n2.8) 次乘法。從此大家才知道,原來矩陣乘法竟然可以比 n³ 還要快,矩陣乘法的改進也有相當精彩的發展歷史,詳細就不再一一介紹了,目前最好的結果是 2014 年 François Le Gall 的 O(n2.3728639)。

演算法已經超越所需要的計算尺度啦

不管是大整數乘法,或大矩陣乘法,目前都是以 Schönhage–Strassen algorithm 與 Strassen algorithm 為主流,沒有採用後來看起來較好的方法主因是後來的方法太複雜,且要在很大很大很大的整數、矩陣執行效能才會比較好,已經超越了人類目前所需要的計算尺度。另一方面,電腦硬體的發展快速,會直接把這些演算法寫到晶片,變成指令集,讓程式直接呼叫,甚至是多條相同的指令可以平行處理,經由硬體的加速,乘法的速度已經超越了演算法改進的速度了(尤其是矩陣的乘法)。

不過只要還沒達到所謂的最佳解,相信數學家們都還是會繼續為數學理論極限而努力。

參考文獻

  • Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7:281–292, 1971.
  • Fürer. Faster integer multiplication. In Proceedings of the Thirty-Ninth ACM Symposium on Theory of Computing, STOC 2007, pages 57–66, New York, NY, USA, 2007. ACM Press.
  • David Harvey, Joris Van Der Hoeven. Integer multiplication in time O(n log n). 2019. hal-02070778
-----廣告,請繼續往下閱讀-----
所有討論 1
UniMath_96
9 篇文章 ・ 209 位粉絲
UniMath (You Need Math) 是一個 Online 數學媒體,我們的目的是成為一個線上平台,發表數學相關的科普文章及影音,使數學用更柔軟的姿態走入群眾,提升數學素養。

0

0
0

文字

分享

0
0
0
如果數學是藝術創作的繆思女神?來自全球的數學藝術展覽── Bridges 2018 研討會(上)
Sharkie Lin_96
・2018/12/27 ・3946字 ・閱讀時間約 8 分鐘 ・SR值 534 ・七年級

如果數學是藝術創作的繆思女神,世界上可是有一群人每年聚在一起,搶著分享和女神約會的心得,這個奇特的聚會就是 Bridges 全球數學藝術研討會!

Bridges 從 1998 年開始舉辦,是個一年一度以數學為主的大型全球聚會,結合藝術、音樂、建築、教育與文化,是國際間知名的跨領域會議,任何有趣的超展開都可能在此發生。

今年 (2018) 的 Bridges 在瑞典斯德哥爾摩的科技博物館 (Tekniska Museet) 展開,會議從 7/25 至 7/29 共為期五天,包含最後一天的郊遊日。Bridges 從 2001 年開始每年舉辦數學藝術展覽,是全球最大的盛會,今年總共展示了一百多件來自全球的作品,其中台灣有四位數學藝術家前去參展,撰寫這篇文章的我也是參展者之一。

Bridges 2018文宣。
圖/Bridges 2018

在諾貝爾獎演說地點開啟 Bridges

Bridges 2018 開幕選在諾貝爾獎得主演說的地點 ── 斯德哥爾摩大學的講堂  (Aula Magna of Stockholm University)[註 1],充滿設計感與科學意義的講堂讓人沉浸在知識與美的氛圍中。

-----廣告,請繼續往下閱讀-----

第一位分享者正好是諾貝爾物理獎 2004 年得主弗朗克·韋爾切克 (Frank Wilczek) 談論科學與藝術的交集,另外兩場分享則分別是數學家考爾姆·穆爾卡 (Colm Mulcahy) 的紙牌魔術表演,以及由數學家桃樂絲·舒特內德 (Doris Schattschneider) 介紹家庭主婦瑪喬里·賴斯 (Marjorie Rice,1923–2017) 發現五邊形鋪磚型態的傳奇故事,正好也是科技博物館的遊樂場「數學花園」的迎賓廊道。(可見「瑞典科技博物館數學花園:融合數感、美感、體感設計的北歐遊樂場」一文。)

瑞典科技博物館「數學花園」概念圖。
圖/Tekniska Museet

這次會議地點在斯德哥爾摩的博物館公園,參加不同場次需要穿梭在各博物館,彷彿跨越知識間的藩籬,同時呼應 Bridges 的跨域精神,這樣的安排相較一般制式的固定地點讓人有著特別的感受。在會議期間,科技博物館、民族學博物館、表演藝術博物館、諾貝爾博物館也都有專門為 Bridges 參與者特別安排導覽解說與免費參觀時段,讓人體驗到主辦方的用心以及歐洲博物館的精緻內容。

跨界的不只是博物館,Bridges 本身就是以多元的論文展覽活動在國際間著名。會議期間每天都非常充實與豐富,從早到晚滿滿的數學藝術(詳細議程),可以看到數學與各類藝術甚至科技相互撞擊,遇到全球的數學藝術同好更是讓人覺得興奮!

