0

0
1

文字

分享

0
0
1

用新視角一窺來自古印度的九九乘法表:吠陀立方樓層法

Sharkie Lin_96
・2017/03/21 ・3505字 ・閱讀時間約 7 分鐘 ・SR值 542 ・八年級

-----廣告,請繼續往下閱讀-----

上回介紹了我運用數字感把風靡世界數千年的古印度數學──吠陀方形(Vedic square)加了一個維度以後定義與發明了吠陀立方(Vedic cube)[1]。

吠陀方形就是將大家熟悉的九九乘法表中每一個數字進行位數根(digital root)運算,例如說 5 乘上 5 會得到 25,把 2 加上 5 得到 7,這個 7 就是 25 的位數根也是吠陀方形裡座標點(5, 5)的數值。吠陀方形在西元 770 年被穆斯林納入伊斯蘭的數學知識體系之中 [2]。

吠陀方形(Vedic Square)。圖/Shark Lin 提供

其中位數根所在的位置互相連結後組成的胚騰(pattern)構成了特定的幾何圖案如下圖,晚一點還會繼續用到:

吠陀方形中的位數根胚騰。圖/Shark Lin 提供

吠陀立方則是將吠陀方形從平面延伸成立體,也就是三個數字相乘的三維乘法表(9 × 9 × 9),是整個立方體中各個座標點的數字進行位數根運算後的結果,可以用函數 D(X, Y, Z)代表吠陀立方中座標(X, Y, Z)該數字的位數根,實際運算時的數學式為 D(X × Y × Z)。例如座標點(2, 3, 5)在吠陀立方中的數值即為 D(2 × 3 × 5)= D(30)= D(3)= 3。

-----廣告,請繼續往下閱讀-----

然而,上回提到以軟體繪出吠陀立方中的位數根胚騰散布情況相當複雜(可見上一篇),難以看出這些座標點在空間中構成的意義,因此需要以其他方法解析。結束有點長的前情提要以後,這一回我要以樓層法(Floor method)深入解析吠陀立方,帶大家往更高的樓層邁進,發現數學蘊含的規律。

既然無法一眼就看出三維空間的位數根胚騰散布情況與這些座標點在空間中構成的意義,那何不把吠陀立方視為有 9 層樓高如同建築物的立方體,這方法我稱它為樓層法。下圖是吠陀立方 1 樓至 9 樓的所有數值,樓層區分的原則是 Z 軸的高度。

樓層法,吠陀立方 1 樓至 9 樓。圖/Shark Lin 提供

基本圖樣與行列的代碼定義

把 1 樓至 9 樓的所有數值都列出來以後,就可以來進一步觀察位數根在不同樓層之間構成的圖樣,這些圖樣其實是幾種基本圖樣(basic pattern)的變換或是變形,這些基本圖樣是吠陀方形中出現的幾何圖樣。

為了方便稱呼與後續討論,必須先定義這些基本圖樣的名稱。像是數字 1 在吠陀方形中所組成的圖樣,就稱為 D1F1,因為是基本圖樣所以可以將 F1 省略,簡稱 D1;而數字 8 構成的圖樣 D8F1 為數字 1 對鉛直線的鏡射或說旋轉 90 度後的結果,簡稱 D8,其他數字構成的圖樣名稱以此類推。

-----廣告,請繼續往下閱讀-----
先定義這些基本圖樣的名稱,像是數字 1 在吠陀方形中所組成的圖樣,就稱為 D1F1,簡稱 D1。圖/Shark Lin 提供

2 樓以上樓層代碼中的 F 則不可省略,例如位數根 1 於 2 樓的圖樣稱為 D1F2,位數根 4 於 7 樓的圖樣稱為 D4F7,其他位數根於其他特定樓層的圖樣代碼也依照此原則表示。至於行列代碼的定義如下,以 C2F1 表示吠陀立方中 1 樓的第 2 行,即 246813579,其他樓層的行列以此類推,實際上行與列的組成數字相同,在此以行(column)代表行與列。

動手發現數學胚騰

介紹完代碼以後,建議大家實際拿出筆來試著自行發現數學胚騰。初階的玩法是選定一個數字,例如自己生日的位數根,也就是俗稱的生命靈數。例如泛科學的生日是 2011 年 11 月 4 日,生日位數根是 1,就把 1 到 9 樓的數字 1 都塗上顏色或是圈起來做標記,再對照前面提到的基本圖樣 D1 至 D9 看看兩者對應的關係。

如果還意猶未盡的話進階玩法是下載吠陀立方每一層樓的 pdf 檔案,觀察其他 8 個數字在每個樓層的數學胚騰與其變換的規律與規則,檔案中同一層樓印 9 個為了方便大家觀察完自己選定的數字以後,還可以觀察其他 8 個數字在同一樓層的數學胚騰,畫記數字時才不會把圖樣混在一起。

不同樓層的位數根圖樣變換

經過這些觀察以後,我發現同個位數根構成的圖樣在不同樓層之間也具有對稱、鏡射的性質,像是位數根 1 在 2 樓(D1F2)與 7 樓(D1F7)的圖樣其實為 D5 與 D4,兩個圖樣在 X-Y 平面的投影為相互對鉛直線鏡射,此外 1 樓與 8 樓、3 樓與 6 樓、4 樓與 5 樓也都具有這樣的性質。也就是說 5 樓至 8 樓的位數根圖樣可分別由 4 樓至 1 樓鏡射得到,位數根 1 在各個樓層構成的圖樣如下圖:

-----廣告,請繼續往下閱讀-----
位數根 1 在各個樓層構成的圖樣。圖/Shark Lin 提供

有趣的是,這些位數根胚騰在不同樓層之間變換的規則,可由吠陀方形(1 樓的 X-Y 平面)清楚看見。下圖同樣先以位數根 1 為例解釋。我把位數根 1 在不同樓層之間的圖樣變換紀錄在下圖(a)表格中的圖樣欄位,該欄位代表在 X 樓時,位數根 1 構成的圖樣是對應吠陀方形中哪一種基本圖樣。

我在研究時發現,位數根 1 在吠陀方形中 X 位置出現時對應的 Y 值,就是基本圖樣出現的順序!例如說下圖(b)當 X 為 2 時對應的 Y 值為 5,D1F2 對應的即是 D5 圖樣,其他樓層 X 的圖樣變換可由箭頭指向的 Y 值辨認之,像是可以看到由 X 樓對應的 Y 值與箭頭辨別出在 4、5、7、8 樓對應的圖樣各為 D7、 D2、 D4、 D8。

