0

1
2

文字

分享

0
1
2

吠陀立方對稱面法:解不出的空間幾何問題就到廚房解決吧!

Sharkie Lin_96
・2017/05/20 ・3626字 ・閱讀時間約 7 分鐘 ・SR值 533 ・七年級

-----廣告,請繼續往下閱讀-----

到目前為止,吠陀立方系列文章已經介紹過流傳千年的古印度數學-吠陀方形(Vedic square),我運用數字感把它加上一個維度定義了吠陀立方(Vedic cube),再以樓層法去解析位數根胚騰(Digital root patterns)層層之間的關係[1],這回來介紹吠陀立方對稱面法

吠陀立方:將吠陀方形從平面延伸成立體

吠陀方形就是將大家熟悉的九九乘法表中每一個數字進行位數根(digital root)運算,例如說 4 乘上 8 會得到 32,把  3 加上 2 得到 5,這個 5 即為 32 的位數根,也是吠陀方形裡座標點(4, 8)的數值。吠陀方形在西元 770 年被穆斯林納入伊斯蘭文化的數學知識體系之中[2]。

圖1|吠陀方形(Vedic square)

其中位數根所在的位置互相連結後組成的胚騰(pattern)構成了特定的幾何圖案如下圖:

圖2|吠陀方形中的位數根胚騰

吠陀立方則是將吠陀方形從平面延伸成立體,也就是三個數字相乘的三維乘法表(9×9×9),是整個立方體中各個座標點的數字進行位數根運算後的結果,可以用函數 D(X, Y, Z) 代表吠陀立方中座標 (X, Y, Z) 該數字的位數根,實際運算時的數學式為 D(X×Y×Z)。例如座標點 (2, 4, 7)在吠陀立方中的數值即為 D(2×4×7) = D(56) = D(11) = D(2) = 2。

-----廣告,請繼續往下閱讀-----

之前提到以程式繪出吠陀立方中的位數根胚騰,其散布情況相當複雜(可見此篇),難以看出這些座標點在空間中構成的意義。用樓層法解析吠陀立方,能夠觀察出位數根胚騰在各層本身的性質,甚至可從二維的吠陀方形推算不同樓層之間的變換。只是樓層法是把三維空間轉化成許多二維平面,較少探討位數根胚騰在三維空間中彼此的相關性,這時又該如何是好呢?

解構吠陀立方

回到數學或科學研究的基本方法,觀察、觀察、再觀察。

吠陀方形中,位數根 1 至位數根 8 位置構成的八個圖樣會沿著兩條對角線 X=Y 與 X+Y=9 對稱,兩條對角線為對稱軸,不僅在 X-Y 平面可以成立,在 Y-Z 平面、X-Z 平面同樣成立。從二維拓展至三維的過程中,對角線就變成了對角面同時也是對稱面,因此吠陀立方共有六個對稱面。

圖3

為了找到空間中最小不可分割的塊體,也就是不重複的基本元素(element),以及內部對應的座標點,希望能探討位數根胚騰在三維空間中的關係,所以我將沿著對稱面群切割與解構吠陀立方。

吠陀立方的對稱面群分為兩組,一組叫做主對稱面群(main symmetry planes, MSP),為 X=Y, Y=Z, X=Z,這三個對稱面都有通過原點,如圖 4;另一組則為副對稱面群(secondary symmetry planes, SSP),為 X+Y=9, Y+Z=9, X+Z=9,如圖 5。

-----廣告,請繼續往下閱讀-----
圖4
圖5

圖 4 和圖 5 的每一塊灰色塊體,都可藉由一次鏡射後得到完整的吠陀立方。至於分析的塊體取對稱面群兩邊任何一塊皆可,並沒有限制要取對稱面群的哪一邊。除此之外,可以選擇先在 X-Y, Y-Z, X-Z 平面沿著主副對稱面群切割,得到的塊體將是三角柱體,其底面為 1/4 正方形面積的等腰直角三角形。

沿著主對稱面群分割吠陀立方的結果如圖 6,得到 6 個 MSP 四面體(MSP unit tetrahedron),值得注意的是這 6 個四面體為雙直角四面體(birectangular tetrahedron),顧名思義此四面體包含兩個直角,在數學上也稱為 Schläfli orthoscheme。此雙直角四面體的底面為 1/2 正方形面積的等腰直角三角形,高為立方體的邊長,因此體積為吠陀立方的1/6。

