Loading [MathJax]/extensions/tex2jax.js

2

10
8

文字

分享

2
10
8

多重宇宙與量子力學的派系之爭

linjunJR_96
・2022/05/09 ・5054字 ・閱讀時間約 10 分鐘

  • 文/林祉均

從《瑞克與莫蒂》到最近的《媽的多重宇宙》和《奇異博士2:失控多重宇宙》,多重宇宙的浪漫概念一直是各種作品愛用的元素。主角穿越到其它平行宇宙中,遇見各種不同的可能性,實現未能完成的心願。

可惜的是,現實中似乎沒有這種好事情。眼睛所看到的世界就只有一個,一切就照著原本的劇本發生,沒有穿越或是重來的機會。

不過,這些幻想作品的描述,其實並不如你所想的這麼天馬行空。創作科幻作品所需要的想像力,對於科學家來說,其實也是重要的技能。打從二十世紀中期開始,正經的量子物理討論中,便出現了「多重世界」的說法。

「多重世界」是對於量子現象許多詮釋中的其中一種。實事求是的物理學家為什麼要訴諸這麼虛幻的說法呢?說到底,他們也是情非得已。這一切要從量子物理帶給他們的難題說起。

在量子時代前,物理學家的世界

在量子時代之前,物理學家用來解釋世間萬物的方法是「古典力學」與「電磁學」。

-----廣告,請繼續往下閱讀-----
  • 「古典力學」是「牛頓運動定律」的進階版,解釋了「具有質量的粒子(物質)如何運動」
  • 「電磁學」則是一切電磁波相關技術(你的手機訊號)的基礎,解釋了「不具質量的能量如何在空間中以波動傳遞」。

「古典力學」與「電磁學」把世間分成「粒子」與「波動」兩種不同的問題來解釋,彼此井水不犯洪水,分別「近乎完美地」解釋所有日常生活中常見的現象,然而,有一個現象在深入研究之後,卻出現了矛盾,這個現象就是雙狹縫實驗(Double-slit experiment)

雙狹縫實驗的詭異之處

如果讓光束通過一條狹縫,會在後方的屏幕映照出中間較亮,兩側較暗的圖樣。奇妙的是,如果將實驗改成兩條狹縫,屏幕上的圖案並不會等於兩個單狹縫的圖案相加,而是會變成亮暗間隔的條紋。這種圖案只能由波動產生,因為波峰和波谷會互相抵銷,因此產生較暗的部分。

雙狹縫實驗成為了光是波動的證據,屬於「電磁學」解釋的範疇,後續的推導也證明了光是一種電磁波。

上圖為可見光的單狹縫實驗結果,下圖為可見光的雙狹縫實驗結果。圖/Wikipedia

如果故事停在這裡倒也還好,但後來卻觀測到「用電子或中子打入雙狹縫,也會得到跟光進入雙狹縫時類似的結果」。

-----廣告,請繼續往下閱讀-----
電子經過雙狹縫後所形成的圖形,圖/Wikipedia

這問題就有點大了,因為電子或中子這些粒子的運動,在雙狹縫實驗時必須要跟光一樣,用波動才能解釋,傳統物理「粒子與波動」的二分法似乎失效了。

量子時代新概念——波函數(波包)

因應這些觀察,物理學家開始用「波動力學」來解釋雙狹縫實驗,也就是薛丁格方程式(Schrödinger equation)

「波動力學」是將所有物體都當成是「一小段波動」,也就是波函數,並寫下它如何隨著時間演化。原本的粒子現在變成像是下圖中一塊一塊的「波包」,在空間中隨著薛丁格方程式移動。