圖(a)位數根 1 在不同樓層之間的圖樣變換。圖/Shark Lin 提供
圖(b)位數根 1 在吠陀方形中 X 位置出現時對應的 Y 值,就是基本圖樣出現的順序!圖/Shark Lin 提供

圖樣變換解釋

由吠陀方形指認吠陀立方位數根胚騰的變換順序是巧合還是有根據呢?由上面我們知道 D1F2 會等同 D5 圖樣,D5 圖樣對應的是吠陀方形中位數根 5 的圖樣。由定義我們知道 2 樓的組成數字是 1 樓的所有數字都乘上 2,那什麼數字乘上 2 之後的位數根會等於 1 呢?從乘法表中於 X = 2 的地方,只有 Y = 5 此相對應的位置,才會得到位數根為 1,因此 D1F2 = D5。

在 4 樓我們發現 D1F4 = D7,也可以想成是原本在 1 樓的 D7 圖案,到了四樓以後乘上 4 之後的位數根自然而然就變成了 1。如此一來便能解答為什麼 3 樓、6 樓、9 樓都沒有1(以及 2、4、5、7、8)呢,因為沒有任何數字乘上 3、6、9 之後的位數根會是 1 啊!除了位數根 1 之外,其他的位數根都遵循上述的原理,讀者可由前面提供的檔案自行對照。

-----廣告,請繼續往下閱讀-----

只要圖解吠陀方形,就可以知道其他位數根於特定樓層中會是哪一種圖樣。也就是我們可經由二維平面的吠陀方形進一步了解三維空間的吠陀立方。吠陀方形這個二維平面不只為三維空間的一個剖面或是一樓而已,更是了解三維空間位數根胚騰非常重要的基礎。

若是想用方程式求得位數根 p 在 q 樓的圖樣會與哪一個位數根 r 在 s 樓的圖樣相同,可利用此式判別與求解未知數 D(p × s)= D(q × r),若等式兩邊相等則 DpFq = DrFs 成立。s = 1 時求得的 Dr 即為對應的基本圖樣,表示 Dr 位置的位數根在 q 樓層會是 p 位數根。例如說想要知道位數根 7 在 8 樓的圖樣會對應哪一個基本圖樣 Dr,可以用D(7) = D(8 × r)得出 r 為 2,D7F8 = D2 與直接觀察的結果相同。

圖樣可以多重組合

有的時候特定數字於特定樓層構成的圖樣將會不只涵蓋一個基本圖樣,而是多個基本圖樣組合而成。舉 D3F3 的圖樣組合當做例子,下圖左方在吠陀方形可以看到 X = 3 時,對應的 Y 值有 3 個,分別是 Y = 1、4、7,對應的基本圖樣為 D1、D4、D7。下圖右方顯示了 D3F3 的圖樣,是由 D1(黃)、D4(綠)、D7(藍)這三種圖樣組合而成的,以數學式表示則為 D3F3 = D1 + D4 + D7。

左方在吠陀方形可以看到 X = 3 時,對應的 Y 值有 3 個,分別是 Y = 1、4、7,右方顯示了 D3F3 的圖樣,以數學式表示則為 D3F3 = D1 + D4 + D7。圖/Shark Lin 提供

從上圖可以發現 X = 6 時對應的數值為 3 也有 3 個,分別是 Y = 2、5、8,也可寫成 D3F6 = D2 + D5 + D8,表示位數根 3 在 6 樓是由 D2、D5、D8 圖樣組合而成。類似的多重圖樣組合尚有 D3F6、D6F3、D6F6、D9F3、D9F6、D9F9。

-----廣告,請繼續往下閱讀-----

圖樣多重組合的原理可以解答為何 9 樓每一個位數根皆為 9,因為不管 1 到 9 是哪一個數字,乘上 9 之後都會是 9 的倍數,位數根也會是 9,所以在 9 樓每一個位數根皆為 9,也表示了 D9F9 為所有的基本圖樣組合而成。以數學式表達可以寫成  D9F9 = D1 + D2 + D3 + D4 + D5 + D6 + D7 + D8 + D9。

吠陀方形除了隱含三維空間位數根圖樣變換的根據之外,還蘊藏了不同樓層之間行列變換的規則,例如吠陀立方 2 樓的行順序事實上為 1 樓的行順序乘上 2,也是 1 樓第 2 行對應的數字。2 樓的 1 至 9 行的組成順序為 1 樓的第 2、4、6、8、1、3、5、7、9 行。2 樓的第 1 行等同 1 樓的第 2 行,以代碼表示則為 C1F2 = C2F1,其他樓層以此類推。

若是想知道 i 樓的第 h 行列會與 k 樓的第 j 行相同,可利用此式判別與求解未知數D(h * i)= D(j * k),若等號兩邊相等則 ChFi = CjFk,k = 1 求得的 Cj 即為對應的基本行,表示 Cj 在 i 樓層會出現於第 h 行。這個公式和前面的是不一樣的。

次回預告

樓層法專注在解析吠陀立方各層本身的性質以及與吠陀方形的關係,較難探討位數根胚騰在三維空間中彼此的相關性,所以下回將會帶大家以第二種方法──對稱面法切入吠陀立方的中心一探究竟。

-----廣告,請繼續往下閱讀-----

參考資料

  1. Lin, C. Y. Digital Root Patterns of Three-Dimensional Space. Recreational Mathematics Magazine, 3(5), 9–31, 2016.
  2. Jones, L. “Mathematics and Islamic art”, Mathematics in School, 18(4), 32–35, 1989.
-----廣告,請繼續往下閱讀-----
文章難易度
Sharkie Lin_96
24 篇文章 ・ 6 位粉絲
在國二無聊的早自習意外發現數學的趣味,因此近來體驗到數學研究、藝術創作、採訪寫作、展覽策劃、資優教育等工作。不是念數學也不是學藝術,但樂於從多元視角聊聊數學的各種姿態,以及進行數學藝術創作,希望能為世界帶來一點樂趣。科普部落格〈鯊奇事務所〉https://medium.com/sharkie-studio,聯絡信箱 sharkgallium@gmail.com

0

1
0

文字

分享

0
1
0
臺灣的水真的沒辦法生飲嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/13 ・6474字 ・閱讀時間約 13 分鐘

本文由 Amway 委託,泛科學企劃執行。 

根據衛福部建議,我國成人每天應該飲用約1500至2000 c.c. 的水,但在日本與歐美許多國家,只要一打開水龍頭,就能馬上擁有一杯能喝下肚的水。臺灣自詡為科技大國,為什麼卻無法擁有讓人安心的 Tap water?