每一個 MSP 四面體可沿著 X=Y, Y=Z, X=Z 共鏡射三次得到吠陀立方。主對稱面群的交集為一條線,也就是吠陀立方的對角線 X=Y=Z,因此會將吠陀立方分成 6 塊。

圖6|六個塊體對應的邊界條件為 (a) X≥Y, Y≤Z, X≥Z;(b) X≥Y, Y≥Z, X≤Z;(c) X≥Y, Y≥Z, X≥Z;(d) X≤Y, Y≥Z, X≥Z;(e) X≤Y, Y≤Z, X≥Z;(f) X≤Y, Y≥Z, X≥Z

副對稱面群分割後的結果為 8 個塊體如圖 7,包括 2 個 SSP 六面體(SSP unit hexahedron),體積各佔吠陀立方的 1/4;以及 6 個 SSP 四面體(SSP unit tetrahedron),其底面為 1/2 正方形面積的等腰直角三角形,高為吠陀立方邊長的 1/2,體積各佔吠陀立方的 1/12。副對稱面群的交集為一個點,為吠陀立方的中心 (4.5, 4.5, 4.5),因此會將立方體分成 8 塊,而這 8 塊的體積並不完全相同。

-----廣告,請繼續往下閱讀-----
圖7|八個塊體對應的邊界條件為 (a)X+Y≤9, Y+Z≤9, X+Z≤9;(b)X+Y≤9, Y+Z≤9, X+Z≥9;(c)X+Y≤9, Y+Z≥9, X+Z≤9;(d)X+Y≤9, Y+Z≥9, X+Z≥9;(e)X+Y≥9, Y+Z≥9, X+Z≥9;(f)X+Y≥9, Y+Z≥9, X+Z≤9;(g)X+Y≥9, Y+Z≤9, X+Z≥9;(h)X+Y≥9, Y+Z≤9, X+Z≤9.

把幾何問題從書桌搬到餐桌!

切豆腐情境圖,非作者本人。source:Robert Couse-Baker

在思考副對稱面群分割問題時,為了驗證自己的想法,在愛爾蘭的聖誕假期,我把所有的研究材料從書桌搬到了餐桌,以做菜來輔助研究,餓的話馬上補充體力。

平常雖然沒有那麼喜歡豆腐,但豆腐不僅好切、還能增進空間幾何的思考,更可以照顧到五臟廟,在廚房實作數學效果意外倍增!老實說,這麼可愛的幾何豆腐還真讓人有點捨不得吃掉呢。

圖8/作者提供

切完豆腐和著其他食材煮湯飽食一頓以後,問題也快解完了。最後的步驟是沿著另一個對稱面群繼續分割,即使副對稱面群分割出的塊體並不全然相同,但最終結果為一單位四面體,其底面為 1/4 正方形面積的等腰直角三角形,高為立方體邊長的 1/2,體積各佔吠陀立方的 1/24,如圖 9。

原先主對稱面群分割的 MSP 四面體(1/6 立方體體積)會被副對稱面群的邊界條件分為形狀相等的 4 小塊;而副對稱面群分割出的塊體則有二種情況,第一種為 SSP 六面體(1/4 立方體體積)將會被主對稱面群的邊界條件分為形狀相等的 6 小塊,第二種情況則是 SSP 四面體(1/12 立方體體積)將被分為形狀相等的 2 小塊。

-----廣告,請繼續往下閱讀-----
圖9|主對稱面群(MSP)與副對稱面群(SSP)共六個對稱面的分割結果。(a)主對稱面群分割後為 1/6 立方體體積的 MSP 四面體,與圖 6e 相同;(b) 副對稱面群的交集為兩種類型的塊體,第一種為體積 1/4 的 SSP 六面體,與圖 7a 相同;(c) 則為三個副對稱面群的第二種交集類型,為體積 1/12 的 SSP 四面體,與圖 7d 相同;(d) 為 a 與 b圖的聯集;(e) 則是 a 與 b圖的交集;(f) 為 a 與 c 圖的聯集;(g) 則為 a 與 c 圖的交集部分。最後的分割結果為 24 個全等的四面體,e 與 g 為其中的二個。

