0

0
3

文字

分享

0
0
3

2016諾貝爾生醫獎:細胞自噬和大隅良典的酵母菌

李紀潔、羅鴻
・2016/10/04 ・2032字 ・閱讀時間約 4 分鐘 ・SR值 563 ・九年級

編譯/李紀潔、羅鴻|陽明大學基因體科學研究所畢業生

2016諾貝爾獎生醫獎

2016 年諾貝爾獎隆重登場,這一次生理醫學獎頒給發現「細胞自噬」機制(autophagy)的大隅良典(Yoshinori Ohsumi)教授。究竟東京工業大學(Tokyo Institute of Technology)的大隅良典怎麼發現這樣的機制,而這個機制又有什麼意義,且待我們一一說明白。

把自己回收再利用也是一件重要的事

簡單來說,「細胞自噬」是細胞對於自己的胞器進行分解、回收的機制。它的英文 Autophagy 來自於希臘語的「自我(self-)」和「吃(eat)」兩字的結合,因此也可以說 Autophagy 就是「自食」的過程。

或許你覺得很奇怪,細胞是有沒有這麼餓,為什麼非要自己吃自己?但其實這樣的分解過程對於細胞的生存也是一件很重要的事情。

-----廣告,請繼續往下閱讀-----

在 1950 年中期,科學家發現一個新的特化胞器內含可以分解蛋白質,醣類和脂肪的酵素。在 1960 年代,科學家進一步發現這是細胞內部會用自己的膜,捲縮成小型袋狀囊泡,並將細胞自己的一小部份胞器包裹其內。現今我們稱這種袋狀物為溶酶體(lysosome),而溶酶體內所含的分解酵素會將胞器分解、摧毀,而這些物質同時被細胞回收再行利用。

細胞自噬過程示意圖。圖/By Cheung and Ip - Molecular Brain, Biomed Central, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=10014352
細胞自噬過程示意圖。圖/By Cheung and Ip – Molecular Brain, Biomed Central, CC BY 3.0, wikimedia commons

只不過,科學家就開始懷疑這些胞器要被送到特定的區域,勢必經過一些運送過程,因此他們推論細胞擁有將傳遞大型物質到溶酶體內的機制。透過生化分析及顯微鏡的觀察,科學家證實有一種新的囊泡可以將細胞內的物質送達溶酶體,讓它們被降解。研究這個機制的比利時科學家克里斯汀.德.迪夫(Christian de Duve)命名此囊泡為細胞自噬小體(autophagosome),也將這個過程命名為細胞自噬(autophagy),他也因此在 1974 年獲頒諾貝爾生醫獎。

到了 1970 及 80 年代科學家專注於了解另一套蛋白質降解的系統——蛋白酶體(proteasome)。阿龍.切哈諾沃(Aaron Ciechanover)、阿夫拉姆.赫什科(Avram Hershko)及歐文.羅斯(Irwin Rose)因發現泛素化蛋白質降解(ubiquitination)而獲得 2004 年諾貝爾化學獎。雖然蛋白酶體能有效的依序降解單一的蛋白質,但此現象仍無法解釋細胞如何清除巨大的蛋白質複合體和壞掉的胞器。

細胞自噬是否為這個問題的關鍵答案?如果是,其背後的機制又是什麼呢?

-----廣告,請繼續往下閱讀-----

大隅良典與他的酵母菌

圖/By 大臣官房人事課 - 平成27年度 文化功労者:文部科学省, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=52028935
圖/By 大臣官房人事課 – 平成27年度 文化功労者:文部科学省, CC BY 4.0, wikimedia commons

這時就得請到 2016 年的諾貝爾獎得主大隅良典教授,以及重要的研究主角酵母菌出場了!大隅良典教授在 1988 年他開始經營實驗室後,專注在研究酵母菌中負責降解蛋白質的液泡,而這個機制就相當於人體中的溶酶體。對於研究人員來說,比人體細胞更容易操作的酵母菌,時常被用來模擬人類的細胞,藉此找出參與複雜細胞途徑的基因。