冤有頭債有主,造成我們不敢生飲水的最大原因,其實不在自來水廠。從自來水廠出來的自來水,早已去除水源中的化學有機污染物、有害重金屬及致病性微生物,完全符合「飲用水水質標準」。在非常嚴密的檢驗和監控下,照理來說,你我都能夠非常安心的直接飲用這些自來水。然而,就連對水質信心滿滿的自來水廠,也大力呼籲民眾「不要直接飲用自來水」,這是怎麼一回事?

圖片來源:shutterstock

從水廠到家裡的自來水會經過哪些污染源?

首先,是管線老舊。不只是老舊管線內壁會積聚沉澱物和生物膜,管線本身若有生鏽、腐蝕的情形,還會在水中增加的鐵鏽和金屬離子。

-----廣告,請繼續往下閱讀-----

臺灣管線老舊的程度到底有多嚴重呢?根據台水公司108年的資料顯示,我國自來水管線長度超過6萬3千公里,其中超過48%的管線已經超過使用年限。再加上施工、地震、車輛超載等原因,使得管線容易破裂、漏水,進而影響水質。

除了管線品質外,蓄水池與水塔的清潔和維護也是影響自來水品質的重要因素。根據環境部指出,有高達7成以上的自來水污染事件,都是因為住戶疏忽清洗水塔的重要性,導致細菌和泥沙在儲水設施中繁衍和沉積。然而,超過45%的台灣民眾沒有定期清洗蓄水池和水塔的習慣。

這邊也要特別提醒,管線破損與蓄水池的污染,不只會讓飲用水再次受到重金屬與細菌的污染,更讓我們需要當心「新興污染物」的威脅。

什麼是「新興污染物」?

所謂新興污染物,指的是那些對環境有潛在威脅,但還沒有受到國家或國際法律廣泛監管的化學物質總稱。他們來自各種日常化工用品,並且透過城市、工業、家庭廢水進入河川與水體中。

-----廣告,請繼續往下閱讀-----

根據聯合國環境署的說明,「符合新興污染物資格的化合物清單很長,而且越來越長」。這些污染物其實離我們並不遠,是我們周遭常見的物質,例如抗生素、止痛藥、消炎藥、類固醇和荷爾蒙等藥物類,驅蟲劑、微塑膠、防腐劑、殺蟲劑、除草劑等環境荷爾蒙類,還有工業化學類的界面活性劑、火焰阻燃劑、工業添加劑、汽油添加劑、PFAS、鐵氟龍等等。

其中的全氟及多氟烷基物質PFAS,因為耐腐蝕、抗高溫,在自然環境中幾乎無法分解,又被稱為「永久性化學物質」。容易在環境及人體內累積,具有生物累積和生物放大性。而且PFAS衍伸的化合物超過一萬種,在防水、防油的紙袋、紡織品、化妝品中都很常看到。

PFAS成員全氟辛酸PFOA在2023年,被聯合國的國際癌症研究機構IARC,從2B級「可能對人類致癌」提升為一級「充分證據顯示對人類致癌」。另一個成員全氟辛烷磺酸PFOS則列為2B級致癌物。而環境部也在2024年,更針對PFOA、PFOS訂定飲用水濃度指引值。

PFOA 已被列入 IARC 第1類致癌物質,圖:Wikipedia

麻煩的是,這些新興污染物在都市中大多還未納入常規監測項目,我們對於他們對環境與人體的影響也還未全盤了解。甚至很多污染物,可能是十年前都還沒出現的。我們也不知道十年後,新興污染物的名單上,還會增加哪些名字。我們能做的事,就是盡量避免再避免。而徹底解決管線破損,與城市污水滲入蓄水池的可能性,我們才能避免這些新興污染物,進入到我們的飲用水中。

-----廣告,請繼續往下閱讀-----

使用淨水器過濾,會是淨化水質更好的方法嗎?

淨水器比起單純加熱煮沸,裡面包含了許多科技結晶,確實可以一口氣解決所有問題。但相對的,材料的選用與設計,就會更直接影響水質的好壞。

例如今天要介紹的eSpring益之源淨水器Pro,裡面用的濾材,是很常聽見的「活性碳」。

活性碳的作用是「過濾」,就像麵粉通過篩網,可以篩掉較大的顆粒。活性碳的製備,很多來自木材、椰子殼等高碳含量的原料。在經過高溫碳化,並通過活化劑或化學藥劑處理之後,會形成多孔結構,這些不規則的微小孔隙可以有效過濾水中的污染物。然而,活性碳的作用遠不止如此!其實,活性碳的過濾原理是「吸附」雜質。

活性碳是常見的濾材,圖:Wikipedia

有研究透過光譜和密度泛函理論(DFT)分析顯示,活性碳表面的含氧官能團,如羧基(carboxyl groups)和酚基(phenol groups),能夠與鉛離子(Pb(II))形成穩定的化合物,達到淨水的效果。這意味著活性碳能有效吸附和去除水中的重金屬,如鉛、銅、汞等重金屬,從而保證飲用水的安全性。

-----廣告,請繼續往下閱讀-----

也就是說,活性碳不僅通過物理吸附去除水中的懸浮物和大分子,還可以通過化學吸附來處理更複雜的污染物。除了重金屬以外,眾多的有機物、臭味分子甚至是餘氯,也都在活性碳的守備範圍內。一篇發表在《Reviews in Chemical Engineering》的論文也指出,面對日益增加的新興污染物,活性碳也正是一種具有前景的選擇之一,尤其農藥、個人保健與衛生藥(PPCPs)以及內分泌干擾物質(EDC)與活性碳有很強的吸附性,能有效的過濾這些新興污染物。

更進一步,科學家們正在研究各種農業廢棄物和不同的活化方式。他們發現,透過不同的原料和活化方式,活性碳表面官能基和結構的差異可以提高對不同污染物的吸附能力。例如,當使用鷹嘴豆、甜菜甘蔗渣或咖啡渣作為前驅物時,這些活性碳材料展現出對銅離子、鉻離子、染料及其他重金屬和有機污染物的優異吸附能力。

接下來,如果你的淨水器功能只有過濾,能確保的只有有機物與重金屬的去除,細菌可能還是存在。

當我們談論淨水器的功能時,許多人誤以為只要經過過濾就能確保水質的安全。實際上,這樣的理解並不全面。如果淨水器的功能僅限於過濾,它能確保的只有去除水中的有機物質和重金屬,然而,過濾並不能消除所有細菌,因此水中的微生物仍然可能殘留。這就是為什麼,即便過濾器

-----廣告,請繼續往下閱讀-----

之外,還需要強效殺菌來進一步保證水質。

紫外線是我們日常生活中常見且高效的殺菌工具,從居家用的烘碗機到手術室、圖書館的空氣或表面消毒,紫外線技術的應用無所不在。在淨水系統中,特別是UV-C 紫外線(波長範圍100-280nm)被證明能夠有效殺滅水中的微生物。許多先進的淨水器配備 UV-C LED ,這種燈能夠針對細菌、病毒進行消毒。

圖片來源:Amway

怎樣算是一個合格的淨水器?

