Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

用新視角一窺來自古印度的九九乘法表:吠陀立方樓層法

Sharkie Lin_96
・2017/03/21 ・3505字 ・閱讀時間約 7 分鐘 ・SR值 542 ・八年級

-----廣告,請繼續往下閱讀-----

上回介紹了我運用數字感把風靡世界數千年的古印度數學──吠陀方形(Vedic square)加了一個維度以後定義與發明了吠陀立方(Vedic cube)[1]。

吠陀方形就是將大家熟悉的九九乘法表中每一個數字進行位數根(digital root)運算,例如說 5 乘上 5 會得到 25,把 2 加上 5 得到 7,這個 7 就是 25 的位數根也是吠陀方形裡座標點(5, 5)的數值。吠陀方形在西元 770 年被穆斯林納入伊斯蘭的數學知識體系之中 [2]。

吠陀方形(Vedic Square)。圖/Shark Lin 提供

其中位數根所在的位置互相連結後組成的胚騰(pattern)構成了特定的幾何圖案如下圖,晚一點還會繼續用到:

吠陀方形中的位數根胚騰。圖/Shark Lin 提供

吠陀立方則是將吠陀方形從平面延伸成立體,也就是三個數字相乘的三維乘法表(9 × 9 × 9),是整個立方體中各個座標點的數字進行位數根運算後的結果,可以用函數 D(X, Y, Z)代表吠陀立方中座標(X, Y, Z)該數字的位數根,實際運算時的數學式為 D(X × Y × Z)。例如座標點(2, 3, 5)在吠陀立方中的數值即為 D(2 × 3 × 5)= D(30)= D(3)= 3。

-----廣告,請繼續往下閱讀-----

然而,上回提到以軟體繪出吠陀立方中的位數根胚騰散布情況相當複雜(可見上一篇),難以看出這些座標點在空間中構成的意義,因此需要以其他方法解析。結束有點長的前情提要以後,這一回我要以樓層法(Floor method)深入解析吠陀立方,帶大家往更高的樓層邁進,發現數學蘊含的規律。

既然無法一眼就看出三維空間的位數根胚騰散布情況與這些座標點在空間中構成的意義,那何不把吠陀立方視為有 9 層樓高如同建築物的立方體,這方法我稱它為樓層法。下圖是吠陀立方 1 樓至 9 樓的所有數值,樓層區分的原則是 Z 軸的高度。

樓層法,吠陀立方 1 樓至 9 樓。圖/Shark Lin 提供

基本圖樣與行列的代碼定義

把 1 樓至 9 樓的所有數值都列出來以後,就可以來進一步觀察位數根在不同樓層之間構成的圖樣,這些圖樣其實是幾種基本圖樣(basic pattern)的變換或是變形,這些基本圖樣是吠陀方形中出現的幾何圖樣。

為了方便稱呼與後續討論,必須先定義這些基本圖樣的名稱。像是數字 1 在吠陀方形中所組成的圖樣,就稱為 D1F1,因為是基本圖樣所以可以將 F1 省略,簡稱 D1;而數字 8 構成的圖樣 D8F1 為數字 1 對鉛直線的鏡射或說旋轉 90 度後的結果,簡稱 D8,其他數字構成的圖樣名稱以此類推。

-----廣告,請繼續往下閱讀-----
先定義這些基本圖樣的名稱,像是數字 1 在吠陀方形中所組成的圖樣,就稱為 D1F1,簡稱 D1。圖/Shark Lin 提供

2 樓以上樓層代碼中的 F 則不可省略,例如位數根 1 於 2 樓的圖樣稱為 D1F2,位數根 4 於 7 樓的圖樣稱為 D4F7,其他位數根於其他特定樓層的圖樣代碼也依照此原則表示。至於行列代碼的定義如下,以 C2F1 表示吠陀立方中 1 樓的第 2 行,即 246813579,其他樓層的行列以此類推,實際上行與列的組成數字相同,在此以行(column)代表行與列。

動手發現數學胚騰

介紹完代碼以後,建議大家實際拿出筆來試著自行發現數學胚騰。初階的玩法是選定一個數字,例如自己生日的位數根,也就是俗稱的生命靈數。例如泛科學的生日是 2011 年 11 月 4 日,生日位數根是 1,就把 1 到 9 樓的數字 1 都塗上顏色或是圈起來做標記,再對照前面提到的基本圖樣 D1 至 D9 看看兩者對應的關係。