-----廣告,請繼續往下閱讀-----

來自台灣的數學藝術展覽

關注了 Bridges 好一陣子,今年我終於鼓起勇氣報名,非常幸運地通過徵選並且獲得國藝會贊助,因此能有機會 Bridges 2018 全球數學藝術展覽中展出。本屆展覽台灣四位參展藝術家皆安排在 General Exhibition Gallery(GE) 展出,除了作品本身,在 GE 展廳還可以展示相關的物件,因此我放置了〈對稱的鏡面〉的作品說明、原始論文與 3D 列印模型,希望讓觀眾可以完整了解創作緣由。

Symmetric Mirrors(對稱的鏡面),Shark Lin(林家妤)。
攝影/Shark Lin

〈對稱的鏡面〉是根據我發明 / 發現的吠陀立方數學原理製作而成,將立方體的六個對稱面以鏡面材料呈現(延伸閱讀:吠陀立方對稱面法:解不出的空間幾何問題就到廚房解決吧!),會隨著現場燈光而呈現不同的反射與錯視效果,觀眾還可以用雷射筆或其他物體與作品互動,觀察鏡中成像變化 [註 2]。

雷射光打在〈對稱的鏡面〉形成之反射。
攝影/Shark Lin

-----廣告,請繼續往下閱讀-----

展覽期間有許多觀眾來看作品,甚至到撤展時段都還有一群瑞典青少年包圍展位;而作品本身也獲得許多不錯的評價,像是紐約數學博物館 (MoMath) 館長 Cindy Lawrence 覺得〈對稱的鏡面〉讓人十分驚艷。能夠在國際舞台讓世界看見台灣的作品,對第一次參加 Bridges 展覽的我來說更是別具意義。

今年 Bridges 數學藝術展覽中,台灣一共有四位來自不同領域的參展者與作品:分別是工程背景的我(林家妤,Shark Lin)、金必耀教授(Bih-Yaw Jin)團隊的化學串珠、陳明璋教授(Mingjang Chen)的碎形疊代畫作,以及施宣光教授(Shen-Guan Shih)的巧蝸積木 (SL blocks)。

Bead model for the Type I & II clathrate hydrates,左家靜與金必耀。
攝影/Shark Lin

Castle emerging above clouds,陳明璋。
攝影/Shark Lin

-----廣告,請繼續往下閱讀-----

Break a symmetry,施宣光。
攝影/Shark Lin

我們創作的詳細介紹可見 Bridges 線上藝廊與論文集,以及李國偉教授科學人 2018 年 9 月號的專文「連結數學、藝術與教育的橋樑」一文,該期另有科普作家斯蒂芬·奧內斯 (Stephen Ornes)的專文「數的藝術品」。

Bridges 裡令人驚豔的作品

除了台灣的作品外,我也很想完整介紹全世界的數學藝術作品,不過 Bridges 2018 的參展作品就有一百多件,論文數量也破百篇,就算在天橋底下說書把這幾天的事情拆成九篇也說不完哪,只好精選幾件有趣的作品來介紹。

首先是首獎作品,來自荷蘭的兩位藝術家創作了一件能夠同時表現四個圖像的錯視創作,而他們選定的主題是全世界最有名的四張臉 ── 披頭四。他們利用 3D 列印印出截角八面體 (truncated octahedrons) 上圖像元素,搭配夾角 90 度的兩片鏡面相互反射,就可以用一個物體神奇地同時呈現出四個圖像。

-----廣告,請繼續往下閱讀-----

值得一提的是,他們在 Bridges 2016 也是以三維錯視創作拿到首獎,分別以 Gödel, Escher, Bach: an Eternal Golden Braid(中文書名:哥德爾、艾舍爾、巴赫:集異璧之大成)這本書三位大師的頭像作為創作主題。

Four Fabulous Beatles Faces in a 3D Object,Walt van Ballegooijen and Hans Kuiper。
攝影/Shark Lin

艾雪式的鑲嵌圖樣向來深受藝術家與大眾喜愛,來自德國同時修習數學與平面設計的 Alexander Guerten,創作了動物造型的 3D 鑲嵌作品令人驚歎。前幾個月才在推特上看過,沒想到竟然能在 Bridges 的展覽會場見到,讓人驚喜連連!