無論由主對稱面群或是從副對稱面群開始分割,得到的結果相同,為 24 塊全等的四面體如圖 10,稱之為吠陀立方單位四面體(unit tetrahedron of Vedic cube, UTVC),為三直角四面體(trirectangular tetrahedron),表示其中一個頂角包含三個直角。任一個 UTVC 已是最小不重複的基本元素,可沿著對稱面群鏡射六次得到原先的吠陀立方。

圖10/作者提供

也就是說,我們只要列出 UTVC 裡面的位數根 1、2、3、4 座標點位(可藉由旋轉分別得到位數根 8、7、6、5,如吠陀方形的位數根胚騰),就可以將原先複雜的座標點位分布,簡化成不能再簡化的胚騰。

表1列出了位數根 1、2、3、4 在 4 個 UTVC 中的座標點位。表中的點包含了邊界條件上的點,這些點會被數個 UTVC 同時共用。UTVC 中的位數根座標點沿著對稱面群確實能鏡射出其他位數根座標點,而每個 UTVC 中座標點構成的向量也相同。

  • 表1|位數根 1、2、3、4 在 4 個 UTVC 中的座標點。

從二維平面至三維空間,吠陀立方的更多應用

吠陀立方的發展是從二維平面至三維空間,其簡化是了解三維空間的位數根胚騰性質的重要步驟。從對稱面群解構的方法可大幅簡化吠陀立方的複雜度,也可找出三維空間的基本元素,不再限於吠陀方形於二維平面隱含的圖樣與規律(樓層法)。

-----廣告,請繼續往下閱讀-----

位數根於吠陀立方散布的胚騰,是大自然本身形成的奧妙形態,除了純數學研究或是建構演算規則外,也許能和分子晶體、空間、藝術或是建築等相關領域結合應用。像是行為藝術教母瑪莉娜·阿布拉莫維奇(Marina Abramović)與她的夥伴曾在Nightsea Crossing的作品中,根據吠陀方形而決定各自所穿的衣服顏色。

%e5%80%ab%e6%95%a6%e8%9b%87%e5%bd%a2%e8%97%9d%e5%bb%8a2002%e5%bb%ba%e7%af%89%e7%89%a9%e5%a4%96%e8%a7%80
倫敦蛇形藝廊 2002 建築物外觀。圖/Balmond Studio 授權使用

吠陀立方是受到古印度數學吠陀方形、伊斯蘭幾何圖樣、倫敦蛇形藝廊 2002 的啟發,跨越數千年與東西方文化最終在台灣這個文化交融之地產生的數學。我身為吠陀立方的發明與發現者,特別期待未來有人能受到啟發,將吠陀立方的概念運用於建築設計或藝術創作,就像是塞西爾.巴爾蒙德(Cecil Balmond)運用演算法把正方形轉化成蛇形藝廊 2002 那樣令人驚艷。

對我來說,數學與藝術是兩面鏡子,可以一直相互映射彼此的光亮;而東方和西方,也能夠不斷跨越邊界彼此對話與啟發。

後續,我們再來聊聊如何將吠陀立方轉化成數學藝術創作。

-----廣告,請繼續往下閱讀-----

參考資料

  1. Lin, C. Y. Digital Root Patterns of Three-Dimensional Space. Recreational Mathematics Magazine, 3(5), 9–31, 2016.
  2. Jones, L. “Mathematics and Islamic art”, Mathematics in School, 18(4), 32–35, 1989.
-----廣告,請繼續往下閱讀-----
文章難易度
Sharkie Lin_96
24 篇文章 ・ 6 位粉絲
在國二無聊的早自習意外發現數學的趣味,因此近來體驗到數學研究、藝術創作、採訪寫作、展覽策劃、資優教育等工作。不是念數學也不是學藝術,但樂於從多元視角聊聊數學的各種姿態,以及進行數學藝術創作,希望能為世界帶來一點樂趣。科普部落格〈鯊奇事務所〉https://medium.com/sharkie-studio,聯絡信箱 sharkgallium@gmail.com

0

101
2

文字

分享

0
101
2
時間與空間的顛覆!如何用簡單的方式了解「相對論」?——《物理角色圖鑑》
azothbooks_96
・2024/09/16 ・2086字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

時間不再絕對?牛頓與愛因斯坦的時間觀差異

川村老師,請用簡單的方式告訴我「相對論」是什麼?

