0

2
0

文字

分享

0
2
0

一場意外,發現神奇的醣結合蛋白——半乳糖凝集素與劉扶東

研之有物│中央研究院_96
・2023/04/17 ・6037字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文/陳其暐
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

神奇的醣結合蛋白

半乳糖凝集素(galectin)是什麼呢?它是一種醣結合蛋白(carbohydrate-binding protein),有許多不同的家族成員,例如半乳糖凝集素 -3、-8 及 -9 等等。研究發現,當人體細胞遇到外來有害物質,包括細菌或病毒時,除了促進吞噬作用等先天免疫反應之外,半乳糖凝集素會快速聚集到被這些物質破壞的胞器上,與裸露的醣分子結合。同時半乳糖凝集素還會結合與免疫相關的細胞內各種蛋白質,影響細胞反應,例如消除病菌。

中央研究院「研之有物」專訪院內的前任副院長,現為生物醫學科學研究所的通信研究員劉扶東院士,劉院士是研究半乳糖凝集素的專家,他將和我們分享半乳糖凝集素的故事。

劉扶東院士談論半乳糖凝集素。圖/研之有物

「最讓人挫折的地方,也是最令人興奮的地方。」劉扶東如此形容他的研究。

-----廣告,請繼續往下閱讀-----

劉扶東描述那些從研究半乳糖凝集素中所發生的故事,一一告訴我們許多半乳糖凝集素的發現過程,以及中途遇到的種種挑戰。即使他第一次發現半乳糖凝集素的時刻距今已有 30 多年,他依然可以細數研究過程中的各種轉折。特別的是,半乳糖凝集素的發現完全是一場意外,沒想到竟一路成為劉扶東最具標誌性的研究主題。

「半乳糖凝集素是什麼?」對於這個問題,科學家已有明確的定義:它是一種醣結合蛋白(carbohydrate-binding protein),顧名思義,這種蛋白質都具有至少一個醣類辨識區塊(carbohydrate recognition domain)可以結合在醣分子上的 β-半乳糖苷(β-galactose)。

可是若你接著問,「半乳糖凝集素有什麼功能?」劉扶東說,這個問題可能一整天都談不完,甚至他會說,半乳糖凝集素相當複雜,還有很多我們不知道的地方。

但這些未知的答案並沒有阻擋他繼續深入研究半乳糖凝集素,他還希望藉由分享更多半乳糖凝集素的研究成果,以此激發更多人投入這塊領域。一如他當年曲折的際遇。

-----廣告,請繼續往下閱讀-----

幸運的發現

中研院前任副院長、現為生醫所通信研究員的劉扶東,同時擁有多重身分——教授、科學家,及醫師。早在「跨領域」這個名詞蔚為風潮之前,劉扶東就在化學、生物學,接著到免疫學、醣科學、醫學研究等領域累積豐富的研究成果。劉扶東之所以能在多種領域自在轉換,或許從求學時期開始便可見端倪。

劉扶東回憶,由於當年他從成功高中畢業時成績很好,得以保送至臺大化學系。大三念了生物化學之後,開始對生物產生興趣。1970 年,劉扶東從化學系畢業,和許多同學一樣選擇出國念書。可能是因為芝加哥大學特別喜歡臺大化學系的畢業生,劉扶東順利進入該大學的研究所深造。

進入芝加哥大學後,他以化學為基礎,跟著指導教授涉略生物相關的題目,僅僅四年就取得博士學位,接著在伊利諾大學化學系擔任研究員,一步一步朝生物領域發展。後來在指導教授的引薦下,得以前往斯克里普斯研究院(The Scripps Research Institute),從事免疫相關的研究。

在 Scripps 研究院期間,劉扶東對過敏反應產生興趣,而過敏反應的重要媒介之一是免疫球蛋白 E(IgE),於是他便決定探索 IgE 的一個重要受體。當時恰好碰上基因重組技術(Recombinant DNA Technology)出現,科學家紛紛採用這種技術來表現特定基因片段,藉此製造出特定蛋白質。

-----廣告,請繼續往下閱讀-----

劉扶東也使用了基因重組技術來嘗試選殖出(clone)IgE 受體,結果沒有成功,卻發現另一種蛋白質,會結合 IgE 上的半乳糖。後來,這蛋白質就被命名為半乳糖凝集素-3。

半乳糖凝集素的示意圖,大致可以分為三大類,原型、嵌合型和串聯重複型,三者都具有至少一個醣類辨識區塊。其中半乳糖凝集素-3 是屬於嵌合型,保留了一個可以結合更多分子的空位(N-Terminal)。圖/研之有物、林威翰、陳宏霖

猶如一場賭注

過往,科學家就發現過凝集素,劉扶東舉例,植物體內就含有凝集素,例如植物血凝素(phytohaemagglutinin);從流行性感冒病毒(influenza)表面則可找到血球凝集素(hemagglutinin),讓病毒得以附著於動物細胞上。

而會與醣類結合且來自動物的蛋白質,其實也有先例可循,例如在 1980 年代發現的選擇素(selectin)家族屬於一種細胞黏附分子,會參與發炎反應,促進白血球與血管內皮細胞的交互作用。還有一類稱為唾液酸結合蛋白(siglec)的家族,會調控免疫細胞的活化或抑制。

至於半乳糖凝集素,科學家陸續找到一種、兩種、三種……至今已發現有 15 種半乳糖凝集素,分布於人體的各種細胞之中,是一個大的家族。

-----廣告,請繼續往下閱讀-----

不同半乳糖凝集素之間,大約僅有 40% 的相似度,之所以隸屬同個家族,是因為它們都具有某段特定序列,而且都會結合半乳糖。

可是對於 30 年前的劉扶東而言,一切都是未知,尤其當時他在免疫領域已有成果,此刻要轉而花費心力在一個全新的領域,猶如一場賭注。

為了找出半乳糖凝集素在生物體的角色,他們便將半乳糖凝集素加到生物樣本中,看見細胞會因此凝集,便認定這就是半乳糖凝集素的功能。然而,不久後劉扶東就發現,這件事可能沒有想像中那麼簡單。