如果還意猶未盡的話進階玩法是下載吠陀立方每一層樓的 pdf 檔案,觀察其他 8 個數字在每個樓層的數學胚騰與其變換的規律與規則,檔案中同一層樓印 9 個為了方便大家觀察完自己選定的數字以後,還可以觀察其他 8 個數字在同一樓層的數學胚騰,畫記數字時才不會把圖樣混在一起。

不同樓層的位數根圖樣變換

經過這些觀察以後,我發現同個位數根構成的圖樣在不同樓層之間也具有對稱、鏡射的性質,像是位數根 1 在 2 樓(D1F2)與 7 樓(D1F7)的圖樣其實為 D5 與 D4,兩個圖樣在 X-Y 平面的投影為相互對鉛直線鏡射,此外 1 樓與 8 樓、3 樓與 6 樓、4 樓與 5 樓也都具有這樣的性質。也就是說 5 樓至 8 樓的位數根圖樣可分別由 4 樓至 1 樓鏡射得到,位數根 1 在各個樓層構成的圖樣如下圖:

-----廣告,請繼續往下閱讀-----
位數根 1 在各個樓層構成的圖樣。圖/Shark Lin 提供

有趣的是,這些位數根胚騰在不同樓層之間變換的規則,可由吠陀方形(1 樓的 X-Y 平面)清楚看見。下圖同樣先以位數根 1 為例解釋。我把位數根 1 在不同樓層之間的圖樣變換紀錄在下圖(a)表格中的圖樣欄位,該欄位代表在 X 樓時,位數根 1 構成的圖樣是對應吠陀方形中哪一種基本圖樣。

我在研究時發現,位數根 1 在吠陀方形中 X 位置出現時對應的 Y 值,就是基本圖樣出現的順序!例如說下圖(b)當 X 為 2 時對應的 Y 值為 5,D1F2 對應的即是 D5 圖樣,其他樓層 X 的圖樣變換可由箭頭指向的 Y 值辨認之,像是可以看到由 X 樓對應的 Y 值與箭頭辨別出在 4、5、7、8 樓對應的圖樣各為 D7、 D2、 D4、 D8。

圖(a)位數根 1 在不同樓層之間的圖樣變換。圖/Shark Lin 提供
圖(b)位數根 1 在吠陀方形中 X 位置出現時對應的 Y 值,就是基本圖樣出現的順序!圖/Shark Lin 提供

圖樣變換解釋

由吠陀方形指認吠陀立方位數根胚騰的變換順序是巧合還是有根據呢?由上面我們知道 D1F2 會等同 D5 圖樣,D5 圖樣對應的是吠陀方形中位數根 5 的圖樣。由定義我們知道 2 樓的組成數字是 1 樓的所有數字都乘上 2,那什麼數字乘上 2 之後的位數根會等於 1 呢?從乘法表中於 X = 2 的地方,只有 Y = 5 此相對應的位置,才會得到位數根為 1,因此 D1F2 = D5。

在 4 樓我們發現 D1F4 = D7,也可以想成是原本在 1 樓的 D7 圖案,到了四樓以後乘上 4 之後的位數根自然而然就變成了 1。如此一來便能解答為什麼 3 樓、6 樓、9 樓都沒有1(以及 2、4、5、7、8)呢,因為沒有任何數字乘上 3、6、9 之後的位數根會是 1 啊!除了位數根 1 之外,其他的位數根都遵循上述的原理,讀者可由前面提供的檔案自行對照。

-----廣告,請繼續往下閱讀-----

只要圖解吠陀方形,就可以知道其他位數根於特定樓層中會是哪一種圖樣。也就是我們可經由二維平面的吠陀方形進一步了解三維空間的吠陀立方。吠陀方形這個二維平面不只為三維空間的一個剖面或是一樓而已,更是了解三維空間位數根胚騰非常重要的基礎。

若是想用方程式求得位數根 p 在 q 樓的圖樣會與哪一個位數根 r 在 s 樓的圖樣相同,可利用此式判別與求解未知數 D(p × s)= D(q × r),若等式兩邊相等則 DpFq = DrFs 成立。s = 1 時求得的 Dr 即為對應的基本圖樣,表示 Dr 位置的位數根在 q 樓層會是 p 位數根。例如說想要知道位數根 7 在 8 樓的圖樣會對應哪一個基本圖樣 Dr,可以用D(7) = D(8 × r)得出 r 為 2,D7F8 = D2 與直接觀察的結果相同。

