Loading [MathJax]/extensions/tex2jax.js

0

1
1

文字

分享

0
1
1

《薩利機長》物理好,才會有哈得遜奇蹟?

fabg
・2016/10/18 ・2805字 ・閱讀時間約 5 分鐘 ・SR值 534 ・七年級

-----廣告,請繼續往下閱讀-----

電影《薩利機長》劇照。圖/IMDb
電影《薩利機長》劇照。圖/IMDb

電影《薩利機長:哈得遜奇蹟》中,重現了全美航空 1549 號航班的機長心路歷程。在這部片子中,其實重現了很多航空技術與科學的樣貌,到底有哪些東西跟科學有關呢?就讓我們一段一段剖析。

source:電影海報
source:電影海報

沒有前例、沒有預警的一件飛安意外,發生於 2009 年 1 月冬天的紐約上空,溫度還沒冷到湖面結冰、也因此迎來了忙著遷徙的加拿大黑雁。就這麼不湊巧地,擔任全美航空 1549 號航班的 A320 客機和這群加拿大黑雁的飛行航線重疊,鐵鳥撞上一群重 7 至 9 磅( 3 至 4 公斤)的鳥,就成了今日主題中的飛安事件。

於出事客機的 1 號引擎發現的飛鳥羽毛。圖/由National Transportation Safety Board @ wiki
於出事客機的 1 號引擎發現的飛鳥羽毛。圖/National Transportation Safety Board @ wiki

飛行員用「摸」的控制飛機?

很多看過的朋友常常問筆者,飛行員不論是操控實際的飛機、或者是模擬機,為何看起來就像是打電動一樣輕鬆?好像飛行員在握操控桿都絲毫不費力?

事實上,空中巴士的駕駛艙設計,飛機駕駛艙與機翼上面的各控制面之間,不再有鋼纜連結,而是改用電纜、利用數位訊號連結。這個稱為「線傳飛控(Fly By Wire、簡稱 FBW)」的駕駛艙科技,自協和號客機開始,至今已是二十一世紀客機的標準介面。透過線傳飛控的技術操控後,飛機只要有「電力」和「液壓」,飛行員的操控只要輕輕地搖動手上的搖桿、就可以更改飛機的姿態,電腦也會自動協助進行飛機姿態平衡的細微控制,不再需要飛行員手動操作。

典型的飛控操作示意動畫。圖/Piotr Jaworski @ wiki
典型的飛控操作示意動畫,而線傳飛控的技術不需要鋼纜或絞鍊,只需要電力和液壓即可操控。圖/Piotr Jaworski @ wiki

在 FBW 的技術下,新一代的飛機不僅能保護飛行員不會對飛機做出不合理、不安全的飛行姿態,當飛機發生異常時,只要電力系統保持運作、電腦系統功能正常、飛機外型無受損的情形下,飛行員可以更輕鬆地維持飛機安全的飛行姿態,保留腦袋與體力思考如何讓飛機可以安全落地,於是,全美航空 1549 的成功迫降,新一代的駕駛艙居功厥偉。

-----廣告,請繼續往下閱讀-----

高度,就是生命

在全美航空 1549 航班的案例中,客機才剛起飛、爬升至 3,000 英呎(約 1,000 公尺)的高度下,就撞上了一群鳥、並導致飛機雙發動機同時熄火無法產生推力。飛機發動機熄火之後,不只是飛機喪失推力,飛機的電力、液壓、空調系統都來自於發動機,等同於飛機的心臟停止跳動。因此,薩利機長在得知雙發動機失效的一個關鍵舉動,就是啟動位於飛機機尾的輔助動力單元(APU),確保飛機的電力和液壓系統運作,讓飛機有良好的操控能力能進行迫降。

相信大家都很清楚,飛機在天上翱翔時,會受到四個力的影響,包含往下的地心引力、由發動機產生往前的推力、當機翼獲得速度時產生往上的升力、以及飛機前進撞上空氣時的空氣阻力。