KUHKUBUS,Alexander Guerten。
攝影/Shark Lin

-----廣告,請繼續往下閱讀-----

在我展位隔壁的藝術家是來自瑞典的 Erik Åberg,他發展了 GHOSTKUBE 可轉動的方塊組,最近還上了 kickstarter 募資。

有天我在餐廳用餐時,看見隔壁東方面孔女性的幾何摺紙造型包包,似乎在哪裡看過卻又想不起來? 懷著好奇心就決定向對方搭訕交流。

ANTIPRISMS – Porcelain,Uyen Nguyen。
圖/WINWIN

對方拿出名片之後,我才發覺她就是奇美博物館摺紙大展《紙上奇蹟》策展人嬴嬴 (Uyen Nguyen),所以對這個摺紙造型包有印象。正好我之前寫的幾何藝術走春文章中,有推薦過這檔展覽(延伸閱讀:新年科青走春!全台幾何藝術景點大搜查),也讓我們聊了許久。最後一天在諾貝爾博物館參訪時,她還贈送我鑲嵌摺紙作品留作紀念。

-----廣告,請繼續往下閱讀-----

左側為本文作者 Shark Lin,右側為奇美博物館《紙上奇蹟》策展人嬴嬴 (Uyen Nguyen) 與摺紙作品
圖/作者提供。

最讓我喜出望外的是,以錯視作品享譽全球的杉原厚吉(Kokichi Sugihara)教授也在Bridges 2018分享他的創作。我曾經在《錯視維度》展覽邀請他的作品〈Ambiguous Cylinder Illusion〉參展 [註 4],終於見到本人才發現這次來Bridges其實是來朝聖的!

杉原厚吉(Kokichi Sugihara)教授於Bridges 2018分享錯視創作與原理,圖中為〈Ambiguous Cylinder Illusion〉。
攝影/Shark Lin

與杉原厚吉教授合影,我們手中拿的是《錯視維度》酷卡。 圖/作者提供。

以上作品約略只佔了 Bridges 的 5%,若是想看所有作品下方有相關網站。這篇文章主要介紹數學藝術展覽,下回我要來聊聊 Bridges 裡頭更多數學的跨界想像力!

延伸閱讀

Bridges 2018相關網站

  1. 官方網站
  2. 線上藝廊
  3. 相關活動
  4. 論文集
  5. 詳細議程

註釋

  • 註 1:諾貝爾獎頒獎則是在斯德哥爾摩音樂廳 (Stockholm Concert Hall),晚宴則在市政廳 (Stockholm City Hall)。
  • 註 2:本次參展作品〈對稱的鏡面〉為吠陀立方系列創作,曾經在圓山花博《視覺混種 On Site, Visual》、2016 泛‧知識節《數學藝術互動體驗》、靜宜大學《IMAGINARY 超越無限‧數學印象特展》展示過,而今年在瑞典展出版本為鏡面全反射改良版本。
  • 註 3:Bridges 是一個以數學為基礎的展覽,因此作品投件時藝術家需要選擇分類與提供說明,以便評審委員審查,Bridges 的作品分類與徵選標準如下:
    (1) 2D 作品(如鑲嵌、不可能的圖形、對稱設計)
    (2) 3D 作品(多面體、摺紙)
    (3) 自然界中特別的數字與數學(費氏數列、黃金比例)
    (4) 拓樸學(莫比烏斯帶、最小能量表面、扭結、圖論等)
    (5) 演算藝術(奇異吸子、基於代數方程式的藝術、排列、魔方陣)
    (6) 碎形
    而徵選標準有以下五項標準,括弧裡的字為官方註解:
    (1) 數學內容(這裡有數學知識豐富的觀眾)
    (2) 美感(顯然這相當主觀)
    (3) 材質(多樣的材質會讓展覽更多元)
    (4) 工藝技術(可有效地傳達作品概念)
    (5) 創新與原創性(將數學藝術推往新方向)
  • 註 4:杉原厚吉教授於2018年10月受邀來台,並且於台灣大學主辦之「實 ‧ 幻:視覺錯覺之探索與應用 國際研討會」主講(Betwixt Reality and Illusion: International Symposium on the Exploration and Application of Visual Illusions);而我也在此研討會上分享〈對稱的鏡面〉作品中的錯視現象,以及《錯視維度》展覽內容與策展過程,相關報導可見此(連結)。

本次旅行獲得財團法人國家文化藝術基金會(國藝會)國際交流計畫補助。

-----廣告,請繼續往下閱讀-----
Sharkie Lin_96
24 篇文章 ・ 6 位粉絲
在國二無聊的早自習意外發現數學的趣味,因此近來體驗到數學研究、藝術創作、採訪寫作、展覽策劃、資優教育等工作。不是念數學也不是學藝術,但樂於從多元視角聊聊數學的各種姿態,以及進行數學藝術創作,希望能為世界帶來一點樂趣。科普部落格〈鯊奇事務所〉https://medium.com/sharkie-studio,聯絡信箱 sharkgallium@gmail.com