圖樣可以多重組合

有的時候特定數字於特定樓層構成的圖樣將會不只涵蓋一個基本圖樣,而是多個基本圖樣組合而成。舉 D3F3 的圖樣組合當做例子,下圖左方在吠陀方形可以看到 X = 3 時,對應的 Y 值有 3 個,分別是 Y = 1、4、7,對應的基本圖樣為 D1、D4、D7。下圖右方顯示了 D3F3 的圖樣,是由 D1(黃)、D4(綠)、D7(藍)這三種圖樣組合而成的,以數學式表示則為 D3F3 = D1 + D4 + D7。

左方在吠陀方形可以看到 X = 3 時,對應的 Y 值有 3 個,分別是 Y = 1、4、7,右方顯示了 D3F3 的圖樣,以數學式表示則為 D3F3 = D1 + D4 + D7。圖/Shark Lin 提供

從上圖可以發現 X = 6 時對應的數值為 3 也有 3 個,分別是 Y = 2、5、8,也可寫成 D3F6 = D2 + D5 + D8,表示位數根 3 在 6 樓是由 D2、D5、D8 圖樣組合而成。類似的多重圖樣組合尚有 D3F6、D6F3、D6F6、D9F3、D9F6、D9F9。

-----廣告,請繼續往下閱讀-----

圖樣多重組合的原理可以解答為何 9 樓每一個位數根皆為 9,因為不管 1 到 9 是哪一個數字,乘上 9 之後都會是 9 的倍數,位數根也會是 9,所以在 9 樓每一個位數根皆為 9,也表示了 D9F9 為所有的基本圖樣組合而成。以數學式表達可以寫成  D9F9 = D1 + D2 + D3 + D4 + D5 + D6 + D7 + D8 + D9。

吠陀方形除了隱含三維空間位數根圖樣變換的根據之外,還蘊藏了不同樓層之間行列變換的規則,例如吠陀立方 2 樓的行順序事實上為 1 樓的行順序乘上 2,也是 1 樓第 2 行對應的數字。2 樓的 1 至 9 行的組成順序為 1 樓的第 2、4、6、8、1、3、5、7、9 行。2 樓的第 1 行等同 1 樓的第 2 行,以代碼表示則為 C1F2 = C2F1,其他樓層以此類推。

若是想知道 i 樓的第 h 行列會與 k 樓的第 j 行相同,可利用此式判別與求解未知數D(h * i)= D(j * k),若等號兩邊相等則 ChFi = CjFk,k = 1 求得的 Cj 即為對應的基本行,表示 Cj 在 i 樓層會出現於第 h 行。這個公式和前面的是不一樣的。

次回預告

樓層法專注在解析吠陀立方各層本身的性質以及與吠陀方形的關係,較難探討位數根胚騰在三維空間中彼此的相關性,所以下回將會帶大家以第二種方法──對稱面法切入吠陀立方的中心一探究竟。

-----廣告,請繼續往下閱讀-----

參考資料

  1. Lin, C. Y. Digital Root Patterns of Three-Dimensional Space. Recreational Mathematics Magazine, 3(5), 9–31, 2016.
  2. Jones, L. “Mathematics and Islamic art”, Mathematics in School, 18(4), 32–35, 1989.
-----廣告,請繼續往下閱讀-----
文章難易度
Sharkie Lin_96
24 篇文章 ・ 6 位粉絲
在國二無聊的早自習意外發現數學的趣味,因此近來體驗到數學研究、藝術創作、採訪寫作、展覽策劃、資優教育等工作。不是念數學也不是學藝術,但樂於從多元視角聊聊數學的各種姿態,以及進行數學藝術創作,希望能為世界帶來一點樂趣。科普部落格〈鯊奇事務所〉https://medium.com/sharkie-studio,聯絡信箱 sharkgallium@gmail.com

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
如果數學是藝術創作的繆思女神?來自全球的數學藝術展覽── Bridges 2018 研討會(上)
Sharkie Lin_96
・2018/12/27 ・3946字 ・閱讀時間約 8 分鐘 ・SR值 534 ・七年級

-----廣告,請繼續往下閱讀-----

如果數學是藝術創作的繆思女神,世界上可是有一群人每年聚在一起,搶著分享和女神約會的心得,這個奇特的聚會就是 Bridges 全球數學藝術研討會!

