0

0
3

文字

分享

0
0
3

2016諾貝爾生醫獎:細胞自噬和大隅良典的酵母菌

李紀潔、羅鴻
・2016/10/04 ・2032字 ・閱讀時間約 4 分鐘 ・SR值 563 ・九年級

編譯/李紀潔、羅鴻|陽明大學基因體科學研究所畢業生

2016諾貝爾獎生醫獎

2016 年諾貝爾獎隆重登場,這一次生理醫學獎頒給發現「細胞自噬」機制(autophagy)的大隅良典(Yoshinori Ohsumi)教授。究竟東京工業大學(Tokyo Institute of Technology)的大隅良典怎麼發現這樣的機制,而這個機制又有什麼意義,且待我們一一說明白。

把自己回收再利用也是一件重要的事

簡單來說,「細胞自噬」是細胞對於自己的胞器進行分解、回收的機制。它的英文 Autophagy 來自於希臘語的「自我(self-)」和「吃(eat)」兩字的結合,因此也可以說 Autophagy 就是「自食」的過程。

或許你覺得很奇怪,細胞是有沒有這麼餓,為什麼非要自己吃自己?但其實這樣的分解過程對於細胞的生存也是一件很重要的事情。

-----廣告,請繼續往下閱讀-----

在 1950 年中期,科學家發現一個新的特化胞器內含可以分解蛋白質,醣類和脂肪的酵素。在 1960 年代,科學家進一步發現這是細胞內部會用自己的膜,捲縮成小型袋狀囊泡,並將細胞自己的一小部份胞器包裹其內。現今我們稱這種袋狀物為溶酶體(lysosome),而溶酶體內所含的分解酵素會將胞器分解、摧毀,而這些物質同時被細胞回收再行利用。

細胞自噬過程示意圖。圖/By Cheung and Ip - Molecular Brain, Biomed Central, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=10014352
細胞自噬過程示意圖。圖/By Cheung and Ip – Molecular Brain, Biomed Central, CC BY 3.0, wikimedia commons

只不過,科學家就開始懷疑這些胞器要被送到特定的區域,勢必經過一些運送過程,因此他們推論細胞擁有將傳遞大型物質到溶酶體內的機制。透過生化分析及顯微鏡的觀察,科學家證實有一種新的囊泡可以將細胞內的物質送達溶酶體,讓它們被降解。研究這個機制的比利時科學家克里斯汀.德.迪夫(Christian de Duve)命名此囊泡為細胞自噬小體(autophagosome),也將這個過程命名為細胞自噬(autophagy),他也因此在 1974 年獲頒諾貝爾生醫獎。

到了 1970 及 80 年代科學家專注於了解另一套蛋白質降解的系統——蛋白酶體(proteasome)。阿龍.切哈諾沃(Aaron Ciechanover)、阿夫拉姆.赫什科(Avram Hershko)及歐文.羅斯(Irwin Rose)因發現泛素化蛋白質降解(ubiquitination)而獲得 2004 年諾貝爾化學獎。雖然蛋白酶體能有效的依序降解單一的蛋白質,但此現象仍無法解釋細胞如何清除巨大的蛋白質複合體和壞掉的胞器。

細胞自噬是否為這個問題的關鍵答案?如果是,其背後的機制又是什麼呢?

-----廣告,請繼續往下閱讀-----

大隅良典與他的酵母菌

圖/By 大臣官房人事課 - 平成27年度 文化功労者:文部科学省, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=52028935
圖/By 大臣官房人事課 – 平成27年度 文化功労者:文部科学省, CC BY 4.0, wikimedia commons

這時就得請到 2016 年的諾貝爾獎得主大隅良典教授,以及重要的研究主角酵母菌出場了!大隅良典教授在 1988 年他開始經營實驗室後,專注在研究酵母菌中負責降解蛋白質的液泡,而這個機制就相當於人體中的溶酶體。對於研究人員來說,比人體細胞更容易操作的酵母菌,時常被用來模擬人類的細胞,藉此找出參與複雜細胞途徑的基因。

But,人生最怕遇到這個 but,大隅良典雖然想用酵母菌來幫助他了解細胞自噬的過程,不過他卻發現酵母菌太小了,小到它們的內部構造不易在顯微鏡下觀察,根本無法確定細胞自噬是否存在此生物中。

他想來想去,如果不能直接觀察,那麼有沒有其他方法能間接證明細胞中真的有降解的機制?終於他想到一個方法——如果他能阻止降解,當細胞自噬被啟動時,細胞自噬小體便會累積在液泡內,便可利用顯微鏡來觀察。於是,他培養了一群缺乏液泡降解酵素的突變酵母菌,同時利用飢餓來引發細胞自噬的產生。

成果十分驚人!液泡在幾個小時內充滿了沒有被降解的小囊泡,而這些囊泡們就是細胞自噬小體。大隅良典的實驗成功證明了酵母菌內存在細胞自噬,更重要的是,他現在擁有可以分析並找出細胞自噬關鍵基因的方法了,並 1992 年發表了這個重大的突破。

-----廣告,請繼續往下閱讀-----

在酵母菌中分析了細胞自噬的機制後,仍有個問題存在。其他的生物體是否也有類似的機制去調控呢?很快地,我們便知道了在我們的細胞中存在著幾乎一致的機制。而且我們現在有了可以探討在人類中細胞自噬重要性的工具。