But,人生最怕遇到這個 but,大隅良典雖然想用酵母菌來幫助他了解細胞自噬的過程,不過他卻發現酵母菌太小了,小到它們的內部構造不易在顯微鏡下觀察,根本無法確定細胞自噬是否存在此生物中。

他想來想去,如果不能直接觀察,那麼有沒有其他方法能間接證明細胞中真的有降解的機制?終於他想到一個方法——如果他能阻止降解,當細胞自噬被啟動時,細胞自噬小體便會累積在液泡內,便可利用顯微鏡來觀察。於是,他培養了一群缺乏液泡降解酵素的突變酵母菌,同時利用飢餓來引發細胞自噬的產生。

成果十分驚人!液泡在幾個小時內充滿了沒有被降解的小囊泡,而這些囊泡們就是細胞自噬小體。大隅良典的實驗成功證明了酵母菌內存在細胞自噬,更重要的是,他現在擁有可以分析並找出細胞自噬關鍵基因的方法了,並 1992 年發表了這個重大的突破。

-----廣告,請繼續往下閱讀-----

在酵母菌中分析了細胞自噬的機制後,仍有個問題存在。其他的生物體是否也有類似的機制去調控呢?很快地,我們便知道了在我們的細胞中存在著幾乎一致的機制。而且我們現在有了可以探討在人類中細胞自噬重要性的工具。

如果沒有細胞自噬,可能就沒有這些研究

多虧了大隅良典和其他人的研究,我們現在知道細胞自噬利用清除和回收細胞內的物質機制,去調控重要的生理功能。細胞自噬快速地提供細胞能量來源和提供新合成所需的材料,因此在飢餓或是其他壓力底下,細胞自噬顯得格外重要。除此之外,細胞自噬也能夠清除入侵細胞的細菌和病毒;參與在發育和細胞分化中。細胞也能利用這樣的機制來清除老化時受損的胞器與蛋白質,是細胞品質管控的中樞。

細胞自噬若受到干擾,可能會導致帕金森氏症、第二型糖尿病和其他在老年好發的疾病。細胞自噬基因的突變亦可能會造成遺傳疾病。而不正常的細胞自噬機制也與癌症有關。如今有許多研究正在研發以細胞自噬為標的的藥物以對抗許多的疾病。

細胞自噬發現至今 50 年了,但其在生醫領域的重要性奠定於大隅良典在 1990 年代時期的重大突破。恭喜大隅良典獲得了 2016 年的諾貝爾生醫獎。

-----廣告,請繼續往下閱讀-----

本文編譯自諾貝爾獎官網:

-----廣告,請繼續往下閱讀-----
文章難易度
李紀潔、羅鴻
13 篇文章 ・ 3 位粉絲
來自陽明大學基科所的畢業生,喜歡神經科學、遺傳和演化的企鵝狂熱二人組。本來對科普寫作毫無興趣,在大學老師強烈遊說之下仍然無動於衷,畢業後卻意外開始在泛科學寫科普文章。興趣分別是畫畫和魔術方塊。目前兩人都在德國攻讀神經科學博士,分別專攻老化和神經再生、電生理和動物行為。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
諾貝爾得獎「助攻王」 :秀麗隱桿線蟲
顯微觀點_96
・2025/02/25 ・2852字 ・閱讀時間約 5 分鐘

本文轉載自顯微觀點

圖/顯微觀點

科學界的重大盛事-諾貝爾獎,已在 10 月揭曉。今(2024)年生醫獎頒發給維克托.安布羅斯(Victor Ambros)和加里.魯夫昆(Gary Ruvkun),他們以「發現 microRNA 及其在轉錄後基因調控中的作用」獲肯定得到桂冠。而這項重大發現的背後,一種叫做「秀麗隱桿線蟲」(C. elegans)的小蟲子居功厥偉。