Bridges 從 1998 年開始舉辦,是個一年一度以數學為主的大型全球聚會,結合藝術、音樂、建築、教育與文化,是國際間知名的跨領域會議,任何有趣的超展開都可能在此發生。

今年 (2018) 的 Bridges 在瑞典斯德哥爾摩的科技博物館 (Tekniska Museet) 展開,會議從 7/25 至 7/29 共為期五天,包含最後一天的郊遊日。Bridges 從 2001 年開始每年舉辦數學藝術展覽,是全球最大的盛會,今年總共展示了一百多件來自全球的作品,其中台灣有四位數學藝術家前去參展,撰寫這篇文章的我也是參展者之一。

Bridges 2018文宣。
圖/Bridges 2018

在諾貝爾獎演說地點開啟 Bridges

Bridges 2018 開幕選在諾貝爾獎得主演說的地點 ── 斯德哥爾摩大學的講堂  (Aula Magna of Stockholm University)[註 1],充滿設計感與科學意義的講堂讓人沉浸在知識與美的氛圍中。

-----廣告,請繼續往下閱讀-----

第一位分享者正好是諾貝爾物理獎 2004 年得主弗朗克·韋爾切克 (Frank Wilczek) 談論科學與藝術的交集,另外兩場分享則分別是數學家考爾姆·穆爾卡 (Colm Mulcahy) 的紙牌魔術表演,以及由數學家桃樂絲·舒特內德 (Doris Schattschneider) 介紹家庭主婦瑪喬里·賴斯 (Marjorie Rice,1923–2017) 發現五邊形鋪磚型態的傳奇故事,正好也是科技博物館的遊樂場「數學花園」的迎賓廊道。(可見「瑞典科技博物館數學花園:融合數感、美感、體感設計的北歐遊樂場」一文。)

瑞典科技博物館「數學花園」概念圖。
圖/Tekniska Museet

這次會議地點在斯德哥爾摩的博物館公園,參加不同場次需要穿梭在各博物館,彷彿跨越知識間的藩籬,同時呼應 Bridges 的跨域精神,這樣的安排相較一般制式的固定地點讓人有著特別的感受。在會議期間,科技博物館、民族學博物館、表演藝術博物館、諾貝爾博物館也都有專門為 Bridges 參與者特別安排導覽解說與免費參觀時段,讓人體驗到主辦方的用心以及歐洲博物館的精緻內容。

跨界的不只是博物館,Bridges 本身就是以多元的論文展覽活動在國際間著名。會議期間每天都非常充實與豐富,從早到晚滿滿的數學藝術(詳細議程),可以看到數學與各類藝術甚至科技相互撞擊,遇到全球的數學藝術同好更是讓人覺得興奮!

-----廣告,請繼續往下閱讀-----

來自台灣的數學藝術展覽

關注了 Bridges 好一陣子,今年我終於鼓起勇氣報名,非常幸運地通過徵選並且獲得國藝會贊助,因此能有機會 Bridges 2018 全球數學藝術展覽中展出。本屆展覽台灣四位參展藝術家皆安排在 General Exhibition Gallery(GE) 展出,除了作品本身,在 GE 展廳還可以展示相關的物件,因此我放置了〈對稱的鏡面〉的作品說明、原始論文與 3D 列印模型,希望讓觀眾可以完整了解創作緣由。

Symmetric Mirrors(對稱的鏡面),Shark Lin(林家妤)。
攝影/Shark Lin

〈對稱的鏡面〉是根據我發明 / 發現的吠陀立方數學原理製作而成,將立方體的六個對稱面以鏡面材料呈現(延伸閱讀:吠陀立方對稱面法:解不出的空間幾何問題就到廚房解決吧!),會隨著現場燈光而呈現不同的反射與錯視效果,觀眾還可以用雷射筆或其他物體與作品互動,觀察鏡中成像變化 [註 2]。

雷射光打在〈對稱的鏡面〉形成之反射。
攝影/Shark Lin

-----廣告,請繼續往下閱讀-----

展覽期間有許多觀眾來看作品,甚至到撤展時段都還有一群瑞典青少年包圍展位;而作品本身也獲得許多不錯的評價,像是紐約數學博物館 (MoMath) 館長 Cindy Lawrence 覺得〈對稱的鏡面〉讓人十分驚艷。能夠在國際舞台讓世界看見台灣的作品,對第一次參加 Bridges 展覽的我來說更是別具意義。