圖/《物理角色圖鑑》

老師:狹義相對論源自相對性原理(Principle of relativity,指物理定律〔Physical law〕適用於所有以等速直線運動的物體) 與光速恆定原理。根據這個理論,時間是相對的,依不同觀察者而有所差異。牛頓力學中的時間是絕對的,愛因斯坦則認為,可依不同的觀察者位置對時間進行不同定義。

圖/《物理角色圖鑑》

老師:之前在討論「力」時,也提過離心力。離心力是「慣性力」的一種,慣性力指物體在加速運動時感受到的與加速方向相反的力。置身在沒有窗戶的電梯中,當電梯向上加速,電梯內的人會受到向下的慣性力(譯注:因看不到外面,使得他無法判斷電梯的運動情況)。若加速度為 g,物體質量為 m,則物體所受慣性力為 mg,與在地面所受的重力 mg 相同。愛因斯坦無法區別這兩種 mg 的差異,所以視為等效。但無論慣性力的方向為何,物體都會往向量合成後的視重力場方向掉落。

時間在任何地方都固定不變嗎?

世界上最快的速度是光速。物體的移動速度若接近光速,它的時間進程就會變慢。也就是說,在接近光速的太空船上,時間會變得悠長。而且,接近光速的物體長度會朝行進方向收縮。

物體只要具有質量,即使在靜止狀態依然擁有能量(其能量 E mc2,稱為靜止能量(Rest energy)。

-----廣告,請繼續往下閱讀-----

提到光的運動,我們已經知道光的路徑會彎曲。

1919 年,天文學家觀測到恆星發出的光線在經過太陽附近時被偏折,這種現象稱為「重力透鏡效應」(Gravitational lens),有助於了解黑洞等宇宙中質量分布的情況。此外,天體物理學家也觀測到時間的延遲。簡而言之,接近地面的時鐘行進速度會比高處的時鐘慢,GPS 也是依據這種效應來進行校正。

圖/《物理角色圖鑑》
圖/《物理角色圖鑑》

時間

牛頓力學中的「時間」(也就是我們一般理解的時間)和相對論中的時間大異其趣。牛頓在《自然哲學的數學原理》(Philosophiæ Naturalis Principia Mathematica,1687)中,假設空間是均勻平坦的;從過去到未來,在任何地方都平均延伸。在牛頓力學中,全宇宙的時間一致。

但相對論否定了這一點。

-----廣告,請繼續往下閱讀-----
圖/《物理角色圖鑑》

光速恆定原理指出,光的速度是固定不變的。這種狀況下,空間中不同地點發生的兩件事,對某個觀測者來說是同時發生,但對另一參考系的觀測者而言則非同時發生。也就是說,時間的前進速度並非在任何地方都相同。因此,時間和空間不能視為各自獨立的兩回事,應該一體化,視為四維空間(時空,Spacetime)。

不過,這是指物體移動速度接近光速時的情況。日常生活中,使用過去的時間觀不會有任何問題。

黑洞

黑洞(Black hole)是一種天體,因為密度極高,重力極強, 不只物質,連光都會被吸進去,無法逃逸。天體是宇宙中所有物體的總稱,具體來說,指太陽、恆星、行星、星團、星雲等。從相對論來看,黑洞周圍空間是扭曲的。照以下方式想像應該會比較容易理解:

把重物放在一大塊展開的薄橡皮布上,放置處就會凹下去,而這塊凹陷會影響到周圍。同樣的,黑洞所在之處會發生猛烈的空間扭曲,經過附近的天體會被極強的重力吸引,落入其中,連光也難逃魔掌。

-----廣告,請繼續往下閱讀-----

銀河系有許多黑洞,但具體數字不詳。2019 年,一個跨國研究計畫團隊首次拍攝到黑洞的「影子」,掀起一陣討論熱潮。

——本文摘自《物理角色圖鑑:用35個萌角色掌握最重要的物理觀念,秒懂生活中的科普知識》,2024 年 9 月,漫遊者文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

11

10
5

文字

分享

11
10
5
沒有「引力」,只有「時空扭曲」——《高手相對論》
遠流出版_96
・2022/04/30 ・2747字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

廣義相對論的基本

廣義相對論,簡單地說就是兩點。

  • 第一,一個有質量的物質,會彎曲它周圍的時空。這是「物質告訴時空如何彎曲」。
  • 第二,在不受外力的情況下,一個物體總是沿著時空中的測地線運動。這是「時空告訴物質如何運動」。