如果沒有細胞自噬,可能就沒有這些研究

多虧了大隅良典和其他人的研究,我們現在知道細胞自噬利用清除和回收細胞內的物質機制,去調控重要的生理功能。細胞自噬快速地提供細胞能量來源和提供新合成所需的材料,因此在飢餓或是其他壓力底下,細胞自噬顯得格外重要。除此之外,細胞自噬也能夠清除入侵細胞的細菌和病毒;參與在發育和細胞分化中。細胞也能利用這樣的機制來清除老化時受損的胞器與蛋白質,是細胞品質管控的中樞。

細胞自噬若受到干擾,可能會導致帕金森氏症、第二型糖尿病和其他在老年好發的疾病。細胞自噬基因的突變亦可能會造成遺傳疾病。而不正常的細胞自噬機制也與癌症有關。如今有許多研究正在研發以細胞自噬為標的的藥物以對抗許多的疾病。

細胞自噬發現至今 50 年了,但其在生醫領域的重要性奠定於大隅良典在 1990 年代時期的重大突破。恭喜大隅良典獲得了 2016 年的諾貝爾生醫獎。

-----廣告,請繼續往下閱讀-----

本文編譯自諾貝爾獎官網:

-----廣告,請繼續往下閱讀-----
文章難易度
李紀潔、羅鴻
13 篇文章 ・ 3 位粉絲
來自陽明大學基科所的畢業生,喜歡神經科學、遺傳和演化的企鵝狂熱二人組。本來對科普寫作毫無興趣,在大學老師強烈遊說之下仍然無動於衷,畢業後卻意外開始在泛科學寫科普文章。興趣分別是畫畫和魔術方塊。目前兩人都在德國攻讀神經科學博士,分別專攻老化和神經再生、電生理和動物行為。

0

0
0

文字

分享

0
0
0
近零碳建築新趨勢:從節能創意到 2050 淨零轉型
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/23 ・3709字 ・閱讀時間約 7 分鐘

本文由 建研所 委託,泛科學企劃執行。 

根據聯合國統計數據,全球每年 38% 的溫室氣體排放,並非來自道路上的交通工具,而是由「現代都市與建築」所造成的。

我們如今站在兩條路徑的十字路口。一條是依賴更多水泥建築與空調系統來抵禦夏季酷暑,然而這樣的選擇只會加劇室外大氣的惡化。另一條則是徹底改革建築、用電、設計與都市規劃,不僅尋求低碳排放的建築方式,還要找出節能降溫的解決方案,實現事半功倍的效果。

然而,我們是否真的能將建築業的碳排放歸零?

-----廣告,請繼續往下閱讀-----

建築的溫室氣體哪裡來?

在建築物 60 年的生命週期中,建材的碳足跡其實只佔 9.8%,因為建築一旦完成後,材料不會頻繁更換。相反,日常生活中的用電才是主要的碳排來源,占了 83.4%,其中大部分來自冷氣、照明和各種電器。

當然,讓大家集體關燈停用電器「躺平」來拯救地球,顯然不切實際。既然完全不消耗能源是不可能的,我們應該尋找更現實的解決方案。

現在就來看看全球七棟零碳建築之一——成大的「綠色魔法學校」,臺灣首座淨零建築,如何運用建築技術,成為當代永續建築的典範。這些技巧中,有哪些能應用到你我家中呢?

綠色魔法學校。圖 / 內政部建築研究所

為了省電要把煙囪塗黑、吸收更多太陽光?

都市裡,我們最大的挑戰之一就是夏天的高溫,水泥建築群在陽光的烘烤下,變成一個個巨大的窯爐。為了解決這個問題,綠色魔法學校在國際會議廳裝了一個煙囪,不過這不是為了讓窯爐更熱,而是用來降溫的。

-----廣告,請繼續往下閱讀-----

煙囪為什麼都都要蓋的那麼高?原來煙囪越高,上下的溫差越大。熱空氣因為密度低而向上移動,產生熱對流。溫差越大,這個熱對流就越強烈,這就是所謂的「煙囪效應」。在要幫室內降溫的情況下,我們的目的是產生更強的煙囪效應,抽走熱空氣,讓室溫下降。但這棟建築裡沒有火爐,而溫差不夠大時,這效應會變得微弱,那該怎麼辦?

綠色魔法學校提出了一個大膽的解法:在煙囪南面下半部改裝透明玻璃窗,並將煙囪內部塗成黑色,還加裝了黑色烤漆鋁板,這樣可以最大限度地吸收太陽光。每當艷陽高照,這個不插電的的「自然通風系統」就能自動啟動,創造局部的熱對流,帶動整根煙囪的熱氣向上移動,為室內降溫,達到節能效果。以熱制熱,完全反常識。

綠色魔法學校的特殊煙囪設計,玻璃引入太陽光。圖 / 泛科學攝影畫面截圖

幫室內降溫的最大原則是:通風。

實際上,不是人人家裡都有煙囪。但如果建築的高處沒有任何窗戶或通風設備,熱空氣就是會從屋頂一路往下蓄積在室內。因此,你也一定在許多工廠或民宅的屋頂看過一個不斷旋轉的小風扇,它們也是有異曲同工的效用。雖然不是高聳的煙囪,但特殊的渦輪構造,風吹過就會開始轉動,並連帶空氣排出室外。是個不用插電的通風球。