他舉例,「把植物裡的凝集素,加到紅血球之中,紅血球就會被凝集起來,可是這是不是它的功能?不是,因為植物裡面沒有紅血球。」他接著說,半乳糖凝集素沒有跨膜結構域(transmembranedomain),不會鑲嵌在細胞膜上;而且不帶有訊息序列(signal sequence),無法透過高基氏體運送到細胞外。

-----廣告,請繼續往下閱讀-----

絕大部分的半乳糖凝集素都會存在於細胞質或細胞核中。

因此劉扶東認為,關鍵的問題應該是:「內源性半乳糖凝集素的功用是什麼?是不是有在細胞裡面的功用?」

絕大部分的半乳糖凝集素都會存在於細胞質或細胞核中。上圖為動物細胞結構示意圖,最外層是細胞膜,中間橘紅色核心是細胞核,兩者之間的膠狀質地就是細胞質。細胞核外面淡黃色網狀結構是內質網,深藍色層狀結構是高基氏體,中間一顆一顆小小的橢圓膠囊是粒線體。圖/iStock

首次發現內源性功能

劉扶東認為,半乳糖凝集素的成員眾多,在細胞裡必定有相當的重要性。但唯一證明的方法,就是透過不斷的實驗。在探求解答的過程中,他沒有駐足,「我一直在思考,怎麼樣能做得更好?」

他不斷尋找讓自己成長的機會。在 Scripps 研究院內,有許多研究者從事醫學研究,加上對於過敏、免疫反應的興趣,激發了他念醫學院的動力。因此當他得知邁阿密大學提供了一個兩年即可取得醫學學位的方案,便毅然地前往就讀。他描述,要在極短的時間內讀完所有基礎及臨床醫學學科,壓力相當大。

但他依然保持熱誠,唸完學科後,他又花了四年做實習醫師及到皮膚科做住院醫師。同時,他並沒有放棄原本的研究項目,在念醫學院時他定期從邁阿密到聖地牙哥兩地奔波。而做住院醫師時也在 Scripps 研究院繼續經營實驗室。最後,他成功取得皮膚科的專科醫師執照,之後前往加州大學戴維斯分校醫學院皮膚系擔任教授兼主任。

-----廣告,請繼續往下閱讀-----

同一時期,劉扶東的實驗室在半乳糖凝集素的研究上也取得突破。1996 年,他們成為第一個找到半乳糖凝集素內源性功能的團隊,他們發現半乳糖凝集素-3 會抑制 T 細胞的凋亡。其他科學家的研究也發現,「心衰竭的病人,血液循環裡的半乳糖凝集素-3 會增加。」這種現象或許就可以做為臨床檢測的因子,來判斷受試者是否可能患有心衰竭。

另外,劉扶東也利用基因剔除鼠(knockout mice,意指小鼠的特定基因被破壞而無法表現)來觀察缺少特定種類的半乳糖凝集素會有什麼反應,進而驗證半乳糖凝集素的重要性與疾病模式。

他發現,剔除半乳糖凝集素-12 基因的雌鼠會變瘦,而半乳糖凝集素-12 主要便是在脂肪細胞中表現,具有抑制脂肪細胞的脂肪分解功能。他說,「做這塊領域,要一直學習新的東西。」原本做免疫的他,對脂肪細胞非常陌生,幸好團隊中的研究人員有興趣持續鑽研,同時與加州大學戴維斯分校的其他專家合作,才能夠找出隱藏其中的故事。

在加州大學戴維斯分校待了近十年後,劉扶東決定回臺貢獻所學,接任中央研究院生物醫學科學研究所所長,開始在院內推動免疫、醣科學等領域,也持續研究半乳糖凝集素。

-----廣告,請繼續往下閱讀-----

劉扶東與團隊找出了半乳糖凝集素-7 與乾癬之間的關聯。乾癬是一種由免疫失調所導致的慢性皮膚發炎,身上會反覆長出紅色斑塊,約有 2% 人口患有這種病症。他們發現,半乳糖凝集素-7 在乾癬患者的皮膚中表現較少。而半乳糖凝集素-7 具有抑制角質形成細胞(keratinocyte)增生的功能。

半乳糖凝集素-7 的蛋白質結構。劉扶東院士發現半乳糖凝集素-7 具有抑制「角質形成細胞」增生的功能。圖/Wikipedia

持續探索未知

劉扶東不斷透過研究探索半乳糖凝集素的作用機制,雖然每一步都得花費不少時間,但發表成果後,「這些研究成果得到認可,就覺得很有意義。」分享故事的過程中,也為他帶來許多樂趣。

他解釋,雖然半乳糖凝集素是一種醣結合蛋白,但它不必與醣結合,也能夠參與細胞內的各種生化反應,像是與細胞內的調控因子作用,促進激素的製造。甚至也可能與疾病機制有關,例如,半乳糖凝集素-1 在許多癌症中會大量表現,讓癌細胞可以規避免疫反應;半乳糖凝集素-3 在淋巴瘤、肝癌細胞中的表現量會升高,讓癌細胞存活更久。

另外,在患有中風、神經退化疾病或多發性硬化症的病患大腦中也發現高濃度的半乳糖凝集素-3,若是抑制其表現,就可以減緩發炎反應,進而改善病程。

那麼,半乳糖凝集素會在細胞內與醣結合產生功能嗎?劉扶東解釋,醣蛋白一般只會出現在胞器內或細胞膜表面上,因此半乳糖凝集素「通常」沒有機會與醣結合。

然而,有學者發現,胞器或胞內體在某些情況下會破裂,此時胞器內部的醣就會裸露,讓半乳糖凝集素得以結合上去,誘發細胞的自噬作用(autophagy),讓受損胞器交由溶酶體降解。