這裡根本沒有引力的事,根本不需要引力。

這個畫面是這樣的。你可以將時空想像成一張彈簧床,本來彈簧床是平的,往上面放幾顆球,彈簧床上有球的地方周圍就變成彎曲的了——這幾顆球,彎曲了各自周圍的時空。

地球為什麼繞著太陽轉?牛頓認為那是因為太陽對地球有引力。但是廣義相對論認為,地球根本不知道太陽在哪裡,只是太陽把時空彎曲得比較厲害,地球是根據自己所在時空的測地線運動而已。就好像彈簧床上的小球可以繞著大球滾動,而你知道大球並沒有吸引小球,那只是因為彈簧床上大球的周圍有凹陷。

-----廣告,請繼續往下閱讀-----
廣義相對論認為,地球根本不知道太陽在哪裡,只是太陽把時空彎曲得比較厲害,地球是根據自己所在時空的測地線運動而已。

同樣的時空,每個物體的速度不一樣,它們遵循的測地線也不一樣。有的物體會直接掉向太陽,有的會繞著太陽做橢圓運動,有的與太陽擦肩而過,這些都只不過是物體在沿著自己的測地線運動而已。

同一個時空不同的物體,測地線也不一樣。

當然,每個有質量的物體在彎曲時空當中運動的同時,也是在彎曲著自己周圍的時空,只是彎曲的程度不同。時空的形狀由這些物質共同決定,而所有物質都會沿著自己周圍時空的測地線運動。

用彈簧床打比方是不得已而為之,物質彎曲時空並不是如同小球在彈簧床上往下「壓」的結果,而是自然地彎曲周圍所有方向上的時空,所造成的結果。而且請注意,被彎曲的不僅僅是空間,還有時間,只是這部分,我們留到後面的章節再細說。

在這裡,我還要澄清一點。你也許會有這樣的疑問:既然高速運動物體的質量會增加,那多出來的質量是不是也會彎曲空間呢?答案是不會。廣義相對論裡說的「物質彎曲了空間」,可以理解成是物質的「靜止質量」在彎曲空間,靜止質量是所有座標系都同意的不變數。時空的內在幾何形狀是絕對的,但是時空在不同的座標系中被看成了不同的樣子。

-----廣告,請繼續往下閱讀-----

廣義相對論就是這麼簡單。

自然運動狀態

愛因斯坦再一次看破了紅塵。什麼是引力?可以說根本沒有引力,有的只是時空的彎曲。

或者也可以說,所謂引力,就是在大尺度下才能看出來的、時空的彎曲。鯨魚的身體是曲線型的,但是如果近距離看,它身上每個地方都近似一塊很平的小平面。局部的測地線就是很直很直的直線,這就是為什麼我們上一章說「局部沒有引力」。

如果近看鯨魚,會覺得只是一塊平面(?)圖/envato elements

講到這裡,我們要重新定義「自然運動狀態」這個概念。所謂自然運動,就是在沒有任何外力干擾的情況下,一個物體自由自在的狀態。

-----廣告,請繼續往下閱讀-----

亞里斯多德(Aristotle)認為自然的運動狀態是靜止。這符合我們的生活經驗——沒有外力干擾的東西好像都是靜止不動的。

後來,伽利略和牛頓說這不對,力並不是讓物體運動的原因,力其實是改變物體運動狀態的原因。一個物體在光滑的平面上滑動,如果沒有任何摩擦力干擾,它就會一直這樣運動下去。所以等速直線運動和靜止沒有差別,它們都是自然運動。

貓咪推了球之後,如果沒有任何摩擦力,球就會永無止盡的運動下去。圖/envato elements

而現在,愛因斯坦表示,一切沿著測地線的運動,都是自然運動。

可以想像太空中有一個周圍非常空曠、沒有任何星體的地方,這裡的時空是平直的,測地線是完美的直線,所以物體沿著測地線運動,正好就是等速直線運動。

-----廣告,請繼續往下閱讀-----

如果時空是彎曲的,太空人就會繞著地球轉,而失控的電梯就會直接掉下去,這兩個運動看似不同,但其實都是自由落體運動,它們謹守本分地沿著自己的測地線運動。所以它們雖然有加速度,仍然是自然運動。