今年 Bridges 數學藝術展覽中,台灣一共有四位來自不同領域的參展者與作品:分別是工程背景的我(林家妤,Shark Lin)、金必耀教授(Bih-Yaw Jin)團隊的化學串珠、陳明璋教授(Mingjang Chen)的碎形疊代畫作,以及施宣光教授(Shen-Guan Shih)的巧蝸積木 (SL blocks)。

Bead model for the Type I & II clathrate hydrates,左家靜與金必耀。
攝影/Shark Lin

Castle emerging above clouds,陳明璋。
攝影/Shark Lin

-----廣告,請繼續往下閱讀-----

Break a symmetry,施宣光。
攝影/Shark Lin

我們創作的詳細介紹可見 Bridges 線上藝廊與論文集,以及李國偉教授科學人 2018 年 9 月號的專文「連結數學、藝術與教育的橋樑」一文,該期另有科普作家斯蒂芬·奧內斯 (Stephen Ornes)的專文「數的藝術品」。

Bridges 裡令人驚豔的作品

除了台灣的作品外,我也很想完整介紹全世界的數學藝術作品,不過 Bridges 2018 的參展作品就有一百多件,論文數量也破百篇,就算在天橋底下說書把這幾天的事情拆成九篇也說不完哪,只好精選幾件有趣的作品來介紹。

首先是首獎作品,來自荷蘭的兩位藝術家創作了一件能夠同時表現四個圖像的錯視創作,而他們選定的主題是全世界最有名的四張臉 ── 披頭四。他們利用 3D 列印印出截角八面體 (truncated octahedrons) 上圖像元素,搭配夾角 90 度的兩片鏡面相互反射,就可以用一個物體神奇地同時呈現出四個圖像。

-----廣告,請繼續往下閱讀-----

值得一提的是,他們在 Bridges 2016 也是以三維錯視創作拿到首獎,分別以 Gödel, Escher, Bach: an Eternal Golden Braid(中文書名:哥德爾、艾舍爾、巴赫:集異璧之大成)這本書三位大師的頭像作為創作主題。

Four Fabulous Beatles Faces in a 3D Object,Walt van Ballegooijen and Hans Kuiper。
攝影/Shark Lin

艾雪式的鑲嵌圖樣向來深受藝術家與大眾喜愛,來自德國同時修習數學與平面設計的 Alexander Guerten,創作了動物造型的 3D 鑲嵌作品令人驚歎。前幾個月才在推特上看過,沒想到竟然能在 Bridges 的展覽會場見到,讓人驚喜連連!

KUHKUBUS,Alexander Guerten。
攝影/Shark Lin

-----廣告,請繼續往下閱讀-----

在我展位隔壁的藝術家是來自瑞典的 Erik Åberg,他發展了 GHOSTKUBE 可轉動的方塊組,最近還上了 kickstarter 募資。

有天我在餐廳用餐時,看見隔壁東方面孔女性的幾何摺紙造型包包,似乎在哪裡看過卻又想不起來? 懷著好奇心就決定向對方搭訕交流。

ANTIPRISMS – Porcelain,Uyen Nguyen。
圖/WINWIN

對方拿出名片之後,我才發覺她就是奇美博物館摺紙大展《紙上奇蹟》策展人嬴嬴 (Uyen Nguyen),所以對這個摺紙造型包有印象。正好我之前寫的幾何藝術走春文章中,有推薦過這檔展覽(延伸閱讀:新年科青走春!全台幾何藝術景點大搜查),也讓我們聊了許久。最後一天在諾貝爾博物館參訪時,她還贈送我鑲嵌摺紙作品留作紀念。

-----廣告,請繼續往下閱讀-----

左側為本文作者 Shark Lin,右側為奇美博物館《紙上奇蹟》策展人嬴嬴 (Uyen Nguyen) 與摺紙作品
圖/作者提供。

最讓我喜出望外的是,以錯視作品享譽全球的杉原厚吉(Kokichi Sugihara)教授也在Bridges 2018分享他的創作。我曾經在《錯視維度》展覽邀請他的作品〈Ambiguous Cylinder Illusion〉參展 [註 4],終於見到本人才發現這次來Bridges其實是來朝聖的!