-----廣告,請繼續往下閱讀-----
綠色魔法學校館內動畫-室內通風排熱補冷。圖 / 泛科學攝影畫面截圖

綠色魔法學校的煙囪就是個效能更強的換氣機,足以讓 300 人大型會議廳的換氣次數,高達每小時 5 到 8 次,甚至能在室內颳起風速每秒 0.5 公尺的微風,是最舒適的環境。這些利用熱氣密度的差異來改善室內溫度的方法,又稱為「浮力通風」。

為了把通風貫徹到底,綠色魔法學校在建築的兩面裝設大量窗戶以及吊扇,來讓水平也能通風。這些我們習以為常的裝置,其實才是關鍵。靠吊扇的一點點電力讓自然風可以自由進出,耗費的能源,遠比冷氣還要少得多。

幫空調省電的最後一招,就是微環境控制。

綠色魔法學校透過屋頂植栽與造林改善微氣候。圖 / 綠色魔法學校

實際上魔法學校內還是找的到空調設備,並不是完全拔除不用。除了選用最高效率的主機,以及把室內循環做到最好以外,降低周遭環境溫度才能減低冷氣的負擔。要降低水泥叢林的熱島效應,需要植被與水體來做溫度調適。

在太陽照射下,水泥屋頂表面最高可以達到攝氏 70 度,如果屋頂有種植植栽,室內頂層樓板的表面溫度就可以維持在攝氏32 度以下。不用開電就先幫室內降溫。

-----廣告,請繼續往下閱讀-----

水也是關鍵的一環。一是水的比熱高,想打破水分子之間的氫鍵,需要大量的熱量,要讓一千克水的溫度升高一攝氏度,需要 4,200 焦耳的熱量,這可以避免溫度因為烈陽就快速上升。二是當溫度真的過高,水也會透過蒸發帶走熱量,讓溫度不至於向上飆。

魔法學校的屋頂花園使用水庫淤泥,研磨後燒製成的再生陶粒,裡頭混合了稻穀,結構極細,不會像有機土一樣分解消失,可以涵養水源,還不用動不動補土壤,不只降低屋頂植被的澆水次數,還能達到降溫效果。地面也採用透水鋪面,讓每一滴水都不浪費。

綠色魔法學校本名是成功大學的「孫運璿綠建築研究大樓」

2013 年被英國知名出版社羅德里其評為「世界最綠的建築」,並獲選為聯合國全球七棟零碳建築之一。

除了表彰之外,在認證上也確實取得了臺灣最高等級的「鑽石級綠建築」認證,以及美國最高級的「白金級綠建築」兩個綠建築認證。

-----廣告,請繼續往下閱讀-----

為了讓相同的成效可以陸續在全臺的所有建築上實現,臺灣在既有的綠建築標章體系上,擬定出了「建築能效評估系統 BERS」,針對關鍵的空調、照明、插座電器的用電狀況訂出明確的耗電密度指標得分。簡單來說,就是每平方公尺的面積上,每年平均的用電量。

建築能效標示。圖 / 內政部建築研究所

要打造一棟淨零建築,需要設計與材料硬體的相互配合。在日常用電這最大耗能項目上,能透過前面的淨零設計與智慧能源管理來減低能耗。而我們還沒提到的最後一塊拼圖,則是回到建築的建材本身。這部分減碳的方法有很多種,例如將傳統施作工法改為在工廠就完成模組化建材製造的「預鑄工法」,減少現場搭建鷹架、施工的步驟,達成減碳。又或是將部分建材更換為木、竹等負碳建材,甚至使用零廢棄物、能「循環使用」的建材。例如 2018 年亮相的臺中花博荷蘭館、或是 2021 年台糖在沙崙啟用的循環聚落。

建築物能夠完全不用電嗎?……電從哪裡來?

沒錯,連全球最綠的建築——綠色魔法學校,也無法做到完全不使用電力。正如前面提到的,建築的最大能源消耗來自日常使用,而這所「魔法學校」的成就,是成功將日常能源消耗降低,讓溫室氣體排放減少超過 50%。

這就是關鍵,減少一半後,剩下的部分就靠周邊的造林、太陽能和風能等綠色能源來補足。

-----廣告,請繼續往下閱讀-----

2022 年 3 月,國發會公佈了 2050 淨零排放的路徑圖,參考美國、日本、歐盟等國,制定了 2050 年達成淨零建築的目標。

這條路徑包含兩個核心目標:第一,所有建築物要在建築能效評估系統(BERS)中達到 1 級節能,甚至進一步達到「1+ 級」近零碳建築的標準,減少至少 50% 的能源消耗。第二,同步發展再生能源,讓這些近零碳建築朝淨零邁進。

淨零建築路徑。圖 / 內政部建築研究所。

這個目標比你想像的要容易實現。比如,2023 年 12 月,台達電的瑞光大樓 II 就成功取得了「1+ 級」近零碳建築認證,並符合 0 級淨零建築規範。而在 2024 年 7 月,國泰人壽在臺中烏日的商辦大樓經過改造後,也達到 0 級淨零建築標準。這些案例證明了綠色魔法學校的成功經驗可以複製,不論是新建築還是舊建築,都能達成甚至超越淨零目標。