生醫獎背後大功臣

安布羅斯和魯夫昆對於基因如何受到調控,如何因活化時間不同而確保各類型細胞在正確時間點發育的問題很感興趣。因此他們研究因基因活化出現問題的兩種線蟲突變株:lin-4 和 lin-14,以瞭解當中的機制。

一開始,安布羅斯先發現 lin-4 基因似乎是 lin-14 基因的負調節因子,但 lin-14 的活性是怎麼被阻斷的,仍然是個謎。因此他系統性地找尋 lin-4 在基因體中的位置與基因序列,也因此意外發現 lin-4 基因只會產生一種異常短、不足以合成蛋白質的核醣核酸分子。

-----廣告,請繼續往下閱讀-----

同一時間,魯夫昆在麻州總醫院和哈佛醫學院新成立的實驗室研究 lin-14 基因的調控。魯夫昆發現 lin-4 抑制的並不是 lin-14 的產生,而是抑制 lin-14 基因產生蛋白質,且發生在基因表現過程的後期。實驗也顯示要抑制 lin-4,必須要有 lin-14 訊息核醣核酸(mRNA)中的一個片段。

安布羅斯和魯夫昆比較了各自的實驗成果,找到突破性的發現:lin-4 部分序列與 lin-14 訊息核醣核酸的關鍵片段中的序列互補。他們進一步實驗,顯示 lin-4 微型核醣核酸(microRNA)透過與 lin-14 訊息核醣核酸中的互補序列結合,來抑制 lin-14 轉譯,進而阻斷 lin-14 蛋白質的產生,也因此揭開 microRNA 介導的基因調控新原理。

這項結果被發表在 1993 年的《細胞》期刊的兩篇文章上。但一開始這樣的基因調控機制被認為是秀麗隱桿線蟲所特有,而不受重視。直到 2000 年,魯夫昆的研究團隊發現了另一種由 let-7基因編碼的 microRNA,科學界的態度才發生變化;因為 let-7 基因高度保存在整個動物界中。

接下來的幾年裡,數百種不同的 microRNA 被鑑定出來,微型核醣核酸的基因調控在多細胞生物中普遍存在;而基因調控若失常,則可能導致糖尿病、癌症或自體免疫疾病。

-----廣告,請繼續往下閱讀-----

這不是秀麗隱桿線蟲第一次「助攻得獎」。

(A) 秀麗隱桿線蟲是了解不同細胞類型如何發育的有用模型生物。 (B) 安布羅斯和魯夫昆研究了 lin-4 和 lin-14 突變體。  安布羅斯已證明 lin-4 似乎是 lin-14 的負調節因子。
(A) 秀麗隱桿線蟲是了解不同細胞類型如何發育的有用模型生物。 (B) 安布羅斯和魯夫昆研究了 lin-4 和 lin-14 突變體。 安布羅斯已證明 lin-4 似乎是 lin-14 的負調節因子。圖/諾貝爾生醫獎新聞稿

成為助攻王的關鍵

2002 年西德尼.布瑞納(Sydney Brenner)、約翰.蘇爾斯頓(John Sulston)和羅伯特.霍維茨(Robert Horvitz)便是從秀麗隱桿線蟲的研究「發現器官發育和計畫性細胞死亡的遺傳調控機理」,進而獲得該年諾貝爾生醫獎。值得一提的是,今年的兩位得主都曾是霍維茨實驗室的博士後研究員。

除此之外,2006 年諾貝爾生理醫學獎也頒給研究線蟲的美國科學家安德魯.法厄(Andrew Zachary Fire)和 克雷格.梅洛(Craig Cameron Mello),以表彰他們「發現 RNA 干擾—雙鏈 RNA 引發的沉默現象」。甚至馬丁.查菲(Martin Chalfie)也利用秀麗隱桿線蟲的觸感接受器神經元「發現並改造綠色螢光蛋白(GFP)」獲得 2008 年諾貝爾化學獎。