杉原厚吉(Kokichi Sugihara)教授於Bridges 2018分享錯視創作與原理,圖中為〈Ambiguous Cylinder Illusion〉。
攝影/Shark Lin

與杉原厚吉教授合影,我們手中拿的是《錯視維度》酷卡。 圖/作者提供。

以上作品約略只佔了 Bridges 的 5%,若是想看所有作品下方有相關網站。這篇文章主要介紹數學藝術展覽,下回我要來聊聊 Bridges 裡頭更多數學的跨界想像力!

延伸閱讀

Bridges 2018相關網站

  1. 官方網站
  2. 線上藝廊
  3. 相關活動
  4. 論文集
  5. 詳細議程

註釋

  • 註 1:諾貝爾獎頒獎則是在斯德哥爾摩音樂廳 (Stockholm Concert Hall),晚宴則在市政廳 (Stockholm City Hall)。
  • 註 2:本次參展作品〈對稱的鏡面〉為吠陀立方系列創作,曾經在圓山花博《視覺混種 On Site, Visual》、2016 泛‧知識節《數學藝術互動體驗》、靜宜大學《IMAGINARY 超越無限‧數學印象特展》展示過,而今年在瑞典展出版本為鏡面全反射改良版本。
  • 註 3:Bridges 是一個以數學為基礎的展覽,因此作品投件時藝術家需要選擇分類與提供說明,以便評審委員審查,Bridges 的作品分類與徵選標準如下:
    (1) 2D 作品(如鑲嵌、不可能的圖形、對稱設計)
    (2) 3D 作品(多面體、摺紙)
    (3) 自然界中特別的數字與數學(費氏數列、黃金比例)
    (4) 拓樸學(莫比烏斯帶、最小能量表面、扭結、圖論等)
    (5) 演算藝術(奇異吸子、基於代數方程式的藝術、排列、魔方陣)
    (6) 碎形
    而徵選標準有以下五項標準,括弧裡的字為官方註解:
    (1) 數學內容(這裡有數學知識豐富的觀眾)
    (2) 美感(顯然這相當主觀)
    (3) 材質(多樣的材質會讓展覽更多元)
    (4) 工藝技術(可有效地傳達作品概念)
    (5) 創新與原創性(將數學藝術推往新方向)
  • 註 4:杉原厚吉教授於2018年10月受邀來台,並且於台灣大學主辦之「實 ‧ 幻:視覺錯覺之探索與應用 國際研討會」主講(Betwixt Reality and Illusion: International Symposium on the Exploration and Application of Visual Illusions);而我也在此研討會上分享〈對稱的鏡面〉作品中的錯視現象,以及《錯視維度》展覽內容與策展過程,相關報導可見此(連結)。

本次旅行獲得財團法人國家文化藝術基金會(國藝會)國際交流計畫補助。

-----廣告,請繼續往下閱讀-----
Sharkie Lin_96
24 篇文章 ・ 6 位粉絲
在國二無聊的早自習意外發現數學的趣味,因此近來體驗到數學研究、藝術創作、採訪寫作、展覽策劃、資優教育等工作。不是念數學也不是學藝術,但樂於從多元視角聊聊數學的各種姿態,以及進行數學藝術創作,希望能為世界帶來一點樂趣。科普部落格〈鯊奇事務所〉https://medium.com/sharkie-studio,聯絡信箱 sharkgallium@gmail.com

0

0
0

文字

分享

0
0
0
把幾何的美戴出去炫耀!來自台灣團隊「單挑概念」的幾何金工——科學開封府系列
Sharkie Lin_96
・2017/06/07 ・1966字 ・閱讀時間約 4 分鐘 ・SR值 493 ・六年級

從「科學」的角度解「開封」印在商品中的知識,就是我們科學開封府的職司。開封府內的胞大仁㜊妱公猻測會不定期介紹各種與科學有關的各種玩意,有時溫柔勸敗,偶爾龍虎狗頭鍘伺候剁手,不管怎樣,請您上座啦!

本次科學開封府邀請了泛科學專欄作者 Shark Lin 來為我們介紹充滿藝數美感的PRISM幾何飾品系列!