圖 / 台達電瑞光大樓 II
圖 / 國泰人壽臺中烏日商辦大樓

如果我們不想讓「每個夏天都是未來最涼的一年」這樣的預言成真,碳排歸零是必須要實現的目標。現在你知道,這個任務的關鍵就掌握在你我手中。就像選擇能源標章電器一樣,只要選擇符合 BERS 能效標準的建築,我們不僅能降低冷氣的依賴,也能節省電費,讓地球和你的荷包都雙贏。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
2

文字

分享

0
2
2
每次呼吸都會吸入十個孢子?一朵菇如何形成?無所不在的真菌生命循環!——《真菌大未來》
積木文化
・2024/02/21 ・3532字 ・閱讀時間約 7 分鐘

真菌的生命週期

一切始於一顆孢子

孢子是真菌生命週期的開始,也是結束。這些單細胞單元裡,包含著新真菌個體的繁衍密碼。面對無數微生物競爭者和惡劣的環境條件,孢子萌芽的機率極低,因此真菌釋放出數萬億個孢子來提高生存機會。孢子維持在一個暫停於生死之間的狀態,密切留意周遭世界並尋找適合落腳的地方。孢子很微小,無處不在,所以根本無法躲避它們,以我們自己而言,每次的呼吸都會吸入十個孢子。

孢子是真菌生命週期的開始,也是結束。圖/unsplash

被稱為「胚種假說」(Panspermia)的生命起源論甚至認為:生命的藍圖被包裹在一顆孢子當中,並在太空中旅行,在宇宙中尋找適合落腳的家園。儘管對此假說爭論不休,但我們確實知道孢子可以耐受極端溫度、抗輻射,甚至可以在真空狀態的太空中存活。 1988 年,和平號空間站(mir)的俄羅斯太空人就注意到,他們的鈦石英窗外有「東西」在生長,而且正在漸漸「啃穿」鈦石英。後來證實,這個「東西」就是一種真菌。1

就像植物一樣,大多數真菌也都採用「紮根在土壤當中」這種耗時的繁殖方式:它們利用菌絲體生長,或透過孢子飄散到新的棲息地。在渴望繁衍其 DNA 的動力下,有些真菌採取巧妙的策略,確保其孢子在新環境中得以繁殖。

擁有誘人香氣的美食佳餚黑松露(Tuber melanosporum)就是一個很好的例子。這種跟黃金一樣珍貴的真菌生長在地底下,隨著孢子成熟,其所散發出的香氣會吸引動物、松露獵人和來自世界各地的美食家。松露的孢子不易被消化,所以最終會安全通過有幸一飽口福者的消化道;在理想狀況下,孢子應已遠離原來被採集到松露的位置。

-----廣告,請繼續往下閱讀-----
擁有誘人香氣的美食佳餚黑松露就是一個很好的例子,松露的孢子不易被消化,所以最終會安全通過有幸一飽口福者的消化道。圖/pexels

在地面上,圓形的巨型馬勃(Calvatia gigantea)子實體保護著數以百萬在內部熟成的孢子。有趣的是,只要戳一下成熟的馬勃,它就會噴出一股煙霧狀的孢子粉,讓風帶走飄散的孢子。

生長在糞便之中的水玉黴菌屬(Pilobolus)真菌,藉由分泌水分充滿泡囊增加壓力,最後像水槍一樣排射出泡囊頂部的孢子囊。有研究經計算發現,孢子囊能以至少 20,000 g (重力)的速率被噴射出去。相較之下,訓練有素的美國國家航空暨太空總署(NASA)太空人在太空船中穿著抗重力服(G-Suit)所承受的重力是 3 g ,而子彈是以 9,000 g 的加速度行進的。

生長在糞便之中的水玉黴菌屬真菌,藉由分泌水分充滿泡囊增加壓力,最後像水槍一樣排射出泡囊頂部的孢子囊。圖/wikipedia

還有能在黑暗中發光的真菌,光線會吸引昆蟲將它們的孢子散布到森林底層。例如,加德納臍菇(Neonothopanus gardneri,俗稱椰子花)就受到晝夜節律的調節,在夜間會發出明亮的光。 2所有這些演化而來的調整,都是為了確保繁殖能夠延續。

為菌絲找到一個家

當孢子落在一個溫度適中、靠近食物和水的地方時,它就會萌芽。孢子經由細胞壁吸收水分,並長出一種稱為菌絲的線狀管。當菌絲在營養基質上生長,就會分支出更多菌絲並形成一條細線。原本的菌絲繼續利用可能是木頭、昆蟲或土壤的基質,由尖端處長出更多菌絲。菌絲間開始融合相連,形成一個相互連接、被稱為菌絲體的物質。

-----廣告,請繼續往下閱讀-----
當孢子落在一個溫度適中、靠近食物和水的地方時,它就會萌芽。圖/wikipedia

每條菌絲的生長都結合了物理力量和化學策略。菌絲會分泌出作用相當於強力消化酸的酵素來分解物質。這個分泌酵素的作用,讓真菌能穿透最堅硬的基質:先將營養物質萃取出來,再經由菌絲體吸收。就像我們唾液中的酵素一樣,很快就可以將口中的麵包變成濕糊狀。

數英里的菌絲體,也許再來一朵菇

菌絲體如同漣漪一般,從孢子萌芽之處輻射向外生長。附近有營養物質出現時,菌絲體就會以圓形的方式使其表面積最大化,朝營養來源方向生長。當一個區域的食物來源耗盡,菌絲體中心處的舊菌絲就會被自己消化掉。殘存在被消化舊菌絲當中的可用資源,則會被重新傳送到菌絲體最外圈,供生長正旺盛的菌絲所用。