當飛機所有發動機都失效時,因為沒有辦法產生往前的推力,空氣阻力就會讓飛機的速度變慢,隨著速度變慢、機翼產生的升力越小、飛機就越難抵抗地心引力。當飛機喪失推力之後,飛行員第一件要做的事情,就是要讓飛機維持安全的空速、讓機翼產生足夠的升力、維持穩定的飛行姿態,避免飛機因為空速不足導致「失速」、造成飛機失控。這時,飛行員會利用地心引力當作飛機的推力,讓飛機所喪失的高度(位能)轉換為動能、進而保持飛機的速度。

每一架飛機設計時,會有其對應的「最佳滑降率」,也就是飛機可以一面下降又能保持在一定的安全空速,這個最佳滑降率的數值其實很常見,每當飛機離開巡航高度、逐步下降時,飛行員也會盡量讓飛機保持在最佳滑降率下降,藉此不僅可保持飛機的安全、也能達到最省油的效果。一般來說,最佳滑降率通常是每分鐘下降 1,000 英呎左右,但是,全美航空 1549 航班遭遇鳥擊、且飛機失去動力時,高度僅有 3,000 英呎,代表飛機以最佳滑降率下降時,飛機僅有約 3 分鐘的滯空時間,以飛機水平時速 300 公里計算,最遠僅能飛到 15 公里以內的機場,也因此促成了在河面上迫降的關鍵決定。

-----廣告,請繼續往下閱讀-----
全美航空 1549 號班機起飛到迫降的航線。圖/S. Bollmann @ wiki
全美航空 1549 號班機起飛到迫降的航線。圖/S. Bollmann @ wiki

對於飛行員來說,「高度」幾乎等於飛行員的生命,所以在不同的電影中,都可以看到飛行員在飛機發生狀況時、先把飛機拉高以爭取反應時間的橋段。例如在《薩利機長》一片中,有一個橋段是機長在空軍服役時、因為戰機的操控系統故障,第一時間就是先爬升高度爭取排除問題的時間與空間;同樣的在國片《想飛》中,男主角在 IDF 戰機遭遇雷擊時,第一時間也是先爬升高度以爭取時間。只不過,這個關鍵要素在全美航空 1549 航班的案例不存在,因此,只好去找一條河迫降了。

保持迫降時的完整外型

大家都知道,一般噴射客機的外型設計,通常是把發動機掛在主翼之下,這種設計對於飛機配重的穩定性、油料供給效率、以及飛行效率等都是相對較佳的設計。但在水上迫降時,因為飛機無法伸出起落架發揮降落的緩衝功能,所以掛在飛機主翼底下的發動機,就是飛機迫降時第一個接觸水面的主要外型結構,也成為了極度危險的阻力體,如果飛機任何一邊的發動機先觸水時,可能會導致飛機機身翻滾,導致機身破裂。

因此,當飛機最後階段準備迫降在水面時,機長特別讓飛機在可控的前提下、把飛機仰角提高,因此當飛機接觸水面時就不是只有主翼左右兩側的發動機、而是讓發動機和機尾幾乎同時接觸水面,使得飛機接觸水面的接觸面更多,減輕結構壓力,讓機身保持完整浮在水面上。

US 1549 迫降於哈德遜河後的畫面。圖/Greg L - originally posted to Flickr as Plane crash into Hudson River,CC BY 2.0
全美航空 1549 班機迫降於哈德遜河後的畫面。圖/Greg L – originally posted to Flickr as Plane crash into Hudson River,CC BY 2.0

全美航空 1549 航班的案例中,站在物理學的角度來看,就是一個飛行員在系統功能完整的情況下,努力利用各種可使用的條件(高度、距離、飛機可伸出的外型)、抵銷飛機的位能與動能,但是下降過程中仍然要保持飛機的安全速度(動能)以保持操控性與安全性。因此到了飛機即將迫降至河面的最後階段,機長下令伸出飛機的襟翼、增加機翼面積以降低飛機的安全速度;在迫降前一刻,機長讓飛機仰角增加,以做出在電腦容許範圍內的最大仰角減低速度。在多重手段的搭配下,飛機最終安全迫降於河面上,並保全所有機組人員與乘客的性命。

-----廣告,請繼續往下閱讀-----

看完以上的剖析,你也許會問筆者,下次身為乘客碰到這種事情時,該怎麼辦?筆者誠實的告訴你,這時唯一能做的,就是低頭、彎下腰,相信前面那兩個飛行員,剩下的,就交給天了……。