從去年秋天開始,我幾乎每天都會上網瀏覽世界數學藝術的相關創作,外國有許多團隊利用衍生藝術(generative art),設計出許多藝數時尚商品,曾在 2016 泛.知識節分享過幾個案例,另一方面也感嘆台灣相關創作較少,沒想到不久後就驚喜發現單挑概念工作室的作品─PRISM幾何飾品。

單挑概念在今年二月舉辦了試戴會(2017),原本以為像是一般的飾品一樣,不過一到現場馬上感受到了金工的魅力,「P01蛻變系列」不僅擁有高質感的外觀,還能夠動手把玩,更有深邃的幾何意涵,一件作品能有如此多層次,真的令人十分驚艷。

PRISM幾何飾品的質感不言自明,為了讓大家了解P01的深刻內涵,我將會詳細介紹其設計巧思與幾何結構。而令人驚奇的是,P01除了能夠以立方體的型式當作墜子,還可以用不規則的超展開作為項鍊或手環。

圖/單挑概念提供

-----廣告,請繼續往下閱讀-----

圖/單挑概念提供

雖然網路上有介紹影片與組合教學,到現場P01的不規則展開仍然讓腦袋有點打結,我試著摺疊回立方體研究其幾何結構,花了很多時間還是很難參透,對於不規則展開是如何設計出來的特別感到好奇,畢竟我在研究吠陀立方對稱面法時,曾經畫過上百個立方體反覆思考空間分割,竟然還是沒法完全了解。

再更仔細看,會注意到P01有三條對角線通過同一個點(可視為原點),其方程式為X=Y, Y=Z, X=Z;與吠陀立方的主對稱面群非常類似,差別是在前者為線、後者為面。

把玩樣品的過程中,P01能夠變型成3個四角錐如下圖。然而,不規則的動態展開仍是個謎,因此我親自走訪了單挑概念工作室,試圖還原設計與發想過程,希望能了解其中的巧思。到底裡面藏了什麼機關呢?

-----廣告,請繼續往下閱讀-----

最初,設計師是從平面展開圖去思考如何拆解立方體,在展開後的正方形加上對角線覺得還是過於單調,構思過程中以徒手繪圖搭配電腦軟體,決定再朝立方體的對角線下手,得到了一個底面為正方形的四角錐(五面體)。

設計師當時假設可用四角錐拼成立方體,把多個四角錐的各個面展開畫在紙上,再嘗試拼接、排列、組合,最終發現三個四角錐可組成立方體。

圖/截取自影片

圖/單挑概念提供

-----廣告,請繼續往下閱讀-----

由上圖可知,立方體可以被分成三個四角錐。切法是從一個頂點(可視為原點),沿著三個對稱面切,直到立方體的對角線X=Y=Z為止,切面不超過對角線即可得到。

了解P01的基本元素以後,再來談談不規則的超展開。現在知道立方體由三個四角錐(五面體)構成,理論上飾品攤開來應該有15個面,算一算卻只有13個面,大家可以想一想缺少的2個面分別是四角錐的哪個面,以及在P01的何處?

設計師對立方體幾何原理有相當程度的感知,加上突破框架的創意才能發展出不規則設計,拿掉2個面讓展開變得不對稱,主要是為了整體美感與輕量化考量。我個人十分欣賞這樣的不規則設計,帶有沒法一眼看穿的神秘感。

從幾何結構到產品設計不免有些轉化,像是圖中的梯形其實是代表一個大三角形,設計斜桿是為了項鍊與手鍊的扣頭有地方可扣。

-----廣告,請繼續往下閱讀-----

幾何本身帶有一種普世性的美感,能夠成為引領時尚的潮流。單挑概念將把立方體轉化成金工飾品P01蛻變系列,除了飾品本身相當精緻與迷人,還可以讓人動手把玩,更蘊藏了許多設計巧思,充分體現了幾何美學的優雅質感與知性內涵。

這是來自我們台灣的設計,令國際驚豔的MIT作品,我個人十分欣賞,在此也推薦給正在收看這篇文章的你和妳。

PRISM 幾何飾品在泛科市集

購買 P00 拼圖系列請由此去→

購買 P01 蛻變系列請由此去→

-----廣告,請繼續往下閱讀-----

-----廣告,請繼續往下閱讀-----
Sharkie Lin_96
24 篇文章 ・ 6 位粉絲
在國二無聊的早自習意外發現數學的趣味,因此近來體驗到數學研究、藝術創作、採訪寫作、展覽策劃、資優教育等工作。不是念數學也不是學藝術,但樂於從多元視角聊聊數學的各種姿態,以及進行數學藝術創作,希望能為世界帶來一點樂趣。科普部落格〈鯊奇事務所〉https://medium.com/sharkie-studio,聯絡信箱 sharkgallium@gmail.com