美國國家衛生基金會(NSF)制定了一系列針對淨水器的性能、安全性和耐用性的標準,稱為NSF/ANSI標準。

針對台灣飲用水可能遇到的問題:細菌、重金屬、新興污染物、餘氯,各有專門的訂定標準。

-----廣告,請繼續往下閱讀-----
NSF/ANSI 標準指的是美國國家科學基金會下美國國家標準協會的所訂定的標準,

eSpring益之源淨水器Pro通過的第一跟二項標準是NSF/ANSI 53和401標準,53項針對的是健康相關的污染物,包含重金屬如鉛、銅、汞等有害金屬離子,還包括一些有機污染物如揮發性有機化合物(VOCs)。401項則是針對來自農藥、藥物等新興的有機污染物,因為在傳統的水處理過程中難以去除,因此特別訂定。

第三項,則是針對UV-C LED紫外線滅菌艙殺菌效果的NSF/ANSI 55標準。這個標準不僅規定了紫外線強度,還包括了水流量和微生物減少效果的測試與持久性,確保淨水器具有足夠的殺菌消毒能力。根據實驗數據,UV-C  LED紫外線能夠有效消滅高達99.9999% 的細菌,99.99% 的病毒,以及99.9% 的囊胞菌,為飲用水提供極高的安全保障。

最後一項標準是NSF/ANSI 42,他針對的餘氯和其他會影響味道與氣味的雜質。也就是像eSpring益之源淨水器Pro有通過第42項標準的,在確保飲用安全的標準之上,還能讓你的水更好喝哦。

這邊也要補充,除了第42、53、以及401項規定的標準,eSpring益之源淨水器Pro還請NSF做了標準之外的各項過濾性能檢測,總共有超過170種污染物的過濾符合標準,包含各種化學物質、重金屬、生物性、農藥、藥物、甚至是近年大家關注的石綿、氡氣與塑膠微粒,都在可被有效過濾的列表之中。這真的很重要,如同一開始我們講的,隨著工業文明的發展,新興污染物的名單只會越來越長而不會減少,多做幾項檢測,絕對是更安心的。如果你的淨水器已經用了很久,但擔心新興污染物沒有在獵捕名單內,可以考慮換成有通過更高標準的淨水器哦。

-----廣告,請繼續往下閱讀-----

另外,一些品牌雖然也有NSF認證,但很多都只有零件認證。eSpring益之源淨水器Pro不只針對濾心,還通過「全機認證」,確保從淨水器流出來的每一滴水都符合標準。

進一步了解商品: eSpring益之源淨水器Pro

參考資料:

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
206 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
如果數學是藝術創作的繆思女神?來自全球的數學藝術展覽── Bridges 2018 研討會(上)
Sharkie Lin_96
・2018/12/27 ・3946字 ・閱讀時間約 8 分鐘 ・SR值 534 ・七年級

如果數學是藝術創作的繆思女神,世界上可是有一群人每年聚在一起,搶著分享和女神約會的心得,這個奇特的聚會就是 Bridges 全球數學藝術研討會!

Bridges 從 1998 年開始舉辦,是個一年一度以數學為主的大型全球聚會,結合藝術、音樂、建築、教育與文化,是國際間知名的跨領域會議,任何有趣的超展開都可能在此發生。

今年 (2018) 的 Bridges 在瑞典斯德哥爾摩的科技博物館 (Tekniska Museet) 展開,會議從 7/25 至 7/29 共為期五天,包含最後一天的郊遊日。Bridges 從 2001 年開始每年舉辦數學藝術展覽,是全球最大的盛會,今年總共展示了一百多件來自全球的作品,其中台灣有四位數學藝術家前去參展,撰寫這篇文章的我也是參展者之一。

Bridges 2018文宣。
圖/Bridges 2018

在諾貝爾獎演說地點開啟 Bridges

Bridges 2018 開幕選在諾貝爾獎得主演說的地點 ── 斯德哥爾摩大學的講堂  (Aula Magna of Stockholm University)[註 1],充滿設計感與科學意義的講堂讓人沉浸在知識與美的氛圍中。

-----廣告,請繼續往下閱讀-----

第一位分享者正好是諾貝爾物理獎 2004 年得主弗朗克·韋爾切克 (Frank Wilczek) 談論科學與藝術的交集,另外兩場分享則分別是數學家考爾姆·穆爾卡 (Colm Mulcahy) 的紙牌魔術表演,以及由數學家桃樂絲·舒特內德 (Doris Schattschneider) 介紹家庭主婦瑪喬里·賴斯 (Marjorie Rice,1923–2017) 發現五邊形鋪磚型態的傳奇故事,正好也是科技博物館的遊樂場「數學花園」的迎賓廊道。(可見「瑞典科技博物館數學花園:融合數感、美感、體感設計的北歐遊樂場」一文。)

瑞典科技博物館「數學花園」概念圖。
圖/Tekniska Museet

這次會議地點在斯德哥爾摩的博物館公園,參加不同場次需要穿梭在各博物館,彷彿跨越知識間的藩籬,同時呼應 Bridges 的跨域精神,這樣的安排相較一般制式的固定地點讓人有著特別的感受。在會議期間,科技博物館、民族學博物館、表演藝術博物館、諾貝爾博物館也都有專門為 Bridges 參與者特別安排導覽解說與免費參觀時段,讓人體驗到主辦方的用心以及歐洲博物館的精緻內容。

跨界的不只是博物館,Bridges 本身就是以多元的論文展覽活動在國際間著名。會議期間每天都非常充實與豐富,從早到晚滿滿的數學藝術(詳細議程),可以看到數學與各類藝術甚至科技相互撞擊,遇到全球的數學藝術同好更是讓人覺得興奮!