秀麗隱桿線蟲為何能成為諾貝爾的「助攻王」呢?布瑞納曾在他的論文中提到:「線蟲適合做基因研究,並且其神經系統可以被精準確定。」他在 1963 年提出以秀麗隱桿線蟲作為模式生物,並於 1974 年發表其在發育生物學和神經科學的成果。

-----廣告,請繼續往下閱讀-----

秀麗隱桿線蟲是第一種完成全基因組定序的多細胞生物。加上體積小、成蟲約長1公釐,以及透明且易於獲取的遺傳物質,使其成為絕佳的模式生物。

其在室溫下大約三天可以從卵生長為可受精的成蟲,在實驗室中以大腸桿菌為食,易於大量培養。並且解凍之後仍能存活,因此適合長時間儲存。加上每隻成蟲可產生約 300 隻後代,適合作遺傳學研究。

易於觀察也是秀麗隱桿線蟲作為絕佳模式生物的關鍵因素。由於細胞譜系固定,研究人員可以使用微分干涉顯微鏡(DIC)觀察每一個細胞的發展,甚至在在螢光蛋白出現之前,就有從受精卵到成體完整細胞譜系的描述。

在線蟲研究的多個工作步驟中,立體、複式或共軛焦顯微鏡都是常見的工具,以符合不同實驗要求。且隨著顯微技術的發展,秀麗隱桿線蟲在發育生物學中的應用和研究也更加多元。

-----廣告,請繼續往下閱讀-----

隨技術發展 研究面向更多元

在挑選合適的線蟲並準備進行遺傳或生化分析的「採蟲」階段,通常會使用末端黏有睫毛的木棍,在立體顯微鏡下關、挑選。然後使用倒立顯微鏡以顯微注射對線蟲性腺進行基因改造。

螢光蛋白(FP)是在線蟲中進行分子和細胞行為研究的核心工具,螢光顯微技術廣泛用於線蟲研究,例如 GFP 及其改進版本(如mScarlet和mCherry)常用於標記和追蹤蛋白質的動態過程。

螢光蛋白也可使用於研究線蟲的染色體外陣列表現或穩定整合到基因組中。現在則有許多研究者使用 CRISPR(基因編輯)技術,將螢光標記穩定地整合到基因組中,這樣可以精確追蹤特定蛋白在細胞內的表現位置和強度。

層光顯微術(Lightsheet microscopy)則可以在不壓縮樣本的情況下,提供更高的空間和時間解析度,特別適合長期追踪線蟲胚胎發育過程。

-----廣告,請繼續往下閱讀-----

除此之外,因為秀麗隱桿線蟲是截至 2019 年唯一一個完成連接體(connectome,神經元連接)測定的生物體,因此一直以來也常被作為神經科學研究的模式生物。

研究者可利用螢光蛋白(如 GCaMP)來追蹤鈣離子濃度的變化,當鈣離子濃度上升時會發出更強的螢光,再透過螢光強度來分析神經系統在睡眠、運動等各種行為時的活動模式。或是進一步利用轉盤式共軛焦顯微鏡、雙光子顯微鏡,抑或結合更強大的影像分析工具,對神經元活動成像並藉此解讀不同行為背後的神經迴路機制

作為模式生物,秀麗隱桿線蟲因為基因組簡單、細胞譜系固定且神經結構已知,為揭示基因調控、細胞發育、神經行為等生物學問題提供了清晰的研究途徑,在生物學研究中佔有重要地位。

儘管已是諾貝爾獎「助攻王」,相信隨著顯微和基因編輯技術的快速發展,秀麗隱桿線蟲仍能在探索人類疾病模型、藥物篩選及再生醫學等應用領域,引領研究新方向。

-----廣告,請繼續往下閱讀-----

參考資料

另感謝台灣科技媒體中心(SMC)舉辦諾貝爾獎解析記者會

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
3

文字

分享

0
0
3
2016諾貝爾生醫獎:細胞自噬和大隅良典的酵母菌
李紀潔、羅鴻
・2016/10/04 ・2032字 ・閱讀時間約 4 分鐘 ・SR值 563 ・九年級

編譯/李紀潔、羅鴻|陽明大學基因體科學研究所畢業生

2016諾貝爾獎生醫獎

2016 年諾貝爾獎隆重登場,這一次生理醫學獎頒給發現「細胞自噬」機制(autophagy)的大隅良典(Yoshinori Ohsumi)教授。究竟東京工業大學(Tokyo Institute of Technology)的大隅良典怎麼發現這樣的機制,而這個機制又有什麼意義,且待我們一一說明白。

把自己回收再利用也是一件重要的事

簡單來說,「細胞自噬」是細胞對於自己的胞器進行分解、回收的機制。它的英文 Autophagy 來自於希臘語的「自我(self-)」和「吃(eat)」兩字的結合,因此也可以說 Autophagy 就是「自食」的過程。

或許你覺得很奇怪,細胞是有沒有這麼餓,為什麼非要自己吃自己?但其實這樣的分解過程對於細胞的生存也是一件很重要的事情。

-----廣告,請繼續往下閱讀-----

在 1950 年中期,科學家發現一個新的特化胞器內含可以分解蛋白質,醣類和脂肪的酵素。在 1960 年代,科學家進一步發現這是細胞內部會用自己的膜,捲縮成小型袋狀囊泡,並將細胞自己的一小部份胞器包裹其內。現今我們稱這種袋狀物為溶酶體(lysosome),而溶酶體內所含的分解酵素會將胞器分解、摧毀,而這些物質同時被細胞回收再行利用。

細胞自噬過程示意圖。圖/By Cheung and Ip - Molecular Brain, Biomed Central, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=10014352
細胞自噬過程示意圖。圖/By Cheung and Ip – Molecular Brain, Biomed Central, CC BY 3.0, wikimedia commons

只不過,科學家就開始懷疑這些胞器要被送到特定的區域,勢必經過一些運送過程,因此他們推論細胞擁有將傳遞大型物質到溶酶體內的機制。透過生化分析及顯微鏡的觀察,科學家證實有一種新的囊泡可以將細胞內的物質送達溶酶體,讓它們被降解。研究這個機制的比利時科學家克里斯汀.德.迪夫(Christian de Duve)命名此囊泡為細胞自噬小體(autophagosome),也將這個過程命名為細胞自噬(autophagy),他也因此在 1974 年獲頒諾貝爾生醫獎。

到了 1970 及 80 年代科學家專注於了解另一套蛋白質降解的系統——蛋白酶體(proteasome)。阿龍.切哈諾沃(Aaron Ciechanover)、阿夫拉姆.赫什科(Avram Hershko)及歐文.羅斯(Irwin Rose)因發現泛素化蛋白質降解(ubiquitination)而獲得 2004 年諾貝爾化學獎。雖然蛋白酶體能有效的依序降解單一的蛋白質,但此現象仍無法解釋細胞如何清除巨大的蛋白質複合體和壞掉的胞器。

-----廣告,請繼續往下閱讀-----

細胞自噬是否為這個問題的關鍵答案?如果是,其背後的機制又是什麼呢?

大隅良典與他的酵母菌

圖/By 大臣官房人事課 - 平成27年度 文化功労者:文部科学省, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=52028935
圖/By 大臣官房人事課 – 平成27年度 文化功労者:文部科学省, CC BY 4.0, wikimedia commons

這時就得請到 2016 年的諾貝爾獎得主大隅良典教授,以及重要的研究主角酵母菌出場了!大隅良典教授在 1988 年他開始經營實驗室後,專注在研究酵母菌中負責降解蛋白質的液泡,而這個機制就相當於人體中的溶酶體。對於研究人員來說,比人體細胞更容易操作的酵母菌,時常被用來模擬人類的細胞,藉此找出參與複雜細胞途徑的基因。

But,人生最怕遇到這個 but,大隅良典雖然想用酵母菌來幫助他了解細胞自噬的過程,不過他卻發現酵母菌太小了,小到它們的內部構造不易在顯微鏡下觀察,根本無法確定細胞自噬是否存在此生物中。

-----廣告,請繼續往下閱讀-----

他想來想去,如果不能直接觀察,那麼有沒有其他方法能間接證明細胞中真的有降解的機制?終於他想到一個方法——如果他能阻止降解,當細胞自噬被啟動時,細胞自噬小體便會累積在液泡內,便可利用顯微鏡來觀察。於是,他培養了一群缺乏液泡降解酵素的突變酵母菌,同時利用飢餓來引發細胞自噬的產生。

成果十分驚人!液泡在幾個小時內充滿了沒有被降解的小囊泡,而這些囊泡們就是細胞自噬小體。大隅良典的實驗成功證明了酵母菌內存在細胞自噬,更重要的是,他現在擁有可以分析並找出細胞自噬關鍵基因的方法了,並 1992 年發表了這個重大的突破。

在酵母菌中分析了細胞自噬的機制後,仍有個問題存在。其他的生物體是否也有類似的機制去調控呢?很快地,我們便知道了在我們的細胞中存在著幾乎一致的機制。而且我們現在有了可以探討在人類中細胞自噬重要性的工具。

如果沒有細胞自噬,可能就沒有這些研究

多虧了大隅良典和其他人的研究,我們現在知道細胞自噬利用清除和回收細胞內的物質機制,去調控重要的生理功能。細胞自噬快速地提供細胞能量來源和提供新合成所需的材料,因此在飢餓或是其他壓力底下,細胞自噬顯得格外重要。除此之外,細胞自噬也能夠清除入侵細胞的細菌和病毒;參與在發育和細胞分化中。細胞也能利用這樣的機制來清除老化時受損的胞器與蛋白質,是細胞品質管控的中樞。

-----廣告,請繼續往下閱讀-----

細胞自噬若受到干擾,可能會導致帕金森氏症、第二型糖尿病和其他在老年好發的疾病。細胞自噬基因的突變亦可能會造成遺傳疾病。而不正常的細胞自噬機制也與癌症有關。如今有許多研究正在研發以細胞自噬為標的的藥物以對抗許多的疾病。

細胞自噬發現至今 50 年了,但其在生醫領域的重要性奠定於大隅良典在 1990 年代時期的重大突破。恭喜大隅良典獲得了 2016 年的諾貝爾生醫獎。

本文編譯自諾貝爾獎官網:

-----廣告,請繼續往下閱讀-----
文章難易度
李紀潔、羅鴻
13 篇文章 ・ 3 位粉絲
來自陽明大學基科所的畢業生,喜歡神經科學、遺傳和演化的企鵝狂熱二人組。本來對科普寫作毫無興趣,在大學老師強烈遊說之下仍然無動於衷,畢業後卻意外開始在泛科學寫科普文章。興趣分別是畫畫和魔術方塊。目前兩人都在德國攻讀神經科學博士,分別專攻老化和神經再生、電生理和動物行為。

0

2
3

文字

分享

0
2
3
每次呼吸都會吸入十個孢子?一朵菇如何形成?無所不在的真菌生命循環!——《真菌大未來》
積木文化
・2024/02/21 ・3532字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

真菌的生命週期

一切始於一顆孢子

孢子是真菌生命週期的開始,也是結束。這些單細胞單元裡,包含著新真菌個體的繁衍密碼。面對無數微生物競爭者和惡劣的環境條件,孢子萌芽的機率極低,因此真菌釋放出數萬億個孢子來提高生存機會。孢子維持在一個暫停於生死之間的狀態,密切留意周遭世界並尋找適合落腳的地方。孢子很微小,無處不在,所以根本無法躲避它們,以我們自己而言,每次的呼吸都會吸入十個孢子。

孢子是真菌生命週期的開始,也是結束。圖/unsplash

被稱為「胚種假說」(Panspermia)的生命起源論甚至認為:生命的藍圖被包裹在一顆孢子當中,並在太空中旅行,在宇宙中尋找適合落腳的家園。儘管對此假說爭論不休,但我們確實知道孢子可以耐受極端溫度、抗輻射,甚至可以在真空狀態的太空中存活。 1988 年,和平號空間站(mir)的俄羅斯太空人就注意到,他們的鈦石英窗外有「東西」在生長,而且正在漸漸「啃穿」鈦石英。後來證實,這個「東西」就是一種真菌。1

就像植物一樣,大多數真菌也都採用「紮根在土壤當中」這種耗時的繁殖方式:它們利用菌絲體生長,或透過孢子飄散到新的棲息地。在渴望繁衍其 DNA 的動力下,有些真菌採取巧妙的策略,確保其孢子在新環境中得以繁殖。

擁有誘人香氣的美食佳餚黑松露(Tuber melanosporum)就是一個很好的例子。這種跟黃金一樣珍貴的真菌生長在地底下,隨著孢子成熟,其所散發出的香氣會吸引動物、松露獵人和來自世界各地的美食家。松露的孢子不易被消化,所以最終會安全通過有幸一飽口福者的消化道;在理想狀況下,孢子應已遠離原來被採集到松露的位置。

-----廣告,請繼續往下閱讀-----
擁有誘人香氣的美食佳餚黑松露就是一個很好的例子,松露的孢子不易被消化,所以最終會安全通過有幸一飽口福者的消化道。圖/pexels

在地面上,圓形的巨型馬勃(Calvatia gigantea)子實體保護著數以百萬在內部熟成的孢子。有趣的是,只要戳一下成熟的馬勃,它就會噴出一股煙霧狀的孢子粉,讓風帶走飄散的孢子。

生長在糞便之中的水玉黴菌屬(Pilobolus)真菌,藉由分泌水分充滿泡囊增加壓力,最後像水槍一樣排射出泡囊頂部的孢子囊。有研究經計算發現,孢子囊能以至少 20,000 g (重力)的速率被噴射出去。相較之下,訓練有素的美國國家航空暨太空總署(NASA)太空人在太空船中穿著抗重力服(G-Suit)所承受的重力是 3 g ,而子彈是以 9,000 g 的加速度行進的。

生長在糞便之中的水玉黴菌屬真菌,藉由分泌水分充滿泡囊增加壓力,最後像水槍一樣排射出泡囊頂部的孢子囊。圖/wikipedia

還有能在黑暗中發光的真菌,光線會吸引昆蟲將它們的孢子散布到森林底層。例如,加德納臍菇(Neonothopanus gardneri,俗稱椰子花)就受到晝夜節律的調節,在夜間會發出明亮的光。 2所有這些演化而來的調整,都是為了確保繁殖能夠延續。

為菌絲找到一個家

當孢子落在一個溫度適中、靠近食物和水的地方時,它就會萌芽。孢子經由細胞壁吸收水分,並長出一種稱為菌絲的線狀管。當菌絲在營養基質上生長,就會分支出更多菌絲並形成一條細線。原本的菌絲繼續利用可能是木頭、昆蟲或土壤的基質,由尖端處長出更多菌絲。菌絲間開始融合相連,形成一個相互連接、被稱為菌絲體的物質。

-----廣告,請繼續往下閱讀-----
當孢子落在一個溫度適中、靠近食物和水的地方時,它就會萌芽。圖/wikipedia

每條菌絲的生長都結合了物理力量和化學策略。菌絲會分泌出作用相當於強力消化酸的酵素來分解物質。這個分泌酵素的作用,讓真菌能穿透最堅硬的基質:先將營養物質萃取出來,再經由菌絲體吸收。就像我們唾液中的酵素一樣,很快就可以將口中的麵包變成濕糊狀。

數英里的菌絲體,也許再來一朵菇

菌絲體如同漣漪一般,從孢子萌芽之處輻射向外生長。附近有營養物質出現時,菌絲體就會以圓形的方式使其表面積最大化,朝營養來源方向生長。當一個區域的食物來源耗盡,菌絲體中心處的舊菌絲就會被自己消化掉。殘存在被消化舊菌絲當中的可用資源,則會被重新傳送到菌絲體最外圈,供生長正旺盛的菌絲所用。

最後,菌絲體會長成一個廣大的空心環,也就是有時我們在草地上看見的「仙女環」。隨著資源被重新傳送到菌絲體生長的外緣,中心會逐漸消失,環的周長則逐漸增加。只要有養分和水,菌絲體就可以持續以這種方式不斷地生長下去。

菌絲體會長成一個廣大的空心環,也就是有時我們在草地上看見的「仙女環」。圖/wikipedia

在此階段,除了酵母菌以外的真菌就能由菌絲形成孢子,進行無性生殖。黴菌、銹病和粉狀黴菌等微型真菌總是以這種方式繁殖,例如麵包上所見的黴菌黑點就含有超過五萬個孢子。

-----廣告,請繼續往下閱讀-----

然而,屬於單細胞微型真菌的酵母菌,則採取不同於絲狀真菌的方式進行無性生殖。酵母菌利用分裂產生複製體進行無性生殖,雖然這種方法很有效率,但卻因此錯過了可以經由有性生殖確保遺傳多樣性的樂趣。3

除了透過無性生殖的方式繁殖,若環境條件惡劣(通常情況就是這樣),大型真菌也可以進行有性生殖。當兩個有性生殖相容的菌絲體相遇,它們就會進行融合並形成更大的團塊。

融合後已經具備遺傳多樣性的新菌絲體,等待著合適的環境條件到來,就會聚集它的菌絲、吸收水分膨脹,並形成被稱為原基(primordium)的菇蕾。幾天後,原基逐漸伸長菌柄,將菌傘推出基質表面。最後,菌傘打開就變成了一個完全成熟的菇。菇類的顏色、質地和形狀會因種類而異。

最後,菌傘打開就變成了一個完全成熟的菇。菇類的顏色、質地和形狀會因種類而異。圖/unsplash

根據菇類產生和釋放孢子的方式,可以將大型真菌分成兩群:一群是在封閉囊內產生孢子的子囊菌(asomycota),另一群是從菌褶中形成並釋放孢子的擔子菌(basidiomycota)。擔子菌的菌褶有一層菌膜保護,隨著菇的成熟,該菌膜就會剝落。

-----廣告,請繼續往下閱讀-----

菇的本身可以說就是一個慶典,慶祝擁有數萬億待釋放新世代真菌(孢子)的出現。孢子將再次進入那已經持續循環數十億年的過程之中。自然不會多愁善感,所以慶典終將結束;菇類在完成產生孢子的工作之後,就會開始腐爛消失。

菇的本身可以說就是一個慶典,菇類的出現是真菌生命循環的最美麗時刻。圖/unsplash

它們已經達成自然所交付的任務,而且也不吝讓我們一窺正大自然發自內在的美。菇類的出現是真菌生命循環的最美麗時刻,也許因為這樣,菇類才會如此受到歡迎。

註解

  1. Matthew Phelan, ‘Why fungi adapt so well to life in space’, Scienceline, 7 March 2018, . ↩︎
  2. Anderson G Oliveira, Cassius V Stevani, Hans E Waldenmaier, Vadim Viviani Jillian M Emerson, Jennifer J Loros and Jay C Dunlap, ‘Circadian control sheds light on fungal bioluminescence’, Current Biology, vol. 25, issue 7, 2015, . ↩︎
  3. 譯注:酵母菌也會進行有性生殖,遺傳物質亦會重新洗牌。 ↩︎

——本文摘自《真菌大未來:不斷改變世界樣貌的全能生物,從食品、醫藥、建築、環保到迷幻》,2023 年 12 月,積木文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----