最後,菌絲體會長成一個廣大的空心環,也就是有時我們在草地上看見的「仙女環」。隨著資源被重新傳送到菌絲體生長的外緣,中心會逐漸消失,環的周長則逐漸增加。只要有養分和水,菌絲體就可以持續以這種方式不斷地生長下去。

菌絲體會長成一個廣大的空心環,也就是有時我們在草地上看見的「仙女環」。圖/wikipedia

在此階段,除了酵母菌以外的真菌就能由菌絲形成孢子,進行無性生殖。黴菌、銹病和粉狀黴菌等微型真菌總是以這種方式繁殖,例如麵包上所見的黴菌黑點就含有超過五萬個孢子。

-----廣告,請繼續往下閱讀-----

然而,屬於單細胞微型真菌的酵母菌,則採取不同於絲狀真菌的方式進行無性生殖。酵母菌利用分裂產生複製體進行無性生殖,雖然這種方法很有效率,但卻因此錯過了可以經由有性生殖確保遺傳多樣性的樂趣。3

除了透過無性生殖的方式繁殖,若環境條件惡劣(通常情況就是這樣),大型真菌也可以進行有性生殖。當兩個有性生殖相容的菌絲體相遇,它們就會進行融合並形成更大的團塊。

融合後已經具備遺傳多樣性的新菌絲體,等待著合適的環境條件到來,就會聚集它的菌絲、吸收水分膨脹,並形成被稱為原基(primordium)的菇蕾。幾天後,原基逐漸伸長菌柄,將菌傘推出基質表面。最後,菌傘打開就變成了一個完全成熟的菇。菇類的顏色、質地和形狀會因種類而異。

最後,菌傘打開就變成了一個完全成熟的菇。菇類的顏色、質地和形狀會因種類而異。圖/unsplash

根據菇類產生和釋放孢子的方式,可以將大型真菌分成兩群:一群是在封閉囊內產生孢子的子囊菌(asomycota),另一群是從菌褶中形成並釋放孢子的擔子菌(basidiomycota)。擔子菌的菌褶有一層菌膜保護,隨著菇的成熟,該菌膜就會剝落。

-----廣告,請繼續往下閱讀-----

菇的本身可以說就是一個慶典,慶祝擁有數萬億待釋放新世代真菌(孢子)的出現。孢子將再次進入那已經持續循環數十億年的過程之中。自然不會多愁善感,所以慶典終將結束;菇類在完成產生孢子的工作之後,就會開始腐爛消失。

菇的本身可以說就是一個慶典,菇類的出現是真菌生命循環的最美麗時刻。圖/unsplash

它們已經達成自然所交付的任務,而且也不吝讓我們一窺正大自然發自內在的美。菇類的出現是真菌生命循環的最美麗時刻,也許因為這樣,菇類才會如此受到歡迎。

註解

  1. Matthew Phelan, ‘Why fungi adapt so well to life in space’, Scienceline, 7 March 2018, . ↩︎
  2. Anderson G Oliveira, Cassius V Stevani, Hans E Waldenmaier, Vadim Viviani Jillian M Emerson, Jennifer J Loros and Jay C Dunlap, ‘Circadian control sheds light on fungal bioluminescence’, Current Biology, vol. 25, issue 7, 2015, . ↩︎
  3. 譯注:酵母菌也會進行有性生殖,遺傳物質亦會重新洗牌。 ↩︎

——本文摘自《真菌大未來:不斷改變世界樣貌的全能生物,從食品、醫藥、建築、環保到迷幻》,2023 年 12 月,積木文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

0

2
0

文字

分享

0
2
0
一場意外,發現神奇的醣結合蛋白——半乳糖凝集素與劉扶東
研之有物│中央研究院_96
・2023/04/17 ・6037字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文/陳其暐
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

神奇的醣結合蛋白

半乳糖凝集素(galectin)是什麼呢?它是一種醣結合蛋白(carbohydrate-binding protein),有許多不同的家族成員,例如半乳糖凝集素 -3、-8 及 -9 等等。研究發現,當人體細胞遇到外來有害物質,包括細菌或病毒時,除了促進吞噬作用等先天免疫反應之外,半乳糖凝集素會快速聚集到被這些物質破壞的胞器上,與裸露的醣分子結合。同時半乳糖凝集素還會結合與免疫相關的細胞內各種蛋白質,影響細胞反應,例如消除病菌。

中央研究院「研之有物」專訪院內的前任副院長,現為生物醫學科學研究所的通信研究員劉扶東院士,劉院士是研究半乳糖凝集素的專家,他將和我們分享半乳糖凝集素的故事。

劉扶東院士談論半乳糖凝集素。圖/研之有物

「最讓人挫折的地方,也是最令人興奮的地方。」劉扶東如此形容他的研究。

-----廣告,請繼續往下閱讀-----

劉扶東描述那些從研究半乳糖凝集素中所發生的故事,一一告訴我們許多半乳糖凝集素的發現過程,以及中途遇到的種種挑戰。即使他第一次發現半乳糖凝集素的時刻距今已有 30 多年,他依然可以細數研究過程中的各種轉折。特別的是,半乳糖凝集素的發現完全是一場意外,沒想到竟一路成為劉扶東最具標誌性的研究主題。