-----廣告,請繼續往下閱讀-----

來自台灣的數學藝術展覽

關注了 Bridges 好一陣子,今年我終於鼓起勇氣報名,非常幸運地通過徵選並且獲得國藝會贊助,因此能有機會 Bridges 2018 全球數學藝術展覽中展出。本屆展覽台灣四位參展藝術家皆安排在 General Exhibition Gallery(GE) 展出,除了作品本身,在 GE 展廳還可以展示相關的物件,因此我放置了〈對稱的鏡面〉的作品說明、原始論文與 3D 列印模型,希望讓觀眾可以完整了解創作緣由。

Symmetric Mirrors(對稱的鏡面),Shark Lin(林家妤)。
攝影/Shark Lin

〈對稱的鏡面〉是根據我發明 / 發現的吠陀立方數學原理製作而成,將立方體的六個對稱面以鏡面材料呈現(延伸閱讀:吠陀立方對稱面法:解不出的空間幾何問題就到廚房解決吧!),會隨著現場燈光而呈現不同的反射與錯視效果,觀眾還可以用雷射筆或其他物體與作品互動,觀察鏡中成像變化 [註 2]。

雷射光打在〈對稱的鏡面〉形成之反射。
攝影/Shark Lin

-----廣告,請繼續往下閱讀-----

展覽期間有許多觀眾來看作品,甚至到撤展時段都還有一群瑞典青少年包圍展位;而作品本身也獲得許多不錯的評價,像是紐約數學博物館 (MoMath) 館長 Cindy Lawrence 覺得〈對稱的鏡面〉讓人十分驚艷。能夠在國際舞台讓世界看見台灣的作品,對第一次參加 Bridges 展覽的我來說更是別具意義。

今年 Bridges 數學藝術展覽中,台灣一共有四位來自不同領域的參展者與作品:分別是工程背景的我(林家妤,Shark Lin)、金必耀教授(Bih-Yaw Jin)團隊的化學串珠、陳明璋教授(Mingjang Chen)的碎形疊代畫作,以及施宣光教授(Shen-Guan Shih)的巧蝸積木 (SL blocks)。

Bead model for the Type I & II clathrate hydrates,左家靜與金必耀。
攝影/Shark Lin

Castle emerging above clouds,陳明璋。
攝影/Shark Lin

-----廣告,請繼續往下閱讀-----

Break a symmetry,施宣光。
攝影/Shark Lin

我們創作的詳細介紹可見 Bridges 線上藝廊與論文集,以及李國偉教授科學人 2018 年 9 月號的專文「連結數學、藝術與教育的橋樑」一文,該期另有科普作家斯蒂芬·奧內斯 (Stephen Ornes)的專文「數的藝術品」。

Bridges 裡令人驚豔的作品

除了台灣的作品外,我也很想完整介紹全世界的數學藝術作品,不過 Bridges 2018 的參展作品就有一百多件,論文數量也破百篇,就算在天橋底下說書把這幾天的事情拆成九篇也說不完哪,只好精選幾件有趣的作品來介紹。

首先是首獎作品,來自荷蘭的兩位藝術家創作了一件能夠同時表現四個圖像的錯視創作,而他們選定的主題是全世界最有名的四張臉 ── 披頭四。他們利用 3D 列印印出截角八面體 (truncated octahedrons) 上圖像元素,搭配夾角 90 度的兩片鏡面相互反射,就可以用一個物體神奇地同時呈現出四個圖像。

-----廣告,請繼續往下閱讀-----

值得一提的是,他們在 Bridges 2016 也是以三維錯視創作拿到首獎,分別以 Gödel, Escher, Bach: an Eternal Golden Braid(中文書名:哥德爾、艾舍爾、巴赫:集異璧之大成)這本書三位大師的頭像作為創作主題。

Four Fabulous Beatles Faces in a 3D Object,Walt van Ballegooijen and Hans Kuiper。
攝影/Shark Lin

艾雪式的鑲嵌圖樣向來深受藝術家與大眾喜愛,來自德國同時修習數學與平面設計的 Alexander Guerten,創作了動物造型的 3D 鑲嵌作品令人驚歎。前幾個月才在推特上看過,沒想到竟然能在 Bridges 的展覽會場見到,讓人驚喜連連!

KUHKUBUS,Alexander Guerten。
攝影/Shark Lin

-----廣告,請繼續往下閱讀-----

在我展位隔壁的藝術家是來自瑞典的 Erik Åberg,他發展了 GHOSTKUBE 可轉動的方塊組,最近還上了 kickstarter 募資。

有天我在餐廳用餐時,看見隔壁東方面孔女性的幾何摺紙造型包包,似乎在哪裡看過卻又想不起來? 懷著好奇心就決定向對方搭訕交流。

ANTIPRISMS – Porcelain,Uyen Nguyen。
圖/WINWIN

對方拿出名片之後,我才發覺她就是奇美博物館摺紙大展《紙上奇蹟》策展人嬴嬴 (Uyen Nguyen),所以對這個摺紙造型包有印象。正好我之前寫的幾何藝術走春文章中,有推薦過這檔展覽(延伸閱讀:新年科青走春!全台幾何藝術景點大搜查),也讓我們聊了許久。最後一天在諾貝爾博物館參訪時,她還贈送我鑲嵌摺紙作品留作紀念。

-----廣告,請繼續往下閱讀-----

左側為本文作者 Shark Lin,右側為奇美博物館《紙上奇蹟》策展人嬴嬴 (Uyen Nguyen) 與摺紙作品
圖/作者提供。

最讓我喜出望外的是,以錯視作品享譽全球的杉原厚吉(Kokichi Sugihara)教授也在Bridges 2018分享他的創作。我曾經在《錯視維度》展覽邀請他的作品〈Ambiguous Cylinder Illusion〉參展 [註 4],終於見到本人才發現這次來Bridges其實是來朝聖的!

杉原厚吉(Kokichi Sugihara)教授於Bridges 2018分享錯視創作與原理,圖中為〈Ambiguous Cylinder Illusion〉。
攝影/Shark Lin

與杉原厚吉教授合影,我們手中拿的是《錯視維度》酷卡。 圖/作者提供。

以上作品約略只佔了 Bridges 的 5%,若是想看所有作品下方有相關網站。這篇文章主要介紹數學藝術展覽,下回我要來聊聊 Bridges 裡頭更多數學的跨界想像力!