甚至,有些細胞機制會受到這些裸露的醣與半乳糖凝集素的結合所調控,產生細胞凋亡、發炎反應,因而形成疾病。劉扶東團隊也持續發現半乳糖凝集素-3 與 -8 在上述機制中的功能。最近更進一步發現,半乳糖凝集素在細胞内可與侵入細胞的病原體上的醣結合,進一步影響細胞對抗病原體的反應。

上圖為半乳糖凝集素在細胞內機制的示意圖。左邊是細胞表面醣化修飾的形成過程,右邊則是半乳糖凝集素對應外來有害物質的機制,當核內體的膜破裂時,裡面的醣分子得以裸露,半乳糖凝集素快速聚集,並與這些醣分子結合,同時也會結合更多蛋白質幫手,一起設法解決外來有害物質。圖/研之有物、林威翰、陳宏霖
上圖為李斯特菌進入細胞後,半乳糖凝集素-3 快速聚集反應,並由免疫系統排除的過程。半乳糖凝集素-3 為綠色,李斯特菌為紅色,溶酶體為藍色,其中的第 64 分鐘到第 79 分鐘,半乳糖凝集素-3 快速聚集。圖/Glycobiology

至於半乳糖凝集素在細胞「外」的功能?對於這個問題,劉扶東坦承,「雖然知道半乳糖凝集素這麼久了,半乳糖凝集素在人體細胞外面有什麼功能,我們真的不知道,不過已有無數的文章有敍述在試管内(in vitro)看到的功能。」半乳糖凝集素在少數情況下會離開細胞,並可能與細胞膜或其他蛋白質上的醣類結合,然而細胞外的半乳糖凝集素在活體內實際去了哪裡,產生了什麼作用,還有待科學進一步探究。

如果可以在細胞外專一追蹤半乳糖凝集素家族,對於生醫藥物發展會相當有用,但是目前的科學技術還無法做到。

創造更多突破

劉扶東強調,半乳糖凝集素的內源性功能已有許多研究成果證實。時至今日,若在期刊網站搜尋,可以在全世界找到近萬篇與半乳糖凝集素有關的科學文獻,每年的相關研究多到劉扶東難以一一追蹤。

如此豐富的研究成果,已成為臨床醫藥的新發展方向。目前已有生技公司著手研發半乳糖凝集素抑制劑(inhibitor),來抑制細胞不正常的發炎反應,例如瑞典公司 Galecto 即以抑制半乳糖凝集素-3 為目標,已研發出小分子藥物(galectin-3 inhibitor, GB0139, formerly TD139)來對抗特發性肺纖維化(idiopathic pulmonary fibrosis)並已得到歐洲藥品管理區(EMA)及美國食品藥物管理局(FDA)核准。

除了半乳糖凝集素-3,劉扶東認為,半乳糖凝集素-7、半乳糖凝集素-8、半乳糖凝集素-12 都有可能進一步發展藥物。若能組成專業團隊,加上跨領域合作,結合不同領域的知識與技術,就能彼此加成,找到更多突破機會。

許多科學創新,不單單只靠一個人就能達成,「我很幸運,實驗室裡有很多優秀的人才一起研究,也和許多團隊合作。」劉扶東期待能夠在臺灣促成更多的合作機會,讓不同實驗室之間結盟,就能凝聚成更大的力量。

延伸閱讀

  1. Liu, F. T., & Stowell, S. R. (2023). The role of galectins in immunity and infectionNature Reviews Immunology
  2. Cummings, R. D., Liu, F.-T., Rabinovich, G. A., Stowell, S. R., & Vasta, G. R.(2022). Chapter 36 Galectins. In Essentials of Glycobiology (4th ed.). Cold Spring Harbor Laboratory Press. 
  3. Wang, S., Hung, Y., Tsao, C., Chiang, C., Teoh, P., Chiang, M., . . . Liu, F.-T. & Chen, H. (2022). Galectin-3 facilitates cell-to-cell HIV-1 transmission by altering the composition of membrane lipid rafts in CD4 T cellsGlycobiology, 32(9), 760–777.
  4. Hong, M.-H., Weng, I.-C., Li, F.-Y., Lin, W.-H., & Liu, F.-T. (2021). Intracellular galectins sense cytosolically exposed glycans as danger and mediate cellular responsesJournal of Biomedical Science, 28(1). 
  5. Lo, T. H., Chen, H. L., Yao, C. I., Weng, I. C., Li, C. S., Huang, C. C., Chen, N. J., Lin, C. H., & Liu, F. T. (2021). Galectin-3 promotes noncanonical inflammasome activation through intracellular binding to lipopolysaccharide glycansPNAS, 118(30). 
  6. Weng, I.-C., Chen, H.-L., Lo, T.-H., Lin, W.-H., . . . Liu, F.-T. (2018). Cytosolic galectin-3 and -8 regulate antibacterial autophagy through differential recognition of host glycans on damaged phagosomesGlycobiology, 28(6), 392–405. 
  7. Johannes, L., Jacob, R., & Leffler, H. (2018). Galectins at a glanceJournal of Cell Science, 131(9). 
  8. 中央研究院(2023)。腸細胞內辨識細菌表面聚糖的分子為控制腸道感染的重要關鍵,中研院生物醫學科學研究所。
  9. 慈濟大學醫學院(2022)。《大師傳習系列之十》劉扶東院士講座,YouTube。
  10. 興大通識中心(2020)。疾病治療新展望:聚焦醣科學-劉扶東院士,YouTube。
  11. 黃彥維、黃耿祥、楊智惠、劉潔(2020)。醣分子科學新知(二):半乳糖凝集素與腫瘤治療,科技大觀園。 
  12. 中央研究院(2017)。免疫療法抗癌新曙光|生物醫學科學研究所 劉扶東院士,YouTube。
  13. 中央研究院(2017)。發炎反應與疾病―亦敵亦友的微妙關係|生物醫學科學研究所 劉扶東院士,YouTube。
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3397 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

3

8
6

文字

分享

3
8
6
如何運用細胞機制改善脂肪肝?先來認識什麼是泛素與細胞自噬
研之有物│中央研究院_96
・2021/07/05 ・4727字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|寒波
  • 美術設計|林洵安

細胞小小一顆,內部運作卻複雜無比,堪比現代化城市,生產、物流、回收與廢棄物清運,每個環節都要考慮平衡,時時應付變局。中央研究院生物化學研究所的陳瑞華特聘研究員,發現細胞兩大資源回收系統的特殊互動:透過泛素─蛋白酶體系統來調控細胞自噬。簡單來說就是,細胞在一般狀況下如何維持平衡,面臨逆境時怎麼力挽狂瀾。在研究過程中,負責脂肪代謝的肝細胞當然也沒有缺席,將來我們對細胞自噬有更多瞭解時,就可能開發出有效控制非酒精性脂肪肝的藥物。論文於 2021 年 2 月發表於《自然通訊》(Nature Communications)。

細胞分解蛋白質的兩套系統:泛素與細胞自噬

細胞內的蛋白質零件如有損壞,就需要分解與回收,主要依靠各有所長、也能互補的兩套回收系統:一套是「泛素─蛋白酶體系統」(ubiquitin-proteasome system,簡稱 UPS ),另一套是「細胞自噬溶酶體系統」(autophagy-lysosome system)。

上圖是細胞內兩大資源回收系統,「泛素─蛋白酶體系統」與「細胞自噬─溶酶體系統」。
圖/研之有物(資料來源│陳瑞華)

雖然 autophagy 的中文翻譯為「細胞自噬」,不過當細胞自噬啟動時,其實不是直接自我毀滅,而是在受到外在壓力時改善狀態、自我拯救。此一領域的先驅大隅良典(Yoshinori Ohsumi)在 2016 年獲得諾貝爾生理學或醫學獎。如今我們知道,細胞自噬可分為多種,可針對細胞內各種老舊廢物和有害物質進行分解,包含可溶及不可溶的蛋白質以及非蛋白質分子(例如後續會提到的脂肪)。

另一套細胞清運系統「泛素─蛋白酶體系統」處理的對象通常是可溶蛋白質。泛素會直接與目標結合做上記號,標記的目標會送往蛋白酶體分解。羅斯(Irwin Rose)、赫什科(Avram Hershko)、切哈諾沃(Aaron Ciechanover)藉此獲得 2004 年的諾貝爾化學獎。隨著研究愈來愈多,有些學者發現,兩套系統有時候會互相影響。

-----廣告,請繼續往下閱讀-----

陳瑞華原本的研究對象是各種蛋白質修飾,而泛素化作用就是一種修飾蛋白質的方式,這使得她投入泛素的領域,開始探索蛋白質的分解與回收,也注意到泛素與細胞自噬有所聯繫的問題。道理其實不難想像:兩套系統的運作都涉及很多蛋白質,而這些蛋白質零件本身,也會成為需要分解或回收的對象。

泛素與細胞自噬的正向調控者「TRABID」

細胞自噬可分為很多種,陳瑞華關注的是依賴泛素的細胞自噬。一開始的切入點,是尋找促進細胞自噬的酵素。

把泛素加到目標蛋白質上頭的酵素叫作「泛素連接酶」(ubiquitin ligase),反之則是「去泛素酶」(deubiquitinating enzyme,簡稱 DUB)。人體有非常多種去泛素酶,測試 92 種之後,TRABID 最符合預期。增加這個酵素的作用能促進細胞自噬,可謂正向調控者。

泛素接合蛋白質分子的各種複雜情況,陳瑞華關注的酵素之一是負責切除 K29 與 K48 分支的去泛素酶「TRABID」。圖/研之有物(資料來源│陳瑞華)

泛素是由 76 個氨基酸組成的小型蛋白質,可以直接結合目標,也能互相串聯形成泛素鏈。

-----廣告,請繼續往下閱讀-----

泛素的序列中,第 1 個氨基酸是甲硫氨酸(methionine,縮寫為 M),再來還有 7 個離胺酸(lysine,縮寫為 K),這些位點都能夠彼此修飾串聯,因此形成複雜的排列組合,這樣就賦予了泛素鏈多變的形式。

如果整串泛素鏈皆由同一種串聯組成,稱為同型鏈(homotypic chain)。根據泛素串聯的位置,可分為 M1、K6、K11、K27、K29、K33、K48、K63 共 8 種;而整串泛素鏈由不同種串聯組成的叫作異型鏈(heterotypic chain),又可以分為非支鏈型和支鏈型(branched)。

抑制泛素,促進細胞自噬

每種酵素都有專屬的催化對象。去泛素酶 TRABID 促進細胞自噬的專屬催化對象又是誰呢?

TRABID 可以去除 VPS34 上面的泛素分支(K29、K48),促進細胞自噬作用。圖/研之有物(資料來源│陳瑞華)

關鍵在於另一個酵素 VPS34,VPS34 是形成自噬小體的重要蛋白,全名為第三類磷脂肌醇 – 3 – 激酶複合體(class III PI3-kinase complex)。VPS34 會受到 K29、K48 泛素化修飾,令其遭到分解;而去泛素酶 TRABID 可以去除泛素,使 VPS34 不被分解。如此一來,激酶 VPS34 便可以促進細胞自噬的發生。

-----廣告,請繼續往下閱讀-----

但這裡可看到一處蹊蹺:VPS34 受到 K29、K48 抑制,可是 TRABID 只能切到 K29,K48 應該不是它的處理範圍呀?合理的推論是:K29 和 K48 以異型鏈的形式一起作用,所以去泛素酶 TRABID 直接切除 K29 的同時,也間接切掉並不直接接觸的 K48。

圖片為 TRABID 切除泛素分支的細節,原來是在切除 K29 的同時,也間接去掉 K48。圖/研之有物(資料來源│陳瑞華)

泛素與細胞自噬的負向調控者「UBE3C」

細胞為了維持平衡,調控可謂一環扣著一環。既然存在針對激酶 VPS34 的去泛素酶,更早以前又是誰替 VPS34 加上泛素呢?過往研究發現,標記 K29、K48 的泛素連接酶叫作 UBE3C,而且是以支鏈連結。

調控基因表現可分為多個層次。基因會先轉錄為 mRNA,再轉譯為蛋白質;而泛素的調控屬於後轉譯修飾,也就是鎖定完工的蛋白質,卻不影響 mRNA 的階段。實驗結果指出,泛素連接酶 UBE3C 的作用一旦增強,激酶 VPS34 的 mRNA 表現量並不改變,但是蛋白質量下降,符合泛素該有的後轉譯調控方式。

TRABID 與 UBE3C 共同調控 VPS34 的示意圖,TRABID 會促進細胞自噬作用;反之,UBE3C 則會抑制細胞自噬。圖/研之有物(資料來源│陳瑞華)

泛素連接酶 UBE3C 作用下會減少細胞自噬,可謂細胞自噬的負向調控者。但是問題又來了,如何證明 UBE3C 催化激酶 VPS34 進行 K29、K48 支鏈型泛素化?之前的研究方法僅能提供間接證據。

-----廣告,請繼續往下閱讀-----

幸運的是,陳瑞華領導的這項研究還沒結束時,另一位專精泛素的學者發表一種新的分析方法,剛好可以回答上述問題。前面提過,泛素有很多種結合型式,理想的分析應該能區別支鏈型和非支鏈型泛素化,這就是「泛素剪裁法」(Ub-clipping)。

釐清泛素與泛素的連結──改造自口蹄疫病毒的分析工具

許多分子生物學的工具最初來自微生物,如限制酶(restriction enzyme)、PCR,以及當紅的 CRISPR 基因編輯,泛素剪裁法也不例外。

口蹄疫病毒(foot-and-mouth disease virus)感染細胞時,一如所有入侵者會受到抵抗;細胞利用 ISG15 蛋白質攻擊病毒,而病毒也會用蛋白酶(protease)反擊。有科學家注意到: ISG15 的形狀就像兩個泛素的合體,而口蹄疫病毒的蛋白酶專門針對這種結構。既然如此,這類蛋白酶是不是能用於切割連成一串的泛素呢?

上述構想後來成功,人為改造過的蛋白酶「Lbpro」,能精確地切割泛素與泛素之間的「RGG」氨基酸連結。被蛋白酶切完落單的泛素,上頭會連著兩個甘胺酸(glycine,縮寫為 G),假如本來是直鏈只會有 1 個 GG,原本為支鏈則會有 2 個 GG。

-----廣告,請繼續往下閱讀-----

1 或 2 個 GG,這就造成重量上的落差。分子間這般的重量差異儘管很小,仍然足以被質譜儀分辨出來,這就是泛素剪裁法的威力。

透過口蹄疫病毒的啟發,人工合成的蛋白酶 Lbpro 可以精準切割泛素之間的 R-GG 鏈結,讓研究人員得以透過質譜分析,輕易辨識出泛素的直鏈與支鏈結構及相對含量。圖/研之有物(資料來源│陳瑞華)

藉由新法助陣,陳瑞華團隊取得可靠的證據,看到泛素分支確實形成,證明泛素連接酶 UBE3C 確實將 K29 和 K48 以支鏈的形式標記到激酶 VPS34 之上。這也是泛素剪裁法,首度被用於細胞自噬的相關研究。

日常保持平衡,危局力挽狂瀾

在瞭解泛素、VPS34、TRABID 與 UBE3C 之後,我們來梳理一下資訊吧。所謂開關、開關,有開就要有關。一系列實驗指出,是否啟動細胞自噬受到 3 個酵素影響:一旦泛素連接酶 UBE3C 加上支鏈修飾,令激酶 VPS34 被拖去摧毀,細胞自噬將受到阻止;若是去泛素酶 TRABID 發揮作用,令 VPS34 保持穩定,細胞自噬就會發生。

細胞處於普通或匱乏(starvation)狀態時,加泛素與去泛素的酵素,以互相對抗的態勢保持平衡。細胞面對危局時,原本的平衡遭到打破,細胞自噬成為一種自我救贖的手段。

-----廣告,請繼續往下閱讀-----

陳瑞華團隊進一步實驗發現,內質網與蛋白質毒性壓力(ER and proteotoxic stresses)之下,泛素連接酶 UBE3C 會轉移位置到蛋白酶體;除掉拘束器(也就是UBE3C)之後,激酶 VPS34 便能促進細胞自噬發生,改善細胞狀態,提高生存機率。

上圖是細胞處於普通或匱乏狀態時,平衡的細胞自噬活動。下圖則是細胞在內質網與蛋白質毒性壓力之下,開始觸發增進細胞自噬的活動,確保內質網與蛋白質正常。圖/研之有物(資料來源│陳瑞華)

未來有望應用到脂肪肝治療

細胞自噬是大部份細胞自我調整、保持平衡的重要手段,在某些特殊組織更扮演重要角色,例如肝細胞的代謝。過去研究發現,如果細胞自噬功能缺失,容易導致脂肪肝形成。

陳瑞華團隊使用小鼠作實驗動物,探討細胞自噬在非酒精性脂肪肝疾病(non-alcoholic fatty liver disease,簡稱 NAFLD)中的角色。在連續 12 週餵食高脂肪飲食後,享受高油脂大餐的快樂小鼠們體型明顯增大,對照組注入一般腺病毒,實驗組則注入帶有 TRABID 基因的腺病毒,繼續觀察 4 週。

細胞在受到高脂食物的刺激下,傾向降低細胞自噬活動,VPS34 經過泛素化之後降解。肝臟代謝功能受到影響,促進肝臟脂肪推積。圖/研之有物(資料來源│陳瑞華)
餵食高脂肪飼料之後,對照組與實驗組小鼠的肝臟示意圖。圖/研之有物(資料來源│陳瑞華)

兩種不同處理之下,高脂餵食且注入一般腺病毒的對照組,肝臟細胞皆充滿脂肪,而且去泛素酶 TRABID 和激酶 VPS34 的表現量,以及細胞自噬的活性都明顯降低。而注射了 TRABID 基因的實驗組,因為人為促進了去泛素酶 TRABID 的表現,引發細胞自噬作用防止肝臟脂肪形成。

-----廣告,請繼續往下閱讀-----

從實驗組的數據可以發現,小鼠多項脂肪相關的指標都有所降低,證實細胞自噬確實有阻止脂肪肝的作用,對肝臟代謝十分重要。這次的動物實驗是透過注射基因提升 TRABID 表現,如果未來能找到促進 TRABID 表現的藥物或關鍵小分子,則可望應用在非酒精性脂肪肝的治療或保健食品。

調控機制的平衡與不平衡

陳瑞華的研究成果讓我們對細胞自噬的調控又多一分認識。看起來好像很難,但是概念歸納起來並不複雜。調節細胞自噬的邏輯是一來一往的平衡(homeostasis),正向調控者作用,細胞自噬發生,反之亦然。

細胞自噬的基本機制,各種細胞多半是共通的;泛素在其中扮演阻止的角色,藉由控制泛素,便能有效影響細胞自噬。假如碰上逆境,需要促進細胞自噬時,抑制泛素即可達到目的。

在肝細胞中,細胞自噬有其特殊作用。假如細胞自噬的功能缺失,會影響脂肪代謝,長期下來可能導致脂肪肝病變;反之,若能在需要時能夠促進細胞自噬,未來脂肪肝治療就有新的契機。

延伸閱讀

所有討論 3
研之有物│中央研究院_96
296 篇文章 ・ 3397 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

4
1

文字

分享

0
4
1
再壓力一點點我就發炎囉~輕微的壓力就能影響你我免疫——《終結憂鬱症》
PanSci_96
・2020/04/30 ・3455字 ・閱讀時間約 7 分鐘 ・SR值 549 ・八年級

-----廣告,請繼續往下閱讀-----

  • 作者/艾德華.布爾摩 (Edward Bullmore);譯者/高子梅
  • 編按:不同於傳統生理、心理二元論觀點,作者從免疫學的角度切入、結合神經科學,重新思考憂鬱症與身體發炎的關聯。

壓力是最廣為人知,但又最不為人所了解的憂鬱症成因。它是眾人通曉的生活現實,我們每個人都可能親身或看別人有過因為壓力而感到憂鬱的經驗。

流行病學研究證實壓力的影響很大,尤其是來自重大生活事件的壓力,譬如配偶、雙親或孩子的死亡,或失業,或其它一些傷慟或屈辱。

在這些情況下,得到憂鬱症的機率會比憂鬱症的背景風險(background risk)多出 9 倍。從另一個角度來看,約有 80% 的憂鬱症發作,是因為先前發生了充滿壓力的生活事件。

最令人沮喪的壓力,通常來自重要關係的喪失和遭到社會排斥。圖/pixabay

最令人沮喪的壓力通常來自重要關係的喪失和遭到社會排斥。所以如果有個男人對妻子主動提出離婚訴訟,喪失了婚姻關係,他得到憂鬱症的風險會多 10 倍;但如果是妻子對他提出離婚訴訟,他的憂鬱症風險將多出 20 倍,因為他不只失去婚姻,還被丟臉地拋棄。

-----廣告,請繼續往下閱讀-----

憂鬱症不純粹是個人問題!

壓力對憂鬱症風險的影響是非常明顯的。只是社會壓力怎麼會對憂鬱症有這麼大的作用,這一點還不是很清楚。一如往常,奉行笛卡兒主義的人會說,「如果是你,你也會有憂鬱症,不是嗎?」要是太太跟別人跑了,要是被炒魷魚,我敢打賭你也不會太開心。

遇到這種事,誰不憂鬱呢?(才沒有這麼簡單!)圖/GIPHY

但一如往常,這個說法並不科學,對治療也沒有任何幫助。它只是暗示因為壓力而得到憂鬱症純粹是個人問題,證明當事者的個性不夠堅忍。換個說法,是他自己的錯。

除了壓力的痛苦之外,還得蒙受無法自己克服憂鬱的羞辱。但過去二十年來,已經有愈來愈多人支持另一種解釋,著重體內的發炎反應,而不是內在的自省

從免疫學的角度來看,人有可能憂傷而死嗎?

經過精算,我們發現人的壽命會因喪親之痛而縮短,顯示重大生活事件可能影響免疫系統。如果太太和你離婚,或者你在生活上遭遇一些可怕的事,那麼你不只比常人更有可能得到癌症和心臟病,預期的壽命也會比事件發生前來得短。

-----廣告,請繼續往下閱讀-----

「心碎而死」不只是比喻,還可能成真?圖/GIPHY

我們都把心碎而死當成比喻,但我們都知道這種事在我們四周很常見:有人失去心愛的人之後,出乎意料早早過世。我就聽過,許多結婚多年的夫妻在短短幾週內先後撒手人寰。我們不都聽過這樣的故事嗎?

最近有研究甚至證實,人若是剛喪親,心臟病或中風的死亡風險將高出兩倍。失去相守一生的伴侶,這種感情和社會上的雙重打擊會大大影響你的生存適應力。保險公司深知這一點,這也是為什麼他們會為顧客提供喪親輔導的諮詢服務。憂傷可以殺死你。這也是可以靠免疫學來解釋的另一個確鑿事實。

我們現在已經知道,帶來壓力的生活事件會在免疫系統的池塘裡丟下一顆石頭,造成免疫細胞在作業和互動上的劇烈變化。

  • 先天免疫系統的巨噬細胞本來在自體的前線巡邏,這時會因喪親之痛而變得憤怒而活躍,於是釋出更多炎性細胞激素到血液循環裡。
  • 巨噬細胞的過度活化可能造成粥狀硬化的動脈發炎,增加心臟和大腦血管裡血塊形成的風險,提高心臟病發或中風的機率。

如此一來,心碎而死可以用「社會壓力對免疫系統造成了影響」來解釋。

-----廣告,請繼續往下閱讀-----

其它不像喪親那樣單一且極端的社會壓力,也會啟動巨噬細胞而引起發炎。炎性生物標記(像細胞激素和C反應蛋白)在很多壓力環境下也都會升高,譬如貧困、負債、在社會上孤立無援。

阿茲海默症患者的照護者,和平日負責照顧患有失智症配偶或親人的人,他們的炎性生物標記都會升高。幼年若飽受貧困、棄養或虐待,成年後的炎性生物標記也較高。

童年經驗對免疫系統的影響

紐西蘭的一項重大流行病學研究追蹤了達尼丁(Dunedin)這座城市 1972 到 73 年間出生的 1037 名孩童。

他們小心評估了這些孩童的社經狀態(簡單來說,就是他們父母財富的多寡)、是否孤立和是否受虐。30 年後進行第二次的評估,結果發現,孩提時貧困、孤立或受虐過的受測者,成年時期發生憂鬱症和肥胖的機率比其他人高出兩倍。

童年創傷,也可能被免疫系統「記住」。圖/pixabay

-----廣告,請繼續往下閱讀-----

我們幾十年前就知道,免疫系統有長期記憶,能記住幼時遭受過的感染或注射過的疫苗。現在我們也開始明白,免疫系統原來也會記得幼時被侵犯或挨餓的經驗,以及對自體早期生存的任何一種威脅。

童年受虐的倖存者在長大成人後,免疫系統可能處於一種一觸即發的狀態,只要遇到一點感染和社交挫折,就會出現過度的發炎反應,進而引發憂鬱症狀。童年受虐如何對成人心理健康產生不良影響,佛洛伊德(和鮑洛伊爾)早在一百多年前就大膽點出,現在我們是用免疫系統來重新解釋。

想知道壓力是什麼感覺?站上台就知道

不過,要想知道壓力是什麼感覺,並不一定要有憂鬱、喪親或受虐的經驗。

有些事情幾乎每一個人多少都會有壓力,在眾人面前說話就是。站在眾人面前侃侃而談,縱然只有幾分鐘,也往往會引發主觀上的恐懼或焦慮,再伴隨客觀生理上的亢奮,譬如血壓升高、心跳加快和流汗。

就算是現在看起來很擅長公眾演說的人,過去也需要花點力氣去克服焦慮。圖/GIPHY

在講台上時,人的身體一樣會出現「戰或逃反應」(fight-or-flight response),包括腎上腺素和正腎上腺素升高,啟動交感神經系統,同時迷走神經令人安定的抗腎上腺素作用也會跟著減緩。

-----廣告,請繼續往下閱讀-----

有些人非常厭惡這種亢奮、焦慮的狀態,所以從不上台。在眾人面前被問也很有壓力,就像我們醫學院學生在巴茲病房裡受教授質問一樣。就算是現在看起來很擅長公眾演說、臨場回答也很自在的那些人,從前通常也是要花點力氣去克服自發和反射的焦慮。

輕微的壓力就能馬上啟動發炎反應?

我們很久以前就知道,在眾人面前說話會有壓力,只是直到最近才明白,像這種輕微的壓力,也會快速啟動身體的發炎反應。

特里爾社會壓力測試(Trier social stress test)的實驗設計,就是要模擬在眾人面前說話的壓力。實驗對象(受測者)被要求對四名觀眾進行 12 分鐘的演說,再接受觀眾四分鐘的心算問答。

通常這種實驗都是事先安排好的,受測者站在桌子前面說話,觀眾則坐在桌子的另一邊,後者穿著白色的實驗服,表情故作不以為然。我們大概都可以想像,這經驗對受測者帶來多大的壓力,即使他們都知道那只是演出來的,這是一個合乎實驗倫理的實驗,他們的表現好壞不會造成什麼嚴重後果。

要在講台上侃侃而談,並不容易。圖/GIPHY

-----廣告,請繼續往下閱讀-----

在最近一場實驗裡,有一組受測者是身心健康,並且對自己在 1990 年代的教學經驗很滿意的德國教師。他們在特里爾社會壓力測試之前和之後都提供了血液樣本。結果發現,在眾人面前說話後立刻採樣的血液,裡頭的巨噬細胞比之前更加活躍,也釋出更多的細胞激素。

第二組受測者是一群在工作上受挫的教師。大家都知道,教書是一份壓力很大的工作,有很高比例的教師因病而提早退休或告假。第二組教師覺得他們的教學付出並沒有得到適當的回報,所負的責任並沒有相對的補償,無論是薪資、升遷或同儕和學生給予的尊重。但他們還是盡心盡力地授課,只是心力交瘁。

在受測前,這些教師身上的巨噬細胞比第一組教師身上的巨噬細胞來得憤怒。承受了這次站在眾人面前說話的額外壓力後,他們的巨噬細胞變得更憤怒了。

諸如在眾人面前說話這種帶來壓力的事件究竟是如何啟動免疫細胞的,我們還不確定,不過有兩三種可能原因正在研究中。

比方說,我們都知道,因為壓力而陡升的腎上腺素會送出危險訊號給巨噬細胞,啟動巨噬細胞的憤怒反應,與接收到脂多醣這樣的危險感染訊號時的反應相同。

-----廣告,請繼續往下閱讀-----

此外,我們也知道,壓力會干擾體內的荷爾蒙系統,使巨噬細胞對類固醇的鎮定效果不再有那麼靈敏的反應。一如往常,這當中還有許多細節有待釐清,但這正是科學迷人的原因之一:每往前走一步,就會產生更多問題

image description

——本書摘自《終結憂鬱症:憂鬱症治療大突破》,2020 年 2 月,如果出版社

PanSci_96
1219 篇文章 ・ 2177 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
白喉病有救啦!抗毒素與疫苗是幕後功臣——《免疫的威力》
遠流出版_96
・2019/05/24 ・2205字 ・閱讀時間約 4 分鐘 ・SR值 615 ・十年級

-----廣告,請繼續往下閱讀-----

十九世紀,白喉在歐洲流行,引起學者開始了一系列的實驗,不僅發現了血清可以抗菌,後續並研發出類毒素疫苗,成功降低了白喉與破傷風的感染率。現在,白喉在許多國家都已經絕跡,眾多孩子能免於這些疾病的威脅,皆歸功於此。

讓人窒息而死的白喉病

白喉到十九世紀才被認定是病菌引起的疾病。罹病的患者喉嚨黏著厚厚皮狀的白膜,把氣管塞住,引發窒息而死亡。白喉最容易感染幼童,因此總讓父母聞之色變。

患者喉嚨黏著厚厚皮狀的白膜,把氣管塞住,引發窒息而死亡。圖/wikipedia

十九世紀時,白喉在歐洲各地流行,造成社會不安,亟需醫學研究研發出有效的預防及治療方式。就在這很有需求的情況下,在德國大學任教的埃米爾.馮.貝林做了一系列傑出的白喉實驗,終於研發出預防白喉的血清療法,並鋪路讓其他學者研究出抗體在疫苗及免疫上扮演的角色。

研發出白喉血清療法的 埃米爾.馮.貝林

埃米爾.馮.貝林在擔任軍醫的過程中始對感染病產生興趣。圖/wikipedia

-----廣告,請繼續往下閱讀-----

馮.貝林年幼時就希望學醫,因為家裡經濟不好沒辦法讀一般大學,他選擇進入免費的陸軍醫學院。醫學院畢業後,他有義務服兵役,被派去軍醫院當軍醫。在這期間,他開始對感染病產生興趣,就在軍醫院從事相關研究。他首先研究的主題是開發滅菌消毒的化學物,並有了優良成果,受到軍方關注,有意栽培他。

軍方選他去柏林著名的感染病研究所向大師羅伯.柯霍(Robert Koch)學習。柯霍主要是研究微生物,尤其是一些重要的細菌。他在柯霍的實驗室工作了幾年。這期間,幾位優秀年輕學者加入柯霍的實驗室,其中一位是保羅.埃爾利希(Paul Ehrilich)。後來馮.貝林離開柯霍實驗室,被聘為德國馬爾保大學教授。

發現白喉毒素與抗毒素

他建立實驗室後,把研究重點放在白喉上。當時學界對白喉菌引起可怕氣管窒息的原因並不清楚,但法國有個實驗室發表的報告引起馮.貝林的注意。

報告中記述,這些研究者取用白喉菌培養液過濾後的液體來做實驗。他們發現過濾後的液體會引發白喉症狀。他們由此做出一個結論:

-----廣告,請繼續往下閱讀-----

白喉菌本身不會致病,致病的是這些病菌釋放出來的物質。這些物質被稱為白喉毒素

白喉桿菌。圖/kknews

馮.貝林讀了這篇論文後著手研究。那時剛好有一位日本學者到他的實驗室工作,名叫北里柴三郎。北里博士精於化學,對白喉毒素的化學性質已有經驗,他與馮.貝林合作是相輔相成,聯手完成一個具歷史性的實驗。

他們的實驗是先在白喉菌培養液中加了滅菌化學物,把白喉菌殺死,然後將死菌分離取得無菌的培養液。之後將培養液打入動物體內,過了一段時間,由動物體取得血液,再由血液中分離出血清。接著把血清打入另一批動物體內,測試是否可以保護這批動物不感染白喉。

這一系列的研究結果顯示,血清可以讓動物對白喉有抵抗力。他們的結論是血清中含有抗白喉毒素的物質,稱之為「抗毒素」。

-----廣告,請繼續往下閱讀-----

這一系列的結果在醫學期刊發表後很受注重。事實上,這的確是醫學上的大突破,就此建立了血清治療的觀念,也為後來發現血清中的抗體鋪了路。

馮.貝林頗具創業精神,到了二十世紀初,他極力想把新發現轉譯為可預防白喉的藥劑。他將白喉毒素及抗毒素混在一起當作抗白喉藥物,使用在多種動物模型上果然有效。他進一步把毒素及抗毒素的份量和比例做更精確的標準化,以便用來做人體試驗。

人體試驗有效後,他開了公司,大量生產抗白喉混合藥。當時美國及歐洲都被白喉大流行鬧得不安寧,馮.貝林的抗白喉混合劑開始大規模使用,終於征服了白喉。現在白喉在許多國家都已經絕跡。馮.貝林不只是血清治療法的創始者,也因此被稱為兒童的救星,同時也是技轉的先驅者。