「半乳糖凝集素是什麼?」對於這個問題,科學家已有明確的定義:它是一種醣結合蛋白(carbohydrate-binding protein),顧名思義,這種蛋白質都具有至少一個醣類辨識區塊(carbohydrate recognition domain)可以結合在醣分子上的 β-半乳糖苷(β-galactose)。

可是若你接著問,「半乳糖凝集素有什麼功能?」劉扶東說,這個問題可能一整天都談不完,甚至他會說,半乳糖凝集素相當複雜,還有很多我們不知道的地方。

但這些未知的答案並沒有阻擋他繼續深入研究半乳糖凝集素,他還希望藉由分享更多半乳糖凝集素的研究成果,以此激發更多人投入這塊領域。一如他當年曲折的際遇。

-----廣告,請繼續往下閱讀-----

幸運的發現

中研院前任副院長、現為生醫所通信研究員的劉扶東,同時擁有多重身分——教授、科學家,及醫師。早在「跨領域」這個名詞蔚為風潮之前,劉扶東就在化學、生物學,接著到免疫學、醣科學、醫學研究等領域累積豐富的研究成果。劉扶東之所以能在多種領域自在轉換,或許從求學時期開始便可見端倪。

劉扶東回憶,由於當年他從成功高中畢業時成績很好,得以保送至臺大化學系。大三念了生物化學之後,開始對生物產生興趣。1970 年,劉扶東從化學系畢業,和許多同學一樣選擇出國念書。可能是因為芝加哥大學特別喜歡臺大化學系的畢業生,劉扶東順利進入該大學的研究所深造。

進入芝加哥大學後,他以化學為基礎,跟著指導教授涉略生物相關的題目,僅僅四年就取得博士學位,接著在伊利諾大學化學系擔任研究員,一步一步朝生物領域發展。後來在指導教授的引薦下,得以前往斯克里普斯研究院(The Scripps Research Institute),從事免疫相關的研究。

在 Scripps 研究院期間,劉扶東對過敏反應產生興趣,而過敏反應的重要媒介之一是免疫球蛋白 E(IgE),於是他便決定探索 IgE 的一個重要受體。當時恰好碰上基因重組技術(Recombinant DNA Technology)出現,科學家紛紛採用這種技術來表現特定基因片段,藉此製造出特定蛋白質。

-----廣告,請繼續往下閱讀-----

劉扶東也使用了基因重組技術來嘗試選殖出(clone)IgE 受體,結果沒有成功,卻發現另一種蛋白質,會結合 IgE 上的半乳糖。後來,這蛋白質就被命名為半乳糖凝集素-3。

半乳糖凝集素的示意圖,大致可以分為三大類,原型、嵌合型和串聯重複型,三者都具有至少一個醣類辨識區塊。其中半乳糖凝集素-3 是屬於嵌合型,保留了一個可以結合更多分子的空位(N-Terminal)。圖/研之有物、林威翰、陳宏霖

猶如一場賭注

過往,科學家就發現過凝集素,劉扶東舉例,植物體內就含有凝集素,例如植物血凝素(phytohaemagglutinin);從流行性感冒病毒(influenza)表面則可找到血球凝集素(hemagglutinin),讓病毒得以附著於動物細胞上。

而會與醣類結合且來自動物的蛋白質,其實也有先例可循,例如在 1980 年代發現的選擇素(selectin)家族屬於一種細胞黏附分子,會參與發炎反應,促進白血球與血管內皮細胞的交互作用。還有一類稱為唾液酸結合蛋白(siglec)的家族,會調控免疫細胞的活化或抑制。

至於半乳糖凝集素,科學家陸續找到一種、兩種、三種……至今已發現有 15 種半乳糖凝集素,分布於人體的各種細胞之中,是一個大的家族。

-----廣告,請繼續往下閱讀-----

不同半乳糖凝集素之間,大約僅有 40% 的相似度,之所以隸屬同個家族,是因為它們都具有某段特定序列,而且都會結合半乳糖。

可是對於 30 年前的劉扶東而言,一切都是未知,尤其當時他在免疫領域已有成果,此刻要轉而花費心力在一個全新的領域,猶如一場賭注。

為了找出半乳糖凝集素在生物體的角色,他們便將半乳糖凝集素加到生物樣本中,看見細胞會因此凝集,便認定這就是半乳糖凝集素的功能。然而,不久後劉扶東就發現,這件事可能沒有想像中那麼簡單。

他舉例,「把植物裡的凝集素,加到紅血球之中,紅血球就會被凝集起來,可是這是不是它的功能?不是,因為植物裡面沒有紅血球。」他接著說,半乳糖凝集素沒有跨膜結構域(transmembranedomain),不會鑲嵌在細胞膜上;而且不帶有訊息序列(signal sequence),無法透過高基氏體運送到細胞外。

-----廣告,請繼續往下閱讀-----

絕大部分的半乳糖凝集素都會存在於細胞質或細胞核中。

因此劉扶東認為,關鍵的問題應該是:「內源性半乳糖凝集素的功用是什麼?是不是有在細胞裡面的功用?」

絕大部分的半乳糖凝集素都會存在於細胞質或細胞核中。上圖為動物細胞結構示意圖,最外層是細胞膜,中間橘紅色核心是細胞核,兩者之間的膠狀質地就是細胞質。細胞核外面淡黃色網狀結構是內質網,深藍色層狀結構是高基氏體,中間一顆一顆小小的橢圓膠囊是粒線體。圖/iStock