自由落體運動、等速直線運動,以及靜止,它們沒有本質上的差別。你在一個封閉的實驗室裡不管做什麼實驗,都沒有辦法區分它們。愛因斯坦表示它們是同一回事,都是沿著測地線運動,都是自然運動。

反過來說,你站在地面不動,站一會兒就累了,這其實是一種不自然的運動。你本來想沿著測地線往下掉,可是地板阻止了你。想要體驗真正的自由,你應該做自由落體運動。

都怪地板阻止了我們自由落體!(⋯⋯?)圖/envato elements

為什麼引力質量正好等於慣性質量,為什麼一輕一重兩個鐵球會同時著地?現在,廣義相對論給這個巧合提供了一個解釋——因為只要質量沒有大到能與地球相提並論、足以顯著影響周圍時空的形狀的程度,測地線就只和物體的初始速度有關,與質量無關!

-----廣告,請繼續往下閱讀-----

回頭再看上一章中講的兩個想像實驗。不管你是在加速的火箭上,還是站在地面不動,都有一個外力在阻止你沿著測地線走,所以它們是一樣的。

無論是在地球附近自由落體,還是在太空中空曠、沒有任何星體的地方做等速直線運動,都是沿著該地測地線的自然運動,所以它們也是一樣的。

無論是在地球附近自由落體,還是在太空中空曠的地方做等速直線運動,都是沿著該地測地線的自然運動。圖/envato elements

只要你接受時空尺寸是相對的,你就能接受狹義相對論;只要你接受時空可以彎曲,你就能接受廣義相對論。接受了時空的這兩個性質,光速為什麼不變、慣性質量為什麼等於引力質量、引力到底是不是真實的存在⋯⋯這些問題就不用再糾結了。

所以,相對論是個簡單理論,它只是相當深刻;其實我覺得廣義相對論比狹義相對論還容易理解,它只是美麗非常。

-----廣告,請繼續往下閱讀-----

也許下次看見鯨魚的時候,你可以想起廣義相對論。

-----廣告,請繼續往下閱讀-----
所有討論 11
遠流出版_96
59 篇文章 ・ 30 位粉絲
遠流出版公司成立於1975年,致力於台灣本土文化的紮根與出版的工作,向以專業的編輯團隊及嚴謹的製作態度著稱,曾獲日本出版之《台灣百科》評為「台灣最具影響力的民營出版社」。遠流以「建立沒有圍牆的學校」、滿足廣大讀者「一生的讀書計畫」自期,積極引進西方新知,開發作家資源,提供全方位、多元化的閱讀生活,矢志將遠流經營成一個「理想與勇氣的實踐之地」。

1

3
3

文字

分享

1
3
3
在數學中尋找想像力的自由——《生而為人的13堂數學課》
臉譜出版_96
・2022/03/28 ・2312字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/ 蘇宇瑞 
  • 原文作者/ Francis Su
  • 譯者/ 畢馨云

存在於數學中的第四個自由,是想像的自由

如果探索是在尋找已經存在的東西,那麼想像就是在建構新的想法,或至少對你來說是新的想法。凡是在沙灘上堆過沙堡的孩子,都知道一桶沙子的無限潛力,同樣的,康托也曾說過:「數學的本質就在於它的自由。」[3](康托在19世紀後期做出開創性的研究成果,讓我們首度對無限的本質有了清楚的了解。)

他的意思是,數學不像科學,研究的主題未必和特定的實物有關,因此數學家在能夠研究的題材上,不像其他科學家那樣受限。數學探險家可以運用她的想像,砌出她心目中的任何一座數學城堡。

拓撲學帶領我們進入想像的空間

我的拓撲學課傳授了想像的實踐。正如前面提到的,拓撲學在研究幾何物件受到連續拉伸時會保持不變的性質。

如果我讓一個物件變形,且沒有引進或移走「洞」,那麼從拓撲學的角度,我並沒有改變它。因此,橄欖球和籃球在拓撲學上是相同的,因為其中一個形狀可以變形成另一個;另一方面,甜甜圈和橄欖球在拓撲學上就是不一樣的,因為你必須在橄欖球上戳一個洞,才可以把它變成甜甜圈。

-----廣告,請繼續往下閱讀-----

拓撲學是很有趣的主題,因為我們可以用奇奇怪怪的方式把東西切割開、黏起來或拉伸,來做出各種很妙的形狀。我們常想像在這些形狀裡面走動,所以稱它們為空間

拓撲學愛好者非常樂在想像他們自己的怪異空間,通常是為了回答某個奇特的問題,例如「是否存在具有這種或那種病態的物件?」。(對,我們在數學上會用到病態一詞,是在描述奇怪或異常的表現,就像在醫學中一樣。)然後會用腦袋聯想出一個例子。

舉例來說,有和田湖(Lakes of Wada):可在地圖上繪出,且邊界完全相同的三個相連區域(「湖」);位於其中一座湖的邊上的任何一點,一定會在所有三座湖的邊上。這個建構是以發明它們的數學家和田健雄(Takeo Wada)的名字命名的。還有夏威夷耳環(Hawaiian earring),這是個華麗的物件,上頭有無限多個逐次變小的環,全相切於一個點。[4]

這個碎形圖有三個區域(深色、中間色和淺色的「湖」),有相同的邊界,但與原始和田湖不同的是,圖中的每個湖都由不連通的水池組成。
圖/生而為人的13堂數學課
夏威夷耳環。圖/生而為人的13堂數學課

亞歷山大角球的病態空間

病態空間(pathological space)有個相當著名的例子(至少在數學家當中很有名),就是亞歷山大角球(Alexander horned sphere)。球是呈泡泡形狀的曲面,正圓球表面的空間具有「單連通」(simply connected)這個性質,意思大致上就是,如果你在球的表面拿著一條繩子,把兩端繫在一起,做成一個圈,那麼所繫成的圈不會卡在球上,永遠可以從球上移走,與球分離。(甜甜圈就截然不同了,它表面的空間不是單連通的:如果把繩子的一端穿過甜甜圈中心的洞,再把兩端繫在一起,你就無法讓繩圈脫離甜甜圈。)

-----廣告,請繼續往下閱讀-----

1924年,J. W. 亞歷山大(J. W. Alexander)在想像他的帶角球時,思考了一個問題:有沒有可能用某種奇特的變形方式,讓泡泡上的相異兩點永遠不會相碰,但泡泡表面的空間又不是單連通的?

起先亞歷山大認為,不管哪個變形泡泡的表面都一定是單連通的。[5]但後來他舉出了一個表面不是單連通的例子!他的假想結構可以描述如下(這不完全是他的結構,但在拓撲學上是相同的):取一個泡泡,擠出兩個「角」,接著再從每個角擠出一對捏起的手指,且讓這兩對捏起的手指幾乎相扣在一起。因為捏起的手指並沒有完全相碰,所以你可以在更小的尺度上重複這個步驟,從前面各組手指擠出一對細小的捏合手指,相扣但沒完全相碰。像這樣繼續做下去,做到極限,就會得到亞歷山大角球。

環繞在其中一個初始角底部的繩圈,無法從帶角球脫離,原因正是相扣手指鉗的極限過程。如果指鉗在某個階段結束,沒有做到極限,那麼繩圈就很容易脫落了。這種令人驚奇的結構,不僅需要靠想像力思考,還需運用想像力去驗證帶角球在極限時確實仍是一個球。

亞歷山大角球。圖/生而為人的13堂數學課

你可以想像把圖放大,去看接連各層級的捏角的碎形本質:在細節的每個層級,景象看起來都相同。

-----廣告,請繼續往下閱讀-----

想像力是我們的超能力

想像的自由為數學注入了夢幻般的特性。許個願,瞧!你的夢想成真了。

如果在每個階段我們都有機會運用想像力,數學學習的樂趣會多出多少?你不必從事高等數學,就能運用想像力。

在算術中,我們可以嘗試建構出帶有奇特性質的數;能被你出生年月日的所有數字整除的最小數字是多少?你能不能找出連續十個不是質數的數?

在幾何學中,我們可以設計出屬於自己的圖案,探究它們的幾何性質;你喜歡的圖案裡有哪些對稱性?

-----廣告,請繼續往下閱讀-----

在統計學中,我們可以考慮一個資料集,想出有創造力的視覺化方法;哪些方法的特點最好?

如果你是從枯燥的教科書上學數學,那就看看能不能把問題改造一下,以提升你的想像力,這麼做就是在讓你鍛鍊想像的自由。

摘自《生而為人的13堂數學課:透過數學的心智體驗與美德探索,讓你成為更好的人的練習》,2022 年 1 月,臉譜出版
-----廣告,請繼續往下閱讀-----
所有討論 1
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。