圖/Wikipedia

這些「波包」成功解釋了粒子如何在穿過雙狹縫後互相干涉,形成亮暗條紋。但問題是,沒有人看得到這些波函數(波包),在觀測時,看到的只有一顆顆電子通過狹縫撞在屏幕上。

雖然薛丁格所提出的方程式與運算結果完全符合實驗結果,但為什麼這樣算是對的?波函數(波包)又代表什麼?卻沒有一個很好的解釋。

波函數不是實體,而是物體的機率分布——哥本哈根詮釋

為了解釋這個問題,首先是由海森堡一夥人提出的「哥本哈根詮釋」,他們認為:波函數代表的是物體出現位置的機率分布,而薛丁格方程式規範的是機率分布如何隨時間改變。

當我們介入觀察,波函數便會依照這個機率分布隨機地塌縮至一個特定的值,這個值就是我們所觀察到的物理量。

以雙狹縫來說,穿過狹縫後的波函數產生了波動會有的干涉現象。後方的屏幕讓波函數塌縮,因此出現了一個確切的光點。至於光點會出現在哪裡,完全是機率性的,機率多寡由波函數主掌。在波峰和波谷抵銷的地方,機率很小,幾乎不會有光點出現;反之亦然。下圖可以看到個別粒子的位置看似隨機,但隨著實驗的粒子數增加,波函數的機率分布開始浮現。

-----廣告,請繼續往下閱讀-----
當越來越多電子經過雙狹縫後(a 到 e),所形成的圖形(位置分布),就是由波函數的機率分布決定的,圖/Wikipedia

編按:哥本哈根詮釋認為,波函數涵蓋了物體落到任何地方的所有可能性,且每個可能性都有一個機率值。而薛丁格方程式算的是每一種可能性的機率變化。

在多個相同物體重複經歷相同的事件(例如電子不斷進進入雙狹縫),就會看見波函數控制物體運動過程的證據(屏幕上最後的圖形)。

至於「單個物體」為什麼會移動到某個確定的位置,以及「單個物體」實際上是怎麼移動的,基本上是不可知的,一切都是波函數的決定,因此哥本哈根詮釋就以「崩塌」,來代稱其他可能性消失的情況。

對哥本哈根詮釋的質疑

約一百年後的今天,這個詮釋已經成為主流,但當時的學界中有一部份人並不買單。

一來是因為這個說法直接擁抱了機率性,物理世界完全交由波函數塌縮的隨機過程來決定,我們能知道的只有波函數的樣貌;二來則是「塌縮」這種語焉不詳但又扮演中心角色的詞彙,讓人有一種硬湊答案的感覺。另外,人或是儀器作為觀察者的角色為何如此重要,好像也說不清楚。

為了點出荒謬之處,薛丁格搬出了他舉世聞名的貓咪。

由於原子的放射衰變也是由波函數描述,我們可以用放射性原子打造一種可以殺死貓咪的裝置,然後把貓咪跟裝置關在箱子裡。隨著時間過去,原子的狀態處於衰變和未衰變的機率分布,因此貓咪也同樣處於「死和活的機率分布」。直到觀測者將箱子打開,才能將原子和貓咪的波函數塌縮。

這個實驗和樂透開獎的情況本質上並不一樣。雖然樂透好像也是機率問題,但是每個樂透號碼球都是巨觀的、可以被古典力學描述的物體。因此,早在開獎前,每個號碼球的位置就都已經決定好了,只是沒有人能夠準確預測。

-----廣告,請繼續往下閱讀-----

可是,原子衰變是量子的範疇。量子理論最初的發展,便是起源於光電效應和原子光譜這類小尺度世界,這些領域中的實驗觀察無法由古典力學概括,只能用波函數的機率來解釋。

而薛丁格的目標就是將微小的量子物體(原子)和巨觀的生物(貓咪)牽連在一起,試圖說明由機率分布和塌縮主宰的物理世界有多麼讓人不舒服。

隨著哥本哈根勢力的擴張,薛丁格的這隻貓也逐漸轉型成展示量子世界奇妙之處的招牌。圖/Wikipedia

在薛丁格方程式和哥本哈根學派交鋒過後的幾十年內,關於觀察和塌縮究竟是怎麼一回事,仍有許多討論。後續的許多研究,在哥本哈根的架構下,提出了修補的細節,許多人也就漸漸接受了機率性的塌縮這件事。

爾後,有另一批人馬企圖想出一種不需要機率塌縮的量子世界,其中包括不喜歡上帝丟骰子的愛因斯坦等人。他們認為粒子一直都有明確的位置與軌跡,只是其演化方式不如我們所想像,背後有不為人知的物理機制,而哥本哈根的世界觀只是統計的結果,並不是完整的圖像。

這類詮釋統稱為隱變數詮釋(hidden variable theory),歷史上有許多不同版本。不過在貝爾定理(Bell’s theorem)的相關實驗後,局域性的隱變數理論幾乎完全被排除。現今還站得住腳的隱變數理論,聲稱波函數像是電磁場一樣佈滿整個空間,能夠以特定方式引導粒子的運動軌跡。

-----廣告,請繼續往下閱讀-----

全部的可能性都持續存在——多世界詮釋

這些新理論儘管在某種程度上去掉了塌縮的成分,但聽起來依然十分玄妙。在 1950 年代,有位美國物理學家艾弗雷特(Hugh Everett III)在他的博士論文中提出了全新的方案:

「大家都不要吵了,波函數中所有可能發生的機率,確實就是發生了,只是所有可能性以互不交錯的世界線同時存在。」

以貓咪為例子,當你打開箱子時,並沒有把貓咪的波函數塌縮到單一的死或活狀態,而是將原本的世界線一分為二,當中分別有一個看到死貓的你和看到活貓的你。於是,波函數永遠不需要塌縮到我們看到的單一狀態。

換句話說,這種觀點中沒有所謂「非量子」的「觀察者」來讓波函數成為現實。世界上所有的原子、貓咪、人,都被涵蓋在整個宇宙的波函數中。艾弗雷特原本的論文標題並沒有提到多重世界,而是稱之為全體波函數理論(Theory of the Universal Wavefunction)。波函數描述的不是觀察的機率分布——波函數就是本體,根據薛丁格方程式演化出各個世界線。

或許是因為太過前衛,他的這篇論文發表時,幾乎沒有引起任何討論,甚至沒什麼人花時間質疑。艾弗雷特最終抱著遺憾離開學術界,跑去五角大廈工作。所幸他的想法在十幾年後,終於在幾位支持者的努力之下,以「多世界詮釋(the many-worlds interpretation)」的名號發揚光大。

-----廣告,請繼續往下閱讀-----

儘管一開始聽起來很難接受,但是人們發現,這種詮釋其實並不比原本的塌縮詮釋荒唐。

它同樣能夠解釋所有的實驗現象,而且比起機率性的塌縮,總體波函數可以完全遵循方程式的預測,不需要引入量子世界外的觀察者,來讓波函數塌縮至單一狀態。許多物理學家認為這是一套更簡潔的思考方法。到今天,多世界詮釋已經累積了不少聲量和支持者。

尋找多重宇宙

那麼多重世界線真的存在嗎?要找到答案恐怕不容易。如果艾弗雷特所言不假,也就是所有人和所有儀器都是總體波函數的一部份,那麼便沒有人能立於一切之外,看見總體波函數中的所有可能,或是做實驗來驗證多重世界的存在。

不過,除了量子理論的研究者之外,還有一群人也十分認真看待多重宇宙的想法。在宇宙學中,有一理論預測我們的可觀測宇宙只是顆小泡泡,身處許多其它的泡泡宇宙之中,也就是實際意義上的多重宇宙。這些宇宙不斷地處於膨脹階段,而這個理論被稱為永恆暴脹(eternal inflation)

無窮宇宙,在宇宙中存有大量的可觀測區(有著紅色十字中心的紅圈),我們的「宇宙」不過是其中的一個可觀測區而已
多重宇宙理論認為我們的可觀測宇宙只是顆小泡泡,身處許多其它的泡泡宇宙之中。圖/Wikipedia

相較於多世界作為量子力學的詮釋,永恆暴脹是個科學理論,需要可以被驗證。照理來說,任何來自其它宇宙泡泡的訊號都跑不贏膨脹的速度,永遠無法抵達我們的可觀測宇宙。不過在膨脹初期,泡泡之間的碰撞會在宇宙背景輻射的地景上留下溫度足跡。大約十年前,科學家就在威爾金森微波各向異性探測器(WMAP)的觀測資料中,找到了四個統計上顯著的碰撞痕跡。

-----廣告,請繼續往下閱讀-----

那我們怎麼還不出發前往其它宇宙呢?雖然在分析方法上是個振奮人心的嘗試,但還需要補足更多觀測資料才能做更好的判斷。繼 WMAP 後,普朗克衛星(Planck)也帶回了解析度高三倍的背景輻射影像,但關於多重宇宙是否真的存在,依然沒有定論。

結語

回顧歷史,隨著量子實驗的結果浮上檯面,不同的理論模型往往需要數十年來分出高下。雙狹縫實驗在 1801 年就已經完成,但多世界詮釋的誕生是 150 年後的事。正如同二十世紀初的量子物理,膨脹理論和多重宇宙都是目前發展空間很大的領域。或許還要一段時間,我們才能見證這些科幻內容成為課本中的教材。

不論結果如何,總體波函數中無限分岔的可能性,以及膨脹中的多重泡泡宇宙,都展示了科學研究的迷人之處,那就是——科學和科幻文本都一同站在人類想像力的最前端。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
linjunJR_96
33 篇文章 ・ 914 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
多重宇宙真的存在?艾弗雷特三世(Hugh Everett III)的多世界詮釋
PanSci_96
・2024/07/28 ・2651字 ・閱讀時間約 5 分鐘

在前一篇我們聊到,為了反駁量子力學的機率詮釋和疊加態的說法,薛丁格提出著名的思想實驗:「薛丁格的貓」。既然貓在現實中不可能既生又死,所以量子理論一定有不夠完備的地方。

延伸閱讀:物理學四大神獸「薛丁格的貓」,其實是在嘲諷量子力學?物理學家對波函數機率詮釋的爭辯

然而,真的是這樣嗎?有沒有既符合量子理論又能解釋這個實驗的說法呢?

測量問題:量子系統的確定性

在量子力學中,量子系統的狀態在被測量前是不可確定的,所有可能狀態以機率的形式共存,這時系統處於所有狀態的疊加態。只有當我們進行測量時,系統才會變成某個特定狀態。

-----廣告,請繼續往下閱讀-----

例如,原子裡的電子並沒有一個確定的位置,它可能出現在任意地方,像波一樣散佈於空間中。當你測量它,它有一定機率出現在某處。愛因斯坦曾問:「是不是只有當你在看它的時候,月亮才在那兒呢?」對他而言,月亮不管有沒有人在看,都懸掛在天上,他認為量子系統應該也是如此,總是有個確定的狀態,只是我們還沒搞清楚而已。

而薛丁格在與愛因斯坦討論後提出「薛丁格的貓」思想實驗。薛丁格利用貓不可能處於既生又死的疊加態來質疑量子理論,雖然引起了話題,但並未成功反駁量子理論。

量子力學的理解不斷累積,我們知道了許多愛因斯坦和薛丁格當時不知道的事情,因此在某種程度上,回應他們的質疑已經不再是問題。

多世界詮釋:分岔的宇宙

1957 年,美國普林斯頓大學的博士生艾弗雷特三世(Hugh Everett III)提出了一個大膽的想法。他認為,宇宙的一切可以由單一個宇宙波函數(universal wave function)來描述,遵循量子力學的波動方程式。當我們進行測量時,例如檢查「薛丁格的貓」實驗結果,不同的子系統(如貓、毒藥瓶和測量者)會在交互作用下彼此連動,呈現出兩組狀態:貓死亡、毒藥瓶打破、測量者看到貓死亡,或貓活著、毒藥瓶沒破、測量者看到貓活著。

-----廣告,請繼續往下閱讀-----
艾弗雷特三世(Hugh Everett III)提出的多世界詮釋,之後成為許多科幻題材的靈感來源。圖/wikimedia

延伸閱讀:首創平行世界理論,艾弗雷特三世誕辰|科學史上的今天:11/11

測量會讓宇宙波函數分岔出兩個不同的分支,或說兩個平行世界。在其中一個宇宙,貓會活著;另一個宇宙,貓則會死亡。兩個宇宙都真實存在,沒有貓既死又活的事情。

在艾弗雷特的詮釋中,宇宙波函數隨著時間演化,就像一株大樹,每當有測量發生,就會分出不同的枝幹。每個枝幹代表一個獨立的平行世界或平行歷史,這就是著名的多世界詮釋(many-worlds interpretation)。歷史上每次的測量或選擇都會分裂出不同的世界,產生超級龐大的平行世界數量,彼此之間無法溝通或交換資訊。

雖然我們在這個世界買樂透沒中獎,但在另一個平行世界裡,我們可能是中頭獎的大富翁。多世界詮釋的優點是,它與量子理論沒有矛盾,能解決薛丁格的貓等悖論。

然而,儘管有人曾提出過驗證多世界詮釋的方式,現今的科技無法做到。艾弗雷特的博士論文沒有受到學界的多大關注,他之後改從事與物理研究無關的工作。直到1970年代,多世界詮釋才開始受到注意,並在艾弗雷特於1982年去世後,變得越來越受歡迎,甚至被科幻作品挪用。

-----廣告,請繼續往下閱讀-----

量子去相干:量子特性的喪失

量子去相干(quantum decoherence)是另一種解決方法。在雙狹縫干涉實驗中,同一波源的波從兩個狹縫出來並產生干涉條紋,代表它們存在相干性(相互干涉的性質)。若對其中一道狹縫的光波進行干擾,相干性會消失,干涉條紋不會出現,這就是去相干。

在量子力學裡,微觀粒子具有波的特性,也會發生相互干涉。波函數隨外在環境存在許多不同可能狀態,彼此相干。在電子的雙狹縫實驗中,電子以波的形式通過兩個狹縫,接著彼此干涉,形成干涉條紋。當我們測量電子的路徑,就會讓系統不同可能狀態的相干性消失,這就是量子去相干。

只要一個量子系統沒有完全孤立,與外界有交互作用,就算是干擾。想像將熱水和冷水倒在一起,熱水分子和冷水分子會互相作用,交換熱能和動量,最終達到平衡——一杯溫水。原本的每個熱水分子和冷水分子可以視為孤立系統,但當它們互相作用,改變狀態,就必須將整杯水視為整體。

量子系統的測量就像這個例子,測量者和量子系統之間的交互作用會導致量子系統與外界交換資訊,無法再用原本的波函數描述,最終逐漸喪失量子特性。

-----廣告,請繼續往下閱讀-----

現實中的量子去相干

在電子的雙狹縫干涉實驗中,若要知道電子通過雙狹縫時的確切位置和路徑,就必須偵測它,與之產生交互作用,導致量子去相干,干涉條紋消失。量子去相干的概念下,測量是一種交互作用,會引起量子去相干現象。隨著交互作用程度不同,量子系統會逐漸失去量子特性。

在現實世界中,所有量子系統都不可能完全孤立,與外界互動後,時間久了必然去相干。現實生活中的所有物體,雖然由量子系統組成,但當原子構築成更大的結構,會因彼此的交互作用喪失量子特性。因此,愛因斯坦問的「是不是只有當你在看它的時候,月亮才在那兒呢?」我們可以回答:「並不是這樣。」因為月亮已經不是量子系統。

薛丁格的貓不可能存在?

在「薛丁格的貓」實驗中,當作為量子系統的不穩定原子核被偵測到衰變後,交互作用就完成了,量子系統的狀態就確定了,貓也就死定了。此外,貓自身因量子去相干的關係,不會是量子系統,不可能同時處於生和死的狀態。

目前量子相關科技,如量子電腦、量子通訊等,在研發上遇到的困難,部分來自於量子去相干現象。量子電腦使用的量子位元必須保持在隔絕於外界、不受干擾的環境中,才能維持在量子態。一旦有風吹草動,量子位元可能出錯。隨著量子位元數目變多,要同時維持全部的量子態也變得更加困難,這些就是當前技術需要克服的挑戰了。

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
1

文字

分享

0
1
1
物理學四大神獸「薛丁格的貓」,其實是在嘲諷量子力學?物理學家對波函數機率詮釋的爭辯
PanSci_96
・2024/07/27 ・2152字 ・閱讀時間約 4 分鐘

在上一篇,我們探討了德布羅意提出物質波的概念,指出微觀粒子如電子也具有波的特性,這一點已被實驗所證實。

延伸閱讀:量子革命的開端——物質波的發現

然而,故事並未因此結束。隨著相關研究的深入,物理學家對物質波的啟示展開了激烈辯論。一些在量子力學發展初期做出卓越貢獻的物理學家並不認同量子理論的主流觀點,甚至提出了薛丁格的貓這一思想實驗,愛因斯坦也曾言道:「上帝不會擲骰子。」

究竟,發生了什麼事情呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從確定性到不確定性

在 20 世紀以前,古典物理學基於決定論,認為掌握某一時刻系統中所有物體的狀態,就能根據物理定律預測系統未來的演變。比如,當一顆蘋果從樹上掉下,我們可以根據物理法則計算出它掉到地面的時間和速度。

-----廣告,請繼續往下閱讀-----

然而,量子力學的觀點則不同,認為量子系統的行為無法完全確定,只能用機率描述。這一觀點源自德布羅意提出的物質波概念。

1926 年,奧地利物理學家薛丁格發表了薛丁格方程式,用來描述物質波的波函數。他成功地用該方程式解釋了氫原子的光譜能量,開啟了量子力學的新篇章。然而,波函數的物理意義一度難以被理解。

幾個月後,德國物理學家玻恩提出了波函數的機率詮釋,認為波函數與量子系統的狀態機率有關。當我們測量量子系統時,系統可能呈現不同狀態,其機率由波函數決定。這一觀點對當時的物理學界造成了巨大衝擊。

決定論的終結?波函數的機率詮釋與衝擊

玻恩的機率詮釋表明量子系統在測量後呈現的狀態無法事先確定,只能了解系統可能狀態的機率大小。這種理解框架革命性地挑戰了決定論的世界觀,部分物理學家因此感到不滿。德布羅意和薛丁格對此持保留態度,而愛因斯坦則認為量子力學還不夠完備,堅信「上帝不會擲骰子」。

-----廣告,請繼續往下閱讀-----

儘管有反對聲音,量子力學的機率詮釋在經過多次驗證後成為主流觀點。量子系統在測量前的狀態是未確定的,所有可能狀態以疊加形式同時存在,而測量後才會呈現其中一種。這一觀點對傳統的決定論提出了挑戰。

根據量子力學的主流說法,量子系統的狀態在測量之前是未確定的,所有可能狀態以疊加形式同時存在,測量後才會呈現其中一種。這就像在抽卡時,不同的卡都有一定機率會出現,但具體出現哪一張卡,要等抽取後才知道。

此外,在量子系統中,有些物理量無法同時精確測量,例如粒子的位置和動量,這稱為不確定性原理。對愛因斯坦等支持決定論的科學家來說,無法確切預測和精確測量物理系統狀態的量子理論是不夠完備的。他們認為在量子力學背後,應該還有一些隱藏的變量,導致我們無法完整預測和測量量子系統。

1935年,愛因斯坦在與薛丁格的通信中,提出一個想法來質疑量子理論的疊加態概念:想像一桶品質不穩定的火藥,經過一段時間後,可能會爆炸,也可能不會爆炸,那麼這桶火藥豈不是處於爆炸與未爆炸之間的疊加狀態?

-----廣告,請繼續往下閱讀-----

受到愛因斯坦的啟發,薛丁格進一步提出了「薛丁格的貓」思想實驗:把一隻貓放進鐵製房間,裡面有測量輻射的偵測器和少量放射性物質。放射性物質衰變是隨機的,處於衰變與未衰變的疊加態。如果放射性物質衰變,偵測器會觸發機關釋放毒氣,貓就會死亡;如果沒有衰變,貓則活著。整個系統的波函數處於貓活著和貓死亡的疊加狀態。

薛丁格提出了著名的思想實驗「薛丁格的貓」,反駁量子力學的疊加態說法。圖/Envato

這一思想實驗引發了人們對量子理論的深刻思考。薛丁格提出這個實驗,是為了強調量子疊加態的荒謬性,反對量子理論的測量詮釋。對愛因斯坦和薛丁格來說,物理真實應該是確定的,而不是機率和疊加的。

世界是決定論還是機率論?

薛丁格的貓思想實驗提出後,引發了更多的討論和質疑。例如:既然量子系統的狀態要測量之後才會確定,那麼貓的死活是要我們打開房間觀察後才會知道嗎?還是說,貓自己本身就可以是一個測量者呢?需要有一個生命意識去測量它嗎?到底,貓的死活是在什麼時候確定的呢?

儘管目前學界對測量問題還不算有一致公認的答案,但我們對量子力學的認知,已經比薛丁格那個時候增加許多,所以愛因斯坦和薛丁格對量子力學的質疑,以及薛丁格的貓引發的疑竇,我們已有能力給出大致確定但不完全塵埃落定的答覆。

-----廣告,請繼續往下閱讀-----

在下一集,我們將繼續探討這些問題,「上帝真的不玩骰子嗎?」

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。