Loading [MathJax]/extensions/tex2jax.js

0

0
3

文字

分享

0
0
3

2016諾貝爾生醫獎:細胞自噬和大隅良典的酵母菌

李紀潔、羅鴻
・2016/10/04 ・2032字 ・閱讀時間約 4 分鐘 ・SR值 563 ・九年級

-----廣告,請繼續往下閱讀-----

編譯/李紀潔、羅鴻|陽明大學基因體科學研究所畢業生

2016諾貝爾獎生醫獎

2016 年諾貝爾獎隆重登場,這一次生理醫學獎頒給發現「細胞自噬」機制(autophagy)的大隅良典(Yoshinori Ohsumi)教授。究竟東京工業大學(Tokyo Institute of Technology)的大隅良典怎麼發現這樣的機制,而這個機制又有什麼意義,且待我們一一說明白。

把自己回收再利用也是一件重要的事

簡單來說,「細胞自噬」是細胞對於自己的胞器進行分解、回收的機制。它的英文 Autophagy 來自於希臘語的「自我(self-)」和「吃(eat)」兩字的結合,因此也可以說 Autophagy 就是「自食」的過程。

或許你覺得很奇怪,細胞是有沒有這麼餓,為什麼非要自己吃自己?但其實這樣的分解過程對於細胞的生存也是一件很重要的事情。

-----廣告,請繼續往下閱讀-----

在 1950 年中期,科學家發現一個新的特化胞器內含可以分解蛋白質,醣類和脂肪的酵素。在 1960 年代,科學家進一步發現這是細胞內部會用自己的膜,捲縮成小型袋狀囊泡,並將細胞自己的一小部份胞器包裹其內。現今我們稱這種袋狀物為溶酶體(lysosome),而溶酶體內所含的分解酵素會將胞器分解、摧毀,而這些物質同時被細胞回收再行利用。

細胞自噬過程示意圖。圖/By Cheung and Ip - Molecular Brain, Biomed Central, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=10014352
細胞自噬過程示意圖。圖/By Cheung and Ip – Molecular Brain, Biomed Central, CC BY 3.0, wikimedia commons

只不過,科學家就開始懷疑這些胞器要被送到特定的區域,勢必經過一些運送過程,因此他們推論細胞擁有將傳遞大型物質到溶酶體內的機制。透過生化分析及顯微鏡的觀察,科學家證實有一種新的囊泡可以將細胞內的物質送達溶酶體,讓它們被降解。研究這個機制的比利時科學家克里斯汀.德.迪夫(Christian de Duve)命名此囊泡為細胞自噬小體(autophagosome),也將這個過程命名為細胞自噬(autophagy),他也因此在 1974 年獲頒諾貝爾生醫獎。

到了 1970 及 80 年代科學家專注於了解另一套蛋白質降解的系統——蛋白酶體(proteasome)。阿龍.切哈諾沃(Aaron Ciechanover)、阿夫拉姆.赫什科(Avram Hershko)及歐文.羅斯(Irwin Rose)因發現泛素化蛋白質降解(ubiquitination)而獲得 2004 年諾貝爾化學獎。雖然蛋白酶體能有效的依序降解單一的蛋白質,但此現象仍無法解釋細胞如何清除巨大的蛋白質複合體和壞掉的胞器。

細胞自噬是否為這個問題的關鍵答案?如果是,其背後的機制又是什麼呢?

-----廣告,請繼續往下閱讀-----

大隅良典與他的酵母菌

圖/By 大臣官房人事課 - 平成27年度 文化功労者:文部科学省, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=52028935
圖/By 大臣官房人事課 – 平成27年度 文化功労者:文部科学省, CC BY 4.0, wikimedia commons

這時就得請到 2016 年的諾貝爾獎得主大隅良典教授,以及重要的研究主角酵母菌出場了!大隅良典教授在 1988 年他開始經營實驗室後,專注在研究酵母菌中負責降解蛋白質的液泡,而這個機制就相當於人體中的溶酶體。對於研究人員來說,比人體細胞更容易操作的酵母菌,時常被用來模擬人類的細胞,藉此找出參與複雜細胞途徑的基因。

But,人生最怕遇到這個 but,大隅良典雖然想用酵母菌來幫助他了解細胞自噬的過程,不過他卻發現酵母菌太小了,小到它們的內部構造不易在顯微鏡下觀察,根本無法確定細胞自噬是否存在此生物中。

他想來想去,如果不能直接觀察,那麼有沒有其他方法能間接證明細胞中真的有降解的機制?終於他想到一個方法——如果他能阻止降解,當細胞自噬被啟動時,細胞自噬小體便會累積在液泡內,便可利用顯微鏡來觀察。於是,他培養了一群缺乏液泡降解酵素的突變酵母菌,同時利用飢餓來引發細胞自噬的產生。

成果十分驚人!液泡在幾個小時內充滿了沒有被降解的小囊泡,而這些囊泡們就是細胞自噬小體。大隅良典的實驗成功證明了酵母菌內存在細胞自噬,更重要的是,他現在擁有可以分析並找出細胞自噬關鍵基因的方法了,並 1992 年發表了這個重大的突破。

-----廣告,請繼續往下閱讀-----

在酵母菌中分析了細胞自噬的機制後,仍有個問題存在。其他的生物體是否也有類似的機制去調控呢?很快地,我們便知道了在我們的細胞中存在著幾乎一致的機制。而且我們現在有了可以探討在人類中細胞自噬重要性的工具。

如果沒有細胞自噬,可能就沒有這些研究

多虧了大隅良典和其他人的研究,我們現在知道細胞自噬利用清除和回收細胞內的物質機制,去調控重要的生理功能。細胞自噬快速地提供細胞能量來源和提供新合成所需的材料,因此在飢餓或是其他壓力底下,細胞自噬顯得格外重要。除此之外,細胞自噬也能夠清除入侵細胞的細菌和病毒;參與在發育和細胞分化中。細胞也能利用這樣的機制來清除老化時受損的胞器與蛋白質,是細胞品質管控的中樞。

細胞自噬若受到干擾,可能會導致帕金森氏症、第二型糖尿病和其他在老年好發的疾病。細胞自噬基因的突變亦可能會造成遺傳疾病。而不正常的細胞自噬機制也與癌症有關。如今有許多研究正在研發以細胞自噬為標的的藥物以對抗許多的疾病。

細胞自噬發現至今 50 年了,但其在生醫領域的重要性奠定於大隅良典在 1990 年代時期的重大突破。恭喜大隅良典獲得了 2016 年的諾貝爾生醫獎。

-----廣告,請繼續往下閱讀-----

本文編譯自諾貝爾獎官網:

-----廣告,請繼續往下閱讀-----
文章難易度
李紀潔、羅鴻
13 篇文章 ・ 3 位粉絲
來自陽明大學基科所的畢業生,喜歡神經科學、遺傳和演化的企鵝狂熱二人組。本來對科普寫作毫無興趣,在大學老師強烈遊說之下仍然無動於衷,畢業後卻意外開始在泛科學寫科普文章。興趣分別是畫畫和魔術方塊。目前兩人都在德國攻讀神經科學博士,分別專攻老化和神經再生、電生理和動物行為。

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
諾貝爾得獎「助攻王」 :秀麗隱桿線蟲
顯微觀點_96
・2025/02/25 ・2852字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖/顯微觀點

科學界的重大盛事-諾貝爾獎,已在 10 月揭曉。今(2024)年生醫獎頒發給維克托.安布羅斯(Victor Ambros)和加里.魯夫昆(Gary Ruvkun),他們以「發現 microRNA 及其在轉錄後基因調控中的作用」獲肯定得到桂冠。而這項重大發現的背後,一種叫做「秀麗隱桿線蟲」(C. elegans)的小蟲子居功厥偉。

生醫獎背後大功臣

安布羅斯和魯夫昆對於基因如何受到調控,如何因活化時間不同而確保各類型細胞在正確時間點發育的問題很感興趣。因此他們研究因基因活化出現問題的兩種線蟲突變株:lin-4 和 lin-14,以瞭解當中的機制。

一開始,安布羅斯先發現 lin-4 基因似乎是 lin-14 基因的負調節因子,但 lin-14 的活性是怎麼被阻斷的,仍然是個謎。因此他系統性地找尋 lin-4 在基因體中的位置與基因序列,也因此意外發現 lin-4 基因只會產生一種異常短、不足以合成蛋白質的核醣核酸分子。

-----廣告,請繼續往下閱讀-----

同一時間,魯夫昆在麻州總醫院和哈佛醫學院新成立的實驗室研究 lin-14 基因的調控。魯夫昆發現 lin-4 抑制的並不是 lin-14 的產生,而是抑制 lin-14 基因產生蛋白質,且發生在基因表現過程的後期。實驗也顯示要抑制 lin-4,必須要有 lin-14 訊息核醣核酸(mRNA)中的一個片段。

安布羅斯和魯夫昆比較了各自的實驗成果,找到突破性的發現:lin-4 部分序列與 lin-14 訊息核醣核酸的關鍵片段中的序列互補。他們進一步實驗,顯示 lin-4 微型核醣核酸(microRNA)透過與 lin-14 訊息核醣核酸中的互補序列結合,來抑制 lin-14 轉譯,進而阻斷 lin-14 蛋白質的產生,也因此揭開 microRNA 介導的基因調控新原理。

這項結果被發表在 1993 年的《細胞》期刊的兩篇文章上。但一開始這樣的基因調控機制被認為是秀麗隱桿線蟲所特有,而不受重視。直到 2000 年,魯夫昆的研究團隊發現了另一種由 let-7基因編碼的 microRNA,科學界的態度才發生變化;因為 let-7 基因高度保存在整個動物界中。

接下來的幾年裡,數百種不同的 microRNA 被鑑定出來,微型核醣核酸的基因調控在多細胞生物中普遍存在;而基因調控若失常,則可能導致糖尿病、癌症或自體免疫疾病。

-----廣告,請繼續往下閱讀-----

這不是秀麗隱桿線蟲第一次「助攻得獎」。

(A) 秀麗隱桿線蟲是了解不同細胞類型如何發育的有用模型生物。 (B) 安布羅斯和魯夫昆研究了 lin-4 和 lin-14 突變體。  安布羅斯已證明 lin-4 似乎是 lin-14 的負調節因子。
(A) 秀麗隱桿線蟲是了解不同細胞類型如何發育的有用模型生物。 (B) 安布羅斯和魯夫昆研究了 lin-4 和 lin-14 突變體。 安布羅斯已證明 lin-4 似乎是 lin-14 的負調節因子。圖/諾貝爾生醫獎新聞稿

成為助攻王的關鍵

2002 年西德尼.布瑞納(Sydney Brenner)、約翰.蘇爾斯頓(John Sulston)和羅伯特.霍維茨(Robert Horvitz)便是從秀麗隱桿線蟲的研究「發現器官發育和計畫性細胞死亡的遺傳調控機理」,進而獲得該年諾貝爾生醫獎。值得一提的是,今年的兩位得主都曾是霍維茨實驗室的博士後研究員。

除此之外,2006 年諾貝爾生理醫學獎也頒給研究線蟲的美國科學家安德魯.法厄(Andrew Zachary Fire)和 克雷格.梅洛(Craig Cameron Mello),以表彰他們「發現 RNA 干擾—雙鏈 RNA 引發的沉默現象」。甚至馬丁.查菲(Martin Chalfie)也利用秀麗隱桿線蟲的觸感接受器神經元「發現並改造綠色螢光蛋白(GFP)」獲得 2008 年諾貝爾化學獎。

秀麗隱桿線蟲為何能成為諾貝爾的「助攻王」呢?布瑞納曾在他的論文中提到:「線蟲適合做基因研究,並且其神經系統可以被精準確定。」他在 1963 年提出以秀麗隱桿線蟲作為模式生物,並於 1974 年發表其在發育生物學和神經科學的成果。

-----廣告,請繼續往下閱讀-----

秀麗隱桿線蟲是第一種完成全基因組定序的多細胞生物。加上體積小、成蟲約長1公釐,以及透明且易於獲取的遺傳物質,使其成為絕佳的模式生物。

其在室溫下大約三天可以從卵生長為可受精的成蟲,在實驗室中以大腸桿菌為食,易於大量培養。並且解凍之後仍能存活,因此適合長時間儲存。加上每隻成蟲可產生約 300 隻後代,適合作遺傳學研究。

易於觀察也是秀麗隱桿線蟲作為絕佳模式生物的關鍵因素。由於細胞譜系固定,研究人員可以使用微分干涉顯微鏡(DIC)觀察每一個細胞的發展,甚至在在螢光蛋白出現之前,就有從受精卵到成體完整細胞譜系的描述。

在線蟲研究的多個工作步驟中,立體、複式或共軛焦顯微鏡都是常見的工具,以符合不同實驗要求。且隨著顯微技術的發展,秀麗隱桿線蟲在發育生物學中的應用和研究也更加多元。

-----廣告,請繼續往下閱讀-----

隨技術發展 研究面向更多元

在挑選合適的線蟲並準備進行遺傳或生化分析的「採蟲」階段,通常會使用末端黏有睫毛的木棍,在立體顯微鏡下關、挑選。然後使用倒立顯微鏡以顯微注射對線蟲性腺進行基因改造。

螢光蛋白(FP)是在線蟲中進行分子和細胞行為研究的核心工具,螢光顯微技術廣泛用於線蟲研究,例如 GFP 及其改進版本(如mScarlet和mCherry)常用於標記和追蹤蛋白質的動態過程。

螢光蛋白也可使用於研究線蟲的染色體外陣列表現或穩定整合到基因組中。現在則有許多研究者使用 CRISPR(基因編輯)技術,將螢光標記穩定地整合到基因組中,這樣可以精確追蹤特定蛋白在細胞內的表現位置和強度。

層光顯微術(Lightsheet microscopy)則可以在不壓縮樣本的情況下,提供更高的空間和時間解析度,特別適合長期追踪線蟲胚胎發育過程。

-----廣告,請繼續往下閱讀-----

除此之外,因為秀麗隱桿線蟲是截至 2019 年唯一一個完成連接體(connectome,神經元連接)測定的生物體,因此一直以來也常被作為神經科學研究的模式生物。

研究者可利用螢光蛋白(如 GCaMP)來追蹤鈣離子濃度的變化,當鈣離子濃度上升時會發出更強的螢光,再透過螢光強度來分析神經系統在睡眠、運動等各種行為時的活動模式。或是進一步利用轉盤式共軛焦顯微鏡、雙光子顯微鏡,抑或結合更強大的影像分析工具,對神經元活動成像並藉此解讀不同行為背後的神經迴路機制

作為模式生物,秀麗隱桿線蟲因為基因組簡單、細胞譜系固定且神經結構已知,為揭示基因調控、細胞發育、神經行為等生物學問題提供了清晰的研究途徑,在生物學研究中佔有重要地位。

儘管已是諾貝爾獎「助攻王」,相信隨著顯微和基因編輯技術的快速發展,秀麗隱桿線蟲仍能在探索人類疾病模型、藥物篩選及再生醫學等應用領域,引領研究新方向。

-----廣告,請繼續往下閱讀-----

另感謝台灣科技媒體中心(SMC)舉辦諾貝爾獎解析記者會

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
3

文字

分享

0
2
3
每次呼吸都會吸入十個孢子?一朵菇如何形成?無所不在的真菌生命循環!——《真菌大未來》
積木文化
・2024/02/21 ・3532字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

真菌的生命週期

一切始於一顆孢子

孢子是真菌生命週期的開始,也是結束。這些單細胞單元裡,包含著新真菌個體的繁衍密碼。面對無數微生物競爭者和惡劣的環境條件,孢子萌芽的機率極低,因此真菌釋放出數萬億個孢子來提高生存機會。孢子維持在一個暫停於生死之間的狀態,密切留意周遭世界並尋找適合落腳的地方。孢子很微小,無處不在,所以根本無法躲避它們,以我們自己而言,每次的呼吸都會吸入十個孢子。

孢子是真菌生命週期的開始,也是結束。圖/unsplash

被稱為「胚種假說」(Panspermia)的生命起源論甚至認為:生命的藍圖被包裹在一顆孢子當中,並在太空中旅行,在宇宙中尋找適合落腳的家園。儘管對此假說爭論不休,但我們確實知道孢子可以耐受極端溫度、抗輻射,甚至可以在真空狀態的太空中存活。 1988 年,和平號空間站(mir)的俄羅斯太空人就注意到,他們的鈦石英窗外有「東西」在生長,而且正在漸漸「啃穿」鈦石英。後來證實,這個「東西」就是一種真菌。1

就像植物一樣,大多數真菌也都採用「紮根在土壤當中」這種耗時的繁殖方式:它們利用菌絲體生長,或透過孢子飄散到新的棲息地。在渴望繁衍其 DNA 的動力下,有些真菌採取巧妙的策略,確保其孢子在新環境中得以繁殖。

擁有誘人香氣的美食佳餚黑松露(Tuber melanosporum)就是一個很好的例子。這種跟黃金一樣珍貴的真菌生長在地底下,隨著孢子成熟,其所散發出的香氣會吸引動物、松露獵人和來自世界各地的美食家。松露的孢子不易被消化,所以最終會安全通過有幸一飽口福者的消化道;在理想狀況下,孢子應已遠離原來被採集到松露的位置。

-----廣告,請繼續往下閱讀-----
擁有誘人香氣的美食佳餚黑松露就是一個很好的例子,松露的孢子不易被消化,所以最終會安全通過有幸一飽口福者的消化道。圖/pexels

在地面上,圓形的巨型馬勃(Calvatia gigantea)子實體保護著數以百萬在內部熟成的孢子。有趣的是,只要戳一下成熟的馬勃,它就會噴出一股煙霧狀的孢子粉,讓風帶走飄散的孢子。

生長在糞便之中的水玉黴菌屬(Pilobolus)真菌,藉由分泌水分充滿泡囊增加壓力,最後像水槍一樣排射出泡囊頂部的孢子囊。有研究經計算發現,孢子囊能以至少 20,000 g (重力)的速率被噴射出去。相較之下,訓練有素的美國國家航空暨太空總署(NASA)太空人在太空船中穿著抗重力服(G-Suit)所承受的重力是 3 g ,而子彈是以 9,000 g 的加速度行進的。

生長在糞便之中的水玉黴菌屬真菌,藉由分泌水分充滿泡囊增加壓力,最後像水槍一樣排射出泡囊頂部的孢子囊。圖/wikipedia

還有能在黑暗中發光的真菌,光線會吸引昆蟲將它們的孢子散布到森林底層。例如,加德納臍菇(Neonothopanus gardneri,俗稱椰子花)就受到晝夜節律的調節,在夜間會發出明亮的光。 2所有這些演化而來的調整,都是為了確保繁殖能夠延續。

為菌絲找到一個家

當孢子落在一個溫度適中、靠近食物和水的地方時,它就會萌芽。孢子經由細胞壁吸收水分,並長出一種稱為菌絲的線狀管。當菌絲在營養基質上生長,就會分支出更多菌絲並形成一條細線。原本的菌絲繼續利用可能是木頭、昆蟲或土壤的基質,由尖端處長出更多菌絲。菌絲間開始融合相連,形成一個相互連接、被稱為菌絲體的物質。

-----廣告,請繼續往下閱讀-----
當孢子落在一個溫度適中、靠近食物和水的地方時,它就會萌芽。圖/wikipedia

每條菌絲的生長都結合了物理力量和化學策略。菌絲會分泌出作用相當於強力消化酸的酵素來分解物質。這個分泌酵素的作用,讓真菌能穿透最堅硬的基質:先將營養物質萃取出來,再經由菌絲體吸收。就像我們唾液中的酵素一樣,很快就可以將口中的麵包變成濕糊狀。

數英里的菌絲體,也許再來一朵菇

菌絲體如同漣漪一般,從孢子萌芽之處輻射向外生長。附近有營養物質出現時,菌絲體就會以圓形的方式使其表面積最大化,朝營養來源方向生長。當一個區域的食物來源耗盡,菌絲體中心處的舊菌絲就會被自己消化掉。殘存在被消化舊菌絲當中的可用資源,則會被重新傳送到菌絲體最外圈,供生長正旺盛的菌絲所用。

最後,菌絲體會長成一個廣大的空心環,也就是有時我們在草地上看見的「仙女環」。隨著資源被重新傳送到菌絲體生長的外緣,中心會逐漸消失,環的周長則逐漸增加。只要有養分和水,菌絲體就可以持續以這種方式不斷地生長下去。

菌絲體會長成一個廣大的空心環,也就是有時我們在草地上看見的「仙女環」。圖/wikipedia

在此階段,除了酵母菌以外的真菌就能由菌絲形成孢子,進行無性生殖。黴菌、銹病和粉狀黴菌等微型真菌總是以這種方式繁殖,例如麵包上所見的黴菌黑點就含有超過五萬個孢子。

-----廣告,請繼續往下閱讀-----

然而,屬於單細胞微型真菌的酵母菌,則採取不同於絲狀真菌的方式進行無性生殖。酵母菌利用分裂產生複製體進行無性生殖,雖然這種方法很有效率,但卻因此錯過了可以經由有性生殖確保遺傳多樣性的樂趣。3

除了透過無性生殖的方式繁殖,若環境條件惡劣(通常情況就是這樣),大型真菌也可以進行有性生殖。當兩個有性生殖相容的菌絲體相遇,它們就會進行融合並形成更大的團塊。

融合後已經具備遺傳多樣性的新菌絲體,等待著合適的環境條件到來,就會聚集它的菌絲、吸收水分膨脹,並形成被稱為原基(primordium)的菇蕾。幾天後,原基逐漸伸長菌柄,將菌傘推出基質表面。最後,菌傘打開就變成了一個完全成熟的菇。菇類的顏色、質地和形狀會因種類而異。

最後,菌傘打開就變成了一個完全成熟的菇。菇類的顏色、質地和形狀會因種類而異。圖/unsplash

根據菇類產生和釋放孢子的方式,可以將大型真菌分成兩群:一群是在封閉囊內產生孢子的子囊菌(asomycota),另一群是從菌褶中形成並釋放孢子的擔子菌(basidiomycota)。擔子菌的菌褶有一層菌膜保護,隨著菇的成熟,該菌膜就會剝落。

-----廣告,請繼續往下閱讀-----

菇的本身可以說就是一個慶典,慶祝擁有數萬億待釋放新世代真菌(孢子)的出現。孢子將再次進入那已經持續循環數十億年的過程之中。自然不會多愁善感,所以慶典終將結束;菇類在完成產生孢子的工作之後,就會開始腐爛消失。

菇的本身可以說就是一個慶典,菇類的出現是真菌生命循環的最美麗時刻。圖/unsplash

它們已經達成自然所交付的任務,而且也不吝讓我們一窺正大自然發自內在的美。菇類的出現是真菌生命循環的最美麗時刻,也許因為這樣,菇類才會如此受到歡迎。

註解

  1. Matthew Phelan, ‘Why fungi adapt so well to life in space’, Scienceline, 7 March 2018, . ↩︎
  2. Anderson G Oliveira, Cassius V Stevani, Hans E Waldenmaier, Vadim Viviani Jillian M Emerson, Jennifer J Loros and Jay C Dunlap, ‘Circadian control sheds light on fungal bioluminescence’, Current Biology, vol. 25, issue 7, 2015, . ↩︎
  3. 譯注:酵母菌也會進行有性生殖,遺傳物質亦會重新洗牌。 ↩︎

——本文摘自《真菌大未來:不斷改變世界樣貌的全能生物,從食品、醫藥、建築、環保到迷幻》,2023 年 12 月,積木文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----