-----廣告,請繼續往下閱讀-----
文章難易度
fabg
5 篇文章 ・ 0 位粉絲
從小就追著火車和飛機跑來跑去的宅小孩,生活的最大興趣就是研究交通工具,後來發現交通工具富含許多常見的科學原理,加上與「人」的互動後更呈現了多樣化的樂趣,於是決定努力鑽研、把自己研究的小小發現用淺顯易懂的方式與普羅大眾分享。現為國語日報科學版專欄作者、經營自己的Blog:「fabg@運輸邦」 (Blog網址:http://fabg.pixnet.net/blog)

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

6
1

文字

分享

0
6
1
和外星人的第五類接觸!《三體》中的微中子通訊是真的?
PanSci_96
・2024/04/08 ・6799字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

不要回答!不要回答!不要回答!

Netflix 版「三體」終於上線了,你覺得與外星人接觸是安全的,還是冒險的?

其實啊,人類早就多次嘗試與外星文明接觸,三體中的「那個」技術,甚至也已經驗證成功了?到底誰能先與外星人取得聯繫?是中國還是美國?

接下來的討論可能會暴雷原版小說的設定,但應該不會暴雷 Netflix 版的劇情。

-----廣告,請繼續往下閱讀-----

如果你也有一點想跟外星人接觸,那就來看看人類到底已經跟外星人搭訕到什麼程度了吧!

我們與外星文明接觸過了嗎?

對於是否要與外星文明接觸,每個人都有不同想法。三體小說作者劉慈欣在小說中提出一種觀點,那就是人類太弱小,最好避免與外星文明接觸,以免招致不必要的風險。

但是回到現實世界,如果我們真的身處在三體的世界的話,那人類可真的是不停作死啊。早在 1974 年,科學家就利用阿雷西博天文台,向武仙座的 M13 球狀星團發射了一條著名的訊息,也就是「阿雷西博訊息」。這個目標距離地球不算遠,星星又多,被認為是潛在的外星文明所在。阿雷西博訊息中,則包含人類的 DNA 結構、太陽與九大行星、人類的姿態等資訊。每次想到總覺得是新開的炸雞排在發傳單攬客。

航海家金唱片。圖/wikimedia

除了無實體的電波訊息,人類還向太空中發送了實體的「信件」。1977 年,航海家探測器載著「航海家金唱片」進入太空。唱片中收錄了包含台語在內,55 種語言的問候語、大自然與鳥獸的聲音、115 張圖像、還用 14 顆銀河系內已知的脈衝星來標示出太陽系的位置。是一封向宇宙表達人類文明與友好意圖的信件。恩,如果接收到這個訊息的外星人不是很友善的話,那麼……。

-----廣告,請繼續往下閱讀-----

好吧,就算現在說應該要謹慎考慮接觸外星文明的風險,或許已經來不及了。對方是善還是惡,怎麼定義善或惡,會不會突然對我們發動攻擊,我們也只能聽天由命了。

反過來說,過了這麼久,我們收到外星文明的來信了嗎?

要確定有沒有外星文明,接收訊號當然跟發送訊號同等重要甚至更重要。1960 年,天文學家法蘭克.德雷克,就曾通過奧茲瑪計畫,使用直徑 26 公尺的電波望遠鏡,觀察可能有外星文明的天苑四和天倉五兩個恆星系統,標誌著「尋找外星智慧計畫」(the Search for Extraterrestrial Intelligence, SETI)的誕生。可惜,累積了超過 150 小時的訊息,都沒有搜尋到可辨識的訊號。

比較近的則是 1995 年的鳳凰計畫,要研究來自太陽附近一千個恆星所發出的一千兩百到三千百萬赫的無線電波。由於有經費支持,SETI 每年可以花五百萬美元,掃描一千多個恆星,但是目前還沒有任何發現。

中間有一個小插曲是,1967 年 10 月,英國劍橋大學的研究生喬絲琳.貝爾發現無線電望遠鏡收到了一個非常規律的脈衝訊號,訊號周期約為 1.34 秒,每次脈衝持續時間 0.04 秒。因為有可能是來自外星文明的訊號,因此訊號被開玩笑地取為 Little Green Man 1(LGM-1 號)。但後來他們又發現了多個類似的脈衝信號,最後證實這些脈衝是來自高速自轉的中子星,而非某個文明正在傳遞訊息。

-----廣告,請繼續往下閱讀-----
貴州天眼望遠鏡。圖/FAST

在中國也有探索外星生命的計畫,大家最關注的貴州天眼望遠鏡,直徑達五百公尺,是地球上最大的單一口徑電波望遠鏡。天眼望遠鏡在探索外星生命這件事,並不只是傳聞而已。2016 年 9 月天眼正式啟用後,也宣布加入 SETI 計畫。現在貴州天眼的六大任務之一,就包含探測星際通訊,希望能捕捉到來自其他星際文明的訊號。

而背負著地球最大單一口徑望遠鏡的名號,自然也引起不少關注。從 2016 年啟用到現在,就陸續出現不少檢測到可疑訊號的新聞。然而,這些訊號還需要經過檢驗,確定不是其他來自地面或地球附近的干擾源,或是我們過去難以發現的輻射源。可以確定的是,目前官方還未正式聲明找到外星文明訊號。

會不會是我們的通訊方法都選擇錯誤了?

即使電磁波用光速傳遞訊息,太陽系的直徑約 2 光年、銀河系直徑約 10 萬光年。或許我們的訊息還需要花很多時間才回得來,更別提那些被拋入太空的實體信件。航海家 1 號曾是世界上移動速度最快的人造物,現在仍以大約時速 6 萬公里的速度遠離地球,大約只有光速的一萬八千分之一倍。就算朝著最近的恆星——比鄰星飛去,最少也需要大約 7 萬 6 千年的時間才會到。

如果用電磁波傳遞訊息,又容易因為穿越星塵、行星、恆星等天體而被阻擋或吸收。不論是人類還是外星文明,都必須找到一個既快速,又不容易衰退的訊號,最好就是能以光速穿越任何障礙物的方式。

-----廣告,請繼續往下閱讀-----

在三體小說中,就給出了一個關鍵方法:微中子通訊。

微中子通訊是什麼?

微中子(Neutrino),中國通常翻譯為中微子,是一種基本粒子。也就是說它是物質的最基本組成單位,無法被進一步分割。這種粒子引起了廣泛關注,因為它與其他物質的交互作用極弱,並且以極高的速度運動。微中子能夠輕易穿過大部分物質,通過時幾乎不受阻礙,因此難以檢測。

在宇宙中,微中子的數量僅次於光子,是宇宙中第二多的粒子。有多多呢?地球上面向太陽的方向,每平方公分的面積,大約是你的手指指尖,每秒鐘都會被大約 650 億個來自太陽的微中子穿過,就是這麼多。但是因為微中子與物質的反應真的是太弱了,例如在純水中,它們平均需要向前走 250 光年,才會與水產生一次交互作用,以至於我們幾乎不會發現它們的存在。

藉由微中子撞擊氣泡室中氫原子裡的質子,進行微中子觀測,照片右方三條軌跡的匯集之處便是帶電粒子撞擊發生處。圖/wikimedia

但是對物理學家來說,更特別的是微中子展示出三種不同的「味」(flavor),也就是三種樣貌,電子微中子,渺子微中子和濤微中子,分別對應到不同的物理特性。 在粒子物理學裏,有個「標準模型」來描述強力、弱力及電磁力這三種基本力,以及所有基本粒子。在這個標準模型中,微中子是不具備質量的。 然而,當科學家發現微中子竟然有三種味,而且能透過微中子振盪,在三種「味」之間相互轉換,證明了微中子必須具有質量,推翻了標準模型中預測微中子是無質量的假設,表示標準模型還不完備。

-----廣告,請繼續往下閱讀-----

微中子在物理界是個非常有研究價值的對象,值得我們花上一整集來好好介紹,這邊就先點到為止。如果你對微中子或其他基本粒子很感興趣,歡迎在留言催促我們。

我們現在只要知道,微中子不僅推翻了標準模型。宇宙中含量第二多的粒子竟然有質量這件事情,更可能更新我們對宇宙的理解,以及增加對暗物質的了解。

但回到我們的問題,如果微中子幾乎不與其他粒子交互作用,我們要怎麼接收來自外星文明的微中子通訊呢?

要如何接收微中子?

Netflix 版《三體》預告片中,這個一閃而過,充滿金色圓球,帶有點宗教與科幻風格的大水缸,就是其中的關鍵。

-----廣告,請繼續往下閱讀-----

這個小說中沒有特別提到,但相信觀眾中也有人一眼就看出來。這就是位在日本岐阜縣飛驒市,地表 1,000 公尺之下,由廢棄礦坑改建而成的大型微中子探測器「神岡探測器」。

由廢棄砷礦坑改建而成,深達千米的神岡探測器。圖/Super-Kamiokande Construction

探測器的主要結構是一個高 41.4 米、直徑 39.3 米的巨大圓柱形的容器。容器的內壁上安裝有 11200 個光電倍增管,用於捕捉微小的訊號。水缸中則需灌滿 5 萬噸的超純水。捕捉微中子的方式是等待微中子穿過整座探測器時,微中子和水中的氫原子和氧原子發生交互作用,產生淡藍色的光芒。這與我們在核電系列中提到,核燃料池中會發出淡藍色光芒的原理一樣,是當粒子在水中超越介質光速時,產生類似音爆的「契忍可夫輻射」。

填水的神岡探測器。圖/Super-Kamiokande

也就是說,科學家準備一個超大的水缸來與微中子產生反應,並且用超過一萬個光電倍增管,來捕捉微小的契忍可夫輻射訊號。

但這樣的設計十分值得,前面提到的微中子可以在三種「味」中互相轉換,就是在這個水槽中被證實的。

-----廣告,請繼續往下閱讀-----

這座「神岡探測器」在建成後 40 幾年來,讓日本孕育出了 5 位的諾貝爾物理獎得主。

三體影集選在這邊拍攝,真的要說,選得好啊。

話說回來,有了微中子的捕捉方法之後,現實中還真的有人研究起了微中子通訊!

微中子通訊是怎麼做到的?

來自羅徹斯特大學與北卡羅來納州立大學的團隊,在 2012 年發表了一篇文章,說明它們已成功使用微中子,以接近光速的速度將訊息穿過 1 公里的距離,其中有 240 公尺是堅硬的岩石。訊息的內容是「Neutrino」,也就是微中子。

這套設備準備起來也不簡單,用來發射微中子的,是一部強大的粒子加速器 NuMI。質子在加速繞行一個周長 3.3 公里的軌道之後,與一個碳標靶相撞,發出高強度的微中子射束。

用磁場將微中子聚集成束的 NuMI。圖/Fermilab

用來接收微中子的則是邊長約 1.7 公尺,長 5 公尺的六角柱探測器 MINERvA,一樣身處於地底 100 公尺的洞穴中。

當然,這兩套設備的重點都是拿來研究微中子特性,而不是為了通訊設計的。團隊只是趁著主要任務之間的空檔,花了兩小時驗證通訊的可能性。

但微中子那麼難測量,要怎麼拿來通訊呢?團隊換了一個思維,目標只要能傳出0跟1就好,而這裡的0就是沒有發射微中子,而1則是發出微中子,而且是一大堆微中子。多到即使每百億個微中子只有一個會被 MINERvA 偵測到,只要靠著數量暴力,探測器就一定能接收到微中子。最後的實驗結果,平均一秒可以傳 0.1 個位元的訊息,錯誤率 1%。

MINERvA 實驗中的中微子偵測器示意圖。圖/wikimedia

看起來效率並不實用,卻是一個好的開始。

因為微中子「幾乎能穿透所有物體」的特性,即便我們還沒有其他外星文明可以通訊,或許還是有其他作用。例如潛水艇的通訊、或是與礦坑深處的通訊。進一步說,他幾乎可以在地球上的任一兩點建立點對點的直線通訊,完全不用擔心中間的阻礙。而對於現在最夯的太空競賽來說,月球背面的通訊問題,微中子也可以完美解決。

那麼,在微中子的研究上,各國的進度如何了呢?

除了前面提到的超級神岡,世界上還有幾個有趣的微中子探測器,例如位於加拿大的薩德伯里微中子觀測站(SNO),它有特殊的球體設計並且改為填充重水,專門用來觀測來自太陽的微中子。

薩德伯里中微子探測器。圖/wikimedia

而位於南極的冰立方微中子觀測站,則是將探測器直接埋在南極 1450 到 2450 公尺的冰層底下,將上方的冰層直接作為捕捉微中子的水。非常聰明的設計,這也讓冰立方成為地球上最大的微中子探測器。

除了已經在使用的這幾個探測器之外,美、中、日也即將打造更先進、更強大的探測器。

預計在美國打造的國際計畫——地下深處微中子實驗(Deep Underground Neutrino Experiment),預計成為世界上最大的低溫粒子偵測器。接收器位於南達科他州的地底一公里深處,用作研究的微中子訊號源則來自 1300 公里外的費米實驗室,百萬瓦等級的質子加速器,將產生有史以來最強的微中子束。這台地下深處微中子實驗(Deep Underground Neutrino Experiment)的縮寫非常有趣,就是 DUNE,沙丘。

中國呢,則預計在廣東的江門市,用 2 萬支 51 公分光電倍增管和 2 萬 5000 支 7.6 公分光電倍增管,在地底 700 公尺深處,打造巨大球形的微中子探測器-江門中微子實驗室,內部可以填充兩萬噸的純水。最新的消息是預計 2024 年就能啟用。

最後,經典的超級神岡探測器也不會就此原地踏步,日本預計打造更大的超巨型神岡探測器。容積將提升 5.2 倍、光電管從 11200 個變成 4 萬個,進一步研究微中子與反微中子之間的震盪。

超巨型神岡探測器設計圖。圖/Hyper-Kamiokande

結論

這些微中子探測器的研究目標必然是微中子本身的特性。但既然微中子通訊是有可能的,在任務之餘研究一下這個可能性,也不是說不行吧。

雖然我們現在還沒連繫上我們的好鄰居,但很難說明天就有哪個外星文明終於接收到我們對外宣傳的訊息,發出微中子通訊問候,甚至按圖索驥跑來地球。

至於那時我們應該怎麼辦呢?我們的網站上有幾篇文章,包括介紹黑暗森林法則,以及從《異星入境》看我們要如何與語言不通的外星文明溝通。有興趣的朋友,可以點擊資訊欄的連結觀看。在外星人降臨之前,也不妨參考我們的科學小物哦。

最後問問大家,你覺得我們應該主動聯繫外星文明嗎?

  1. 當然要,我相信探索一定是好的,我覺得引力波通訊更有機會!
  2. 先不要,我已經可以想像被外星文明奴役的未來了!
  3. 為了維繫美中之間的平衡,由台灣來率先接觸外星人,當仁不讓啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
1

文字

分享

0
2
1
「倘若那天……」平行時空的你過得怎麼樣?——《超次元.聖戰.多重宇宙》
2046出版
・2024/02/10 ・1920字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

從無法逆轉的抉擇,到平行時空

但人總喜愛想像,現實世界中無法「重頭來過」,但小說和電影的虛擬世界當然可以。在好萊塢電影《今天暫時停止》(Groundhog Day, 1993;港譯:《偷天情緣》)之中,男主角最先猶如惡夢般不斷在同一天的清晨醒來,後來卻利用這個機會不斷改善他的追求技倆(不但 take two,更take three、take four……),最後贏得美人歸。

電影為觀眾帶來了美滿的結局。但筆者最早領略「如果」作為小說創作中的奇思妙想,卻令我傷感不已。話說筆者自初中已經愛上科幻小說。大概是中三、四那年,我在公共圖書館借了一本英文的短篇科幻小說集,其中一個以「如果」為題的故事(名稱早已忘記)令我畢生難忘。

故事中,一對恩愛的小夫妻駕車外出,丈夫有點兒不適所以改由太太開車。不幸途中遇上車禍,坐在司機位的太太重傷身亡。丈夫悲痛不已終日借酒澆愁,揮之不去的自責是「如果我那天沒有跟她對調位置……」。

一天,他在拾理太太的遺物時,竟然發現她的日記簿中有新的記事!讀將下來,原來在另一時空裡,兩人當天的確沒有對調位置,所以因車禍去世的是他而不是愛妻!

-----廣告,請繼續往下閱讀-----

這兩個「平行時空」原本不會重疊,卻不知怎的透過這本日記簿接通了。結果,「陰陽相隔」的倆人藉著日記互訴衷情。

圖/envato

這本已是十分淒美的情節,但後來日記中的字樣變得愈來愈模糊,最後完全消失,表示兩個「平行宇宙」最終分離而回到互不相通的狀態。筆者當年雖然只有十五、六歲,被觸動的哀愁卻是久久不能平復……。

年少的我已經深深感受到,人生中充滿了無數偶然的變數,而一個簡單的決定,足以改變一生。

多年後,我看到另一部電影《雙面情人》(Sliding Doors, 1998;港譯:《緣分兩面睇》),發覺也是用上了同一意念:女主角每天搭地鐵上班,但某天因事遲了一點而趕不上平日搭的那班車。電影基於「趕得及」和「趕不及」兩種情況,描述了女主角往後出現的兩種截然不同的人生。(我後來才知道,這乃改編自一部一九八一年的波蘭電影。)

-----廣告,請繼續往下閱讀-----

歷年來,運用這類意念創作的小說和電影可謂不少,近年流行的好萊塢「超級英雄」電影中,《奇異博士》(Doctor Strange, 2016)和它的續集《奇異博士 2:失控多重宇宙 》(Doctor Strange in the Multiverse of Madness, 2022;港譯:《奇異博士 2:失控多元宇宙》)更將「平行時空」的意念延伸為「多重宇宙」(Multiverse)。陣容更為龐大的《復仇者聯盟 3:無限之戰》(Avengers 3: theInfinity War, 2018)和《復仇者聯盟 4:終局之戰》(Avengers 4: Endgame, 2019)皆以同樣的意念作為故事主軸。當然,這些電影都由漫畫改編,亦即這些意念的出現時間比電影還要早得多。

《媽的多重宇宙》將平行時空的意念發揮得淋漓盡致。圖/giphy

但將這個意念發揮至極的,毫無疑問是二○二三年橫掃奧斯卡最佳電影、最佳導演、最佳編劇多項大獎的「怪雞」1 電影《媽的多重宇宙》(Everything, Everywhere All At Once,縮寫是 EEAAO;港譯:《神奇女俠玩救宇宙》)。華裔演員楊紫瓊(1962-)更因此而封后(最佳女演員);同樣是華裔的關繼威(1971-)以及潔美.李.寇蒂斯(Jamie Lee Curtis, 1958-)則分別獲得最佳男、女配角的殊榮。電影由兩位導演掌舵,雖然兩個都叫 Daniel,但一個是香港人關家永(Daniel M. Kwan, 1988-),一個是美國人丹尼爾.舒奈特(Daniel Scheinert, 1987-)。2 囊括了這麼多大獎,電影的風頭可謂一時無兩。由於有這麼多華人參與其間,全球絕大部分華人皆感到與有榮焉。

外國的評論幾乎一面倒地對這部電影讚譽有加,包括其中所包含的深刻人生哲理、愛情與理想之間的抉擇、亞裔移民在美國所遇到的生活困難、世代之間的價值矛盾、同性戀(非主流性取向)的社會認同問題,以及貫穿電影的、最重要的母、女之情。不少網友更留言說看至結局時感動流涕。反倒在華人世界,包括不少筆者所認識的朋友,皆對電影甚有保留,認為它寫情的部分毫無新意,而「科幻」的主題和情節則過於胡鬧不知云。(一些更認為電影被大肆吹捧,是近年席捲西方的「政治正確主義」的結果。他們更為另一位最佳女主角競逐者凱特.布蘭琪(Cate Blanchett, 1969-)不值。但那是另一篇文章的主題,暫且按下不表。)

註解

  1. 粵語,意指奇怪、荒謬。
  2. 因二人名字皆為「Daniel」,而被合稱為「Daniels」。

——本文摘自《超次元.聖戰.多重宇宙》,2023 年 11 月,二○四六出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。