首次發現內源性功能

劉扶東認為,半乳糖凝集素的成員眾多,在細胞裡必定有相當的重要性。但唯一證明的方法,就是透過不斷的實驗。在探求解答的過程中,他沒有駐足,「我一直在思考,怎麼樣能做得更好?」

他不斷尋找讓自己成長的機會。在 Scripps 研究院內,有許多研究者從事醫學研究,加上對於過敏、免疫反應的興趣,激發了他念醫學院的動力。因此當他得知邁阿密大學提供了一個兩年即可取得醫學學位的方案,便毅然地前往就讀。他描述,要在極短的時間內讀完所有基礎及臨床醫學學科,壓力相當大。

但他依然保持熱誠,唸完學科後,他又花了四年做實習醫師及到皮膚科做住院醫師。同時,他並沒有放棄原本的研究項目,在念醫學院時他定期從邁阿密到聖地牙哥兩地奔波。而做住院醫師時也在 Scripps 研究院繼續經營實驗室。最後,他成功取得皮膚科的專科醫師執照,之後前往加州大學戴維斯分校醫學院皮膚系擔任教授兼主任。

-----廣告,請繼續往下閱讀-----

同一時期,劉扶東的實驗室在半乳糖凝集素的研究上也取得突破。1996 年,他們成為第一個找到半乳糖凝集素內源性功能的團隊,他們發現半乳糖凝集素-3 會抑制 T 細胞的凋亡。其他科學家的研究也發現,「心衰竭的病人,血液循環裡的半乳糖凝集素-3 會增加。」這種現象或許就可以做為臨床檢測的因子,來判斷受試者是否可能患有心衰竭。

另外,劉扶東也利用基因剔除鼠(knockout mice,意指小鼠的特定基因被破壞而無法表現)來觀察缺少特定種類的半乳糖凝集素會有什麼反應,進而驗證半乳糖凝集素的重要性與疾病模式。

他發現,剔除半乳糖凝集素-12 基因的雌鼠會變瘦,而半乳糖凝集素-12 主要便是在脂肪細胞中表現,具有抑制脂肪細胞的脂肪分解功能。他說,「做這塊領域,要一直學習新的東西。」原本做免疫的他,對脂肪細胞非常陌生,幸好團隊中的研究人員有興趣持續鑽研,同時與加州大學戴維斯分校的其他專家合作,才能夠找出隱藏其中的故事。

在加州大學戴維斯分校待了近十年後,劉扶東決定回臺貢獻所學,接任中央研究院生物醫學科學研究所所長,開始在院內推動免疫、醣科學等領域,也持續研究半乳糖凝集素。

-----廣告,請繼續往下閱讀-----

劉扶東與團隊找出了半乳糖凝集素-7 與乾癬之間的關聯。乾癬是一種由免疫失調所導致的慢性皮膚發炎,身上會反覆長出紅色斑塊,約有 2% 人口患有這種病症。他們發現,半乳糖凝集素-7 在乾癬患者的皮膚中表現較少。而半乳糖凝集素-7 具有抑制角質形成細胞(keratinocyte)增生的功能。

半乳糖凝集素-7 的蛋白質結構。劉扶東院士發現半乳糖凝集素-7 具有抑制「角質形成細胞」增生的功能。圖/Wikipedia

持續探索未知

劉扶東不斷透過研究探索半乳糖凝集素的作用機制,雖然每一步都得花費不少時間,但發表成果後,「這些研究成果得到認可,就覺得很有意義。」分享故事的過程中,也為他帶來許多樂趣。

他解釋,雖然半乳糖凝集素是一種醣結合蛋白,但它不必與醣結合,也能夠參與細胞內的各種生化反應,像是與細胞內的調控因子作用,促進激素的製造。甚至也可能與疾病機制有關,例如,半乳糖凝集素-1 在許多癌症中會大量表現,讓癌細胞可以規避免疫反應;半乳糖凝集素-3 在淋巴瘤、肝癌細胞中的表現量會升高,讓癌細胞存活更久。

另外,在患有中風、神經退化疾病或多發性硬化症的病患大腦中也發現高濃度的半乳糖凝集素-3,若是抑制其表現,就可以減緩發炎反應,進而改善病程。

那麼,半乳糖凝集素會在細胞內與醣結合產生功能嗎?劉扶東解釋,醣蛋白一般只會出現在胞器內或細胞膜表面上,因此半乳糖凝集素「通常」沒有機會與醣結合。

然而,有學者發現,胞器或胞內體在某些情況下會破裂,此時胞器內部的醣就會裸露,讓半乳糖凝集素得以結合上去,誘發細胞的自噬作用(autophagy),讓受損胞器交由溶酶體降解。

甚至,有些細胞機制會受到這些裸露的醣與半乳糖凝集素的結合所調控,產生細胞凋亡、發炎反應,因而形成疾病。劉扶東團隊也持續發現半乳糖凝集素-3 與 -8 在上述機制中的功能。最近更進一步發現,半乳糖凝集素在細胞内可與侵入細胞的病原體上的醣結合,進一步影響細胞對抗病原體的反應。