延伸閱讀

Bridges 2018相關網站

  1. 官方網站
  2. 線上藝廊
  3. 相關活動
  4. 論文集
  5. 詳細議程

註釋

  • 註 1:諾貝爾獎頒獎則是在斯德哥爾摩音樂廳 (Stockholm Concert Hall),晚宴則在市政廳 (Stockholm City Hall)。
  • 註 2:本次參展作品〈對稱的鏡面〉為吠陀立方系列創作,曾經在圓山花博《視覺混種 On Site, Visual》、2016 泛‧知識節《數學藝術互動體驗》、靜宜大學《IMAGINARY 超越無限‧數學印象特展》展示過,而今年在瑞典展出版本為鏡面全反射改良版本。
  • 註 3:Bridges 是一個以數學為基礎的展覽,因此作品投件時藝術家需要選擇分類與提供說明,以便評審委員審查,Bridges 的作品分類與徵選標準如下:
    (1) 2D 作品(如鑲嵌、不可能的圖形、對稱設計)
    (2) 3D 作品(多面體、摺紙)
    (3) 自然界中特別的數字與數學(費氏數列、黃金比例)
    (4) 拓樸學(莫比烏斯帶、最小能量表面、扭結、圖論等)
    (5) 演算藝術(奇異吸子、基於代數方程式的藝術、排列、魔方陣)
    (6) 碎形
    而徵選標準有以下五項標準,括弧裡的字為官方註解:
    (1) 數學內容(這裡有數學知識豐富的觀眾)
    (2) 美感(顯然這相當主觀)
    (3) 材質(多樣的材質會讓展覽更多元)
    (4) 工藝技術(可有效地傳達作品概念)
    (5) 創新與原創性(將數學藝術推往新方向)
  • 註 4:杉原厚吉教授於2018年10月受邀來台,並且於台灣大學主辦之「實 ‧ 幻:視覺錯覺之探索與應用 國際研討會」主講(Betwixt Reality and Illusion: International Symposium on the Exploration and Application of Visual Illusions);而我也在此研討會上分享〈對稱的鏡面〉作品中的錯視現象,以及《錯視維度》展覽內容與策展過程,相關報導可見此(連結)。

本次旅行獲得財團法人國家文化藝術基金會(國藝會)國際交流計畫補助。

-----廣告,請繼續往下閱讀-----
Sharkie Lin_96
24 篇文章 ・ 6 位粉絲
在國二無聊的早自習意外發現數學的趣味,因此近來體驗到數學研究、藝術創作、採訪寫作、展覽策劃、資優教育等工作。不是念數學也不是學藝術,但樂於從多元視角聊聊數學的各種姿態,以及進行數學藝術創作,希望能為世界帶來一點樂趣。科普部落格〈鯊奇事務所〉https://medium.com/sharkie-studio,聯絡信箱 sharkgallium@gmail.com

0

0
0

文字

分享

0
0
0
把幾何的美戴出去炫耀!來自台灣團隊「單挑概念」的幾何金工——科學開封府系列
Sharkie Lin_96
・2017/06/07 ・1966字 ・閱讀時間約 4 分鐘 ・SR值 493 ・六年級

從「科學」的角度解「開封」印在商品中的知識,就是我們科學開封府的職司。開封府內的胞大仁㜊妱公猻測會不定期介紹各種與科學有關的各種玩意,有時溫柔勸敗,偶爾龍虎狗頭鍘伺候剁手,不管怎樣,請您上座啦!

本次科學開封府邀請了泛科學專欄作者 Shark Lin 來為我們介紹充滿藝數美感的PRISM幾何飾品系列!

從去年秋天開始,我幾乎每天都會上網瀏覽世界數學藝術的相關創作,外國有許多團隊利用衍生藝術(generative art),設計出許多藝數時尚商品,曾在 2016 泛.知識節分享過幾個案例,另一方面也感嘆台灣相關創作較少,沒想到不久後就驚喜發現單挑概念工作室的作品─PRISM幾何飾品。

單挑概念在今年二月舉辦了試戴會(2017),原本以為像是一般的飾品一樣,不過一到現場馬上感受到了金工的魅力,「P01蛻變系列」不僅擁有高質感的外觀,還能夠動手把玩,更有深邃的幾何意涵,一件作品能有如此多層次,真的令人十分驚艷。

PRISM幾何飾品的質感不言自明,為了讓大家了解P01的深刻內涵,我將會詳細介紹其設計巧思與幾何結構。而令人驚奇的是,P01除了能夠以立方體的型式當作墜子,還可以用不規則的超展開作為項鍊或手環。

圖/單挑概念提供

-----廣告,請繼續往下閱讀-----

圖/單挑概念提供

雖然網路上有介紹影片與組合教學,到現場P01的不規則展開仍然讓腦袋有點打結,我試著摺疊回立方體研究其幾何結構,花了很多時間還是很難參透,對於不規則展開是如何設計出來的特別感到好奇,畢竟我在研究吠陀立方對稱面法時,曾經畫過上百個立方體反覆思考空間分割,竟然還是沒法完全了解。

再更仔細看,會注意到P01有三條對角線通過同一個點(可視為原點),其方程式為X=Y, Y=Z, X=Z;與吠陀立方的主對稱面群非常類似,差別是在前者為線、後者為面。

把玩樣品的過程中,P01能夠變型成3個四角錐如下圖。然而,不規則的動態展開仍是個謎,因此我親自走訪了單挑概念工作室,試圖還原設計與發想過程,希望能了解其中的巧思。到底裡面藏了什麼機關呢?

-----廣告,請繼續往下閱讀-----

最初,設計師是從平面展開圖去思考如何拆解立方體,在展開後的正方形加上對角線覺得還是過於單調,構思過程中以徒手繪圖搭配電腦軟體,決定再朝立方體的對角線下手,得到了一個底面為正方形的四角錐(五面體)。

設計師當時假設可用四角錐拼成立方體,把多個四角錐的各個面展開畫在紙上,再嘗試拼接、排列、組合,最終發現三個四角錐可組成立方體。

圖/截取自影片

圖/單挑概念提供

-----廣告,請繼續往下閱讀-----

由上圖可知,立方體可以被分成三個四角錐。切法是從一個頂點(可視為原點),沿著三個對稱面切,直到立方體的對角線X=Y=Z為止,切面不超過對角線即可得到。

了解P01的基本元素以後,再來談談不規則的超展開。現在知道立方體由三個四角錐(五面體)構成,理論上飾品攤開來應該有15個面,算一算卻只有13個面,大家可以想一想缺少的2個面分別是四角錐的哪個面,以及在P01的何處?

設計師對立方體幾何原理有相當程度的感知,加上突破框架的創意才能發展出不規則設計,拿掉2個面讓展開變得不對稱,主要是為了整體美感與輕量化考量。我個人十分欣賞這樣的不規則設計,帶有沒法一眼看穿的神秘感。

從幾何結構到產品設計不免有些轉化,像是圖中的梯形其實是代表一個大三角形,設計斜桿是為了項鍊與手鍊的扣頭有地方可扣。

-----廣告,請繼續往下閱讀-----

幾何本身帶有一種普世性的美感,能夠成為引領時尚的潮流。單挑概念將把立方體轉化成金工飾品P01蛻變系列,除了飾品本身相當精緻與迷人,還可以讓人動手把玩,更蘊藏了許多設計巧思,充分體現了幾何美學的優雅質感與知性內涵。

這是來自我們台灣的設計,令國際驚豔的MIT作品,我個人十分欣賞,在此也推薦給正在收看這篇文章的你和妳。

PRISM 幾何飾品在泛科市集

購買 P00 拼圖系列請由此去→

購買 P01 蛻變系列請由此去→

-----廣告,請繼續往下閱讀-----

-----廣告,請繼續往下閱讀-----
Sharkie Lin_96
24 篇文章 ・ 6 位粉絲
在國二無聊的早自習意外發現數學的趣味,因此近來體驗到數學研究、藝術創作、採訪寫作、展覽策劃、資優教育等工作。不是念數學也不是學藝術,但樂於從多元視角聊聊數學的各種姿態,以及進行數學藝術創作,希望能為世界帶來一點樂趣。科普部落格〈鯊奇事務所〉https://medium.com/sharkie-studio,聯絡信箱 sharkgallium@gmail.com

0

0
1

文字

分享

0
0
1
用新視角一窺來自古印度的九九乘法表:吠陀立方樓層法
Sharkie Lin_96
・2017/03/21 ・3505字 ・閱讀時間約 7 分鐘 ・SR值 542 ・八年級

上回介紹了我運用數字感把風靡世界數千年的古印度數學──吠陀方形(Vedic square)加了一個維度以後定義與發明了吠陀立方(Vedic cube)[1]。

吠陀方形就是將大家熟悉的九九乘法表中每一個數字進行位數根(digital root)運算,例如說 5 乘上 5 會得到 25,把 2 加上 5 得到 7,這個 7 就是 25 的位數根也是吠陀方形裡座標點(5, 5)的數值。吠陀方形在西元 770 年被穆斯林納入伊斯蘭的數學知識體系之中 [2]。

吠陀方形(Vedic Square)。圖/Shark Lin 提供

其中位數根所在的位置互相連結後組成的胚騰(pattern)構成了特定的幾何圖案如下圖,晚一點還會繼續用到:

-----廣告,請繼續往下閱讀-----

吠陀方形中的位數根胚騰。圖/Shark Lin 提供

吠陀立方則是將吠陀方形從平面延伸成立體,也就是三個數字相乘的三維乘法表(9 × 9 × 9),是整個立方體中各個座標點的數字進行位數根運算後的結果,可以用函數 D(X, Y, Z)代表吠陀立方中座標(X, Y, Z)該數字的位數根,實際運算時的數學式為 D(X × Y × Z)。例如座標點(2, 3, 5)在吠陀立方中的數值即為 D(2 × 3 × 5)= D(30)= D(3)= 3。

然而,上回提到以軟體繪出吠陀立方中的位數根胚騰散布情況相當複雜(可見上一篇),難以看出這些座標點在空間中構成的意義,因此需要以其他方法解析。結束有點長的前情提要以後,這一回我要以樓層法(Floor method)深入解析吠陀立方,帶大家往更高的樓層邁進,發現數學蘊含的規律。

既然無法一眼就看出三維空間的位數根胚騰散布情況與這些座標點在空間中構成的意義,那何不把吠陀立方視為有 9 層樓高如同建築物的立方體,這方法我稱它為樓層法。下圖是吠陀立方 1 樓至 9 樓的所有數值,樓層區分的原則是 Z 軸的高度。

-----廣告,請繼續往下閱讀-----

樓層法,吠陀立方 1 樓至 9 樓。圖/Shark Lin 提供

基本圖樣與行列的代碼定義

把 1 樓至 9 樓的所有數值都列出來以後,就可以來進一步觀察位數根在不同樓層之間構成的圖樣,這些圖樣其實是幾種基本圖樣(basic pattern)的變換或是變形,這些基本圖樣是吠陀方形中出現的幾何圖樣。

為了方便稱呼與後續討論,必須先定義這些基本圖樣的名稱。像是數字 1 在吠陀方形中所組成的圖樣,就稱為 D1F1,因為是基本圖樣所以可以將 F1 省略,簡稱 D1;而數字 8 構成的圖樣 D8F1 為數字 1 對鉛直線的鏡射或說旋轉 90 度後的結果,簡稱 D8,其他數字構成的圖樣名稱以此類推。

先定義這些基本圖樣的名稱,像是數字 1 在吠陀方形中所組成的圖樣,就稱為 D1F1,簡稱 D1。圖/Shark Lin 提供

-----廣告,請繼續往下閱讀-----

2 樓以上樓層代碼中的 F 則不可省略,例如位數根 1 於 2 樓的圖樣稱為 D1F2,位數根 4 於 7 樓的圖樣稱為 D4F7,其他位數根於其他特定樓層的圖樣代碼也依照此原則表示。至於行列代碼的定義如下,以 C2F1 表示吠陀立方中 1 樓的第 2 行,即 246813579,其他樓層的行列以此類推,實際上行與列的組成數字相同,在此以行(column)代表行與列。

動手發現數學胚騰

介紹完代碼以後,建議大家實際拿出筆來試著自行發現數學胚騰。初階的玩法是選定一個數字,例如自己生日的位數根,也就是俗稱的生命靈數。例如泛科學的生日是 2011 年 11 月 4 日,生日位數根是 1,就把 1 到 9 樓的數字 1 都塗上顏色或是圈起來做標記,再對照前面提到的基本圖樣 D1 至 D9 看看兩者對應的關係。

如果還意猶未盡的話進階玩法是下載吠陀立方每一層樓的 pdf 檔案,觀察其他 8 個數字在每個樓層的數學胚騰與其變換的規律與規則,檔案中同一層樓印 9 個為了方便大家觀察完自己選定的數字以後,還可以觀察其他 8 個數字在同一樓層的數學胚騰,畫記數字時才不會把圖樣混在一起。

不同樓層的位數根圖樣變換

經過這些觀察以後,我發現同個位數根構成的圖樣在不同樓層之間也具有對稱、鏡射的性質,像是位數根 1 在 2 樓(D1F2)與 7 樓(D1F7)的圖樣其實為 D5 與 D4,兩個圖樣在 X-Y 平面的投影為相互對鉛直線鏡射,此外 1 樓與 8 樓、3 樓與 6 樓、4 樓與 5 樓也都具有這樣的性質。也就是說 5 樓至 8 樓的位數根圖樣可分別由 4 樓至 1 樓鏡射得到,位數根 1 在各個樓層構成的圖樣如下圖:

-----廣告,請繼續往下閱讀-----

位數根 1 在各個樓層構成的圖樣。圖/Shark Lin 提供

有趣的是,這些位數根胚騰在不同樓層之間變換的規則,可由吠陀方形(1 樓的 X-Y 平面)清楚看見。下圖同樣先以位數根 1 為例解釋。我把位數根 1 在不同樓層之間的圖樣變換紀錄在下圖(a)表格中的圖樣欄位,該欄位代表在 X 樓時,位數根 1 構成的圖樣是對應吠陀方形中哪一種基本圖樣。

我在研究時發現,位數根 1 在吠陀方形中 X 位置出現時對應的 Y 值,就是基本圖樣出現的順序!例如說下圖(b)當 X 為 2 時對應的 Y 值為 5,D1F2 對應的即是 D5 圖樣,其他樓層 X 的圖樣變換可由箭頭指向的 Y 值辨認之,像是可以看到由 X 樓對應的 Y 值與箭頭辨別出在 4、5、7、8 樓對應的圖樣各為 D7、 D2、 D4、 D8。

圖(a)位數根 1 在不同樓層之間的圖樣變換。圖/Shark Lin 提供

-----廣告,請繼續往下閱讀-----

圖(b)位數根 1 在吠陀方形中 X 位置出現時對應的 Y 值,就是基本圖樣出現的順序!圖/Shark Lin 提供

圖樣變換解釋

由吠陀方形指認吠陀立方位數根胚騰的變換順序是巧合還是有根據呢?由上面我們知道 D1F2 會等同 D5 圖樣,D5 圖樣對應的是吠陀方形中位數根 5 的圖樣。由定義我們知道 2 樓的組成數字是 1 樓的所有數字都乘上 2,那什麼數字乘上 2 之後的位數根會等於 1 呢?從乘法表中於 X = 2 的地方,只有 Y = 5 此相對應的位置,才會得到位數根為 1,因此 D1F2 = D5。

在 4 樓我們發現 D1F4 = D7,也可以想成是原本在 1 樓的 D7 圖案,到了四樓以後乘上 4 之後的位數根自然而然就變成了 1。如此一來便能解答為什麼 3 樓、6 樓、9 樓都沒有1(以及 2、4、5、7、8)呢,因為沒有任何數字乘上 3、6、9 之後的位數根會是 1 啊!除了位數根 1 之外,其他的位數根都遵循上述的原理,讀者可由前面提供的檔案自行對照。

只要圖解吠陀方形,就可以知道其他位數根於特定樓層中會是哪一種圖樣。也就是我們可經由二維平面的吠陀方形進一步了解三維空間的吠陀立方。吠陀方形這個二維平面不只為三維空間的一個剖面或是一樓而已,更是了解三維空間位數根胚騰非常重要的基礎。

-----廣告,請繼續往下閱讀-----

若是想用方程式求得位數根 p 在 q 樓的圖樣會與哪一個位數根 r 在 s 樓的圖樣相同,可利用此式判別與求解未知數 D(p × s)= D(q × r),若等式兩邊相等則 DpFq = DrFs 成立。s = 1 時求得的 Dr 即為對應的基本圖樣,表示 Dr 位置的位數根在 q 樓層會是 p 位數根。例如說想要知道位數根 7 在 8 樓的圖樣會對應哪一個基本圖樣 Dr,可以用D(7) = D(8 × r)得出 r 為 2,D7F8 = D2 與直接觀察的結果相同。

圖樣可以多重組合

有的時候特定數字於特定樓層構成的圖樣將會不只涵蓋一個基本圖樣,而是多個基本圖樣組合而成。舉 D3F3 的圖樣組合當做例子,下圖左方在吠陀方形可以看到 X = 3 時,對應的 Y 值有 3 個,分別是 Y = 1、4、7,對應的基本圖樣為 D1、D4、D7。下圖右方顯示了 D3F3 的圖樣,是由 D1(黃)、D4(綠)、D7(藍)這三種圖樣組合而成的,以數學式表示則為 D3F3 = D1 + D4 + D7。

左方在吠陀方形可以看到 X = 3 時,對應的 Y 值有 3 個,分別是 Y = 1、4、7,右方顯示了 D3F3 的圖樣,以數學式表示則為 D3F3 = D1 + D4 + D7。圖/Shark Lin 提供

從上圖可以發現 X = 6 時對應的數值為 3 也有 3 個,分別是 Y = 2、5、8,也可寫成 D3F6 = D2 + D5 + D8,表示位數根 3 在 6 樓是由 D2、D5、D8 圖樣組合而成。類似的多重圖樣組合尚有 D3F6、D6F3、D6F6、D9F3、D9F6、D9F9。

-----廣告,請繼續往下閱讀-----

圖樣多重組合的原理可以解答為何 9 樓每一個位數根皆為 9,因為不管 1 到 9 是哪一個數字,乘上 9 之後都會是 9 的倍數,位數根也會是 9,所以在 9 樓每一個位數根皆為 9,也表示了 D9F9 為所有的基本圖樣組合而成。以數學式表達可以寫成  D9F9 = D1 + D2 + D3 + D4 + D5 + D6 + D7 + D8 + D9。

吠陀方形除了隱含三維空間位數根圖樣變換的根據之外,還蘊藏了不同樓層之間行列變換的規則,例如吠陀立方 2 樓的行順序事實上為 1 樓的行順序乘上 2,也是 1 樓第 2 行對應的數字。2 樓的 1 至 9 行的組成順序為 1 樓的第 2、4、6、8、1、3、5、7、9 行。2 樓的第 1 行等同 1 樓的第 2 行,以代碼表示則為 C1F2 = C2F1,其他樓層以此類推。

若是想知道 i 樓的第 h 行列會與 k 樓的第 j 行相同,可利用此式判別與求解未知數D(h * i)= D(j * k),若等號兩邊相等則 ChFi = CjFk,k = 1 求得的 Cj 即為對應的基本行,表示 Cj 在 i 樓層會出現於第 h 行。這個公式和前面的是不一樣的。

次回預告

樓層法專注在解析吠陀立方各層本身的性質以及與吠陀方形的關係,較難探討位數根胚騰在三維空間中彼此的相關性,所以下回將會帶大家以第二種方法──對稱面法切入吠陀立方的中心一探究竟。

參考資料

  1. Lin, C. Y. Digital Root Patterns of Three-Dimensional Space. Recreational Mathematics Magazine, 3(5), 9–31, 2016.
  2. Jones, L. “Mathematics and Islamic art”, Mathematics in School, 18(4), 32–35, 1989.
-----廣告,請繼續往下閱讀-----
文章難易度
Sharkie Lin_96
24 篇文章 ・ 6 位粉絲
在國二無聊的早自習意外發現數學的趣味,因此近來體驗到數學研究、藝術創作、採訪寫作、展覽策劃、資優教育等工作。不是念數學也不是學藝術,但樂於從多元視角聊聊數學的各種姿態,以及進行數學藝術創作,希望能為世界帶來一點樂趣。科普部落格〈鯊奇事務所〉https://medium.com/sharkie-studio,聯絡信箱 sharkgallium@gmail.com