上圖為半乳糖凝集素在細胞內機制的示意圖。左邊是細胞表面醣化修飾的形成過程,右邊則是半乳糖凝集素對應外來有害物質的機制,當核內體的膜破裂時,裡面的醣分子得以裸露,半乳糖凝集素快速聚集,並與這些醣分子結合,同時也會結合更多蛋白質幫手,一起設法解決外來有害物質。圖/研之有物、林威翰、陳宏霖
上圖為李斯特菌進入細胞後,半乳糖凝集素-3 快速聚集反應,並由免疫系統排除的過程。半乳糖凝集素-3 為綠色,李斯特菌為紅色,溶酶體為藍色,其中的第 64 分鐘到第 79 分鐘,半乳糖凝集素-3 快速聚集。圖/Glycobiology

至於半乳糖凝集素在細胞「外」的功能?對於這個問題,劉扶東坦承,「雖然知道半乳糖凝集素這麼久了,半乳糖凝集素在人體細胞外面有什麼功能,我們真的不知道,不過已有無數的文章有敍述在試管内(in vitro)看到的功能。」半乳糖凝集素在少數情況下會離開細胞,並可能與細胞膜或其他蛋白質上的醣類結合,然而細胞外的半乳糖凝集素在活體內實際去了哪裡,產生了什麼作用,還有待科學進一步探究。

如果可以在細胞外專一追蹤半乳糖凝集素家族,對於生醫藥物發展會相當有用,但是目前的科學技術還無法做到。

創造更多突破

劉扶東強調,半乳糖凝集素的內源性功能已有許多研究成果證實。時至今日,若在期刊網站搜尋,可以在全世界找到近萬篇與半乳糖凝集素有關的科學文獻,每年的相關研究多到劉扶東難以一一追蹤。

如此豐富的研究成果,已成為臨床醫藥的新發展方向。目前已有生技公司著手研發半乳糖凝集素抑制劑(inhibitor),來抑制細胞不正常的發炎反應,例如瑞典公司 Galecto 即以抑制半乳糖凝集素-3 為目標,已研發出小分子藥物(galectin-3 inhibitor, GB0139, formerly TD139)來對抗特發性肺纖維化(idiopathic pulmonary fibrosis)並已得到歐洲藥品管理區(EMA)及美國食品藥物管理局(FDA)核准。

除了半乳糖凝集素-3,劉扶東認為,半乳糖凝集素-7、半乳糖凝集素-8、半乳糖凝集素-12 都有可能進一步發展藥物。若能組成專業團隊,加上跨領域合作,結合不同領域的知識與技術,就能彼此加成,找到更多突破機會。

許多科學創新,不單單只靠一個人就能達成,「我很幸運,實驗室裡有很多優秀的人才一起研究,也和許多團隊合作。」劉扶東期待能夠在臺灣促成更多的合作機會,讓不同實驗室之間結盟,就能凝聚成更大的力量。

延伸閱讀

  1. Liu, F. T., & Stowell, S. R. (2023). The role of galectins in immunity and infectionNature Reviews Immunology
  2. Cummings, R. D., Liu, F.-T., Rabinovich, G. A., Stowell, S. R., & Vasta, G. R.(2022). Chapter 36 Galectins. In Essentials of Glycobiology (4th ed.). Cold Spring Harbor Laboratory Press. 
  3. Wang, S., Hung, Y., Tsao, C., Chiang, C., Teoh, P., Chiang, M., . . . Liu, F.-T. & Chen, H. (2022). Galectin-3 facilitates cell-to-cell HIV-1 transmission by altering the composition of membrane lipid rafts in CD4 T cellsGlycobiology, 32(9), 760–777.
  4. Hong, M.-H., Weng, I.-C., Li, F.-Y., Lin, W.-H., & Liu, F.-T. (2021). Intracellular galectins sense cytosolically exposed glycans as danger and mediate cellular responsesJournal of Biomedical Science, 28(1). 
  5. Lo, T. H., Chen, H. L., Yao, C. I., Weng, I. C., Li, C. S., Huang, C. C., Chen, N. J., Lin, C. H., & Liu, F. T. (2021). Galectin-3 promotes noncanonical inflammasome activation through intracellular binding to lipopolysaccharide glycansPNAS, 118(30). 
  6. Weng, I.-C., Chen, H.-L., Lo, T.-H., Lin, W.-H., . . . Liu, F.-T. (2018). Cytosolic galectin-3 and -8 regulate antibacterial autophagy through differential recognition of host glycans on damaged phagosomesGlycobiology, 28(6), 392–405. 
  7. Johannes, L., Jacob, R., & Leffler, H. (2018). Galectins at a glanceJournal of Cell Science, 131(9). 
  8. 中央研究院(2023)。腸細胞內辨識細菌表面聚糖的分子為控制腸道感染的重要關鍵,中研院生物醫學科學研究所。
  9. 慈濟大學醫學院(2022)。《大師傳習系列之十》劉扶東院士講座,YouTube。
  10. 興大通識中心(2020)。疾病治療新展望:聚焦醣科學-劉扶東院士,YouTube。
  11. 黃彥維、黃耿祥、楊智惠、劉潔(2020)。醣分子科學新知(二):半乳糖凝集素與腫瘤治療,科技大觀園。 
  12. 中央研究院(2017)。免疫療法抗癌新曙光|生物醫學科學研究所 劉扶東院士,YouTube。
  13. 中央研究院(2017)。發炎反應與疾病―亦敵亦友的微妙關係|生物醫學科學研究所 劉扶東院士,YouTube。
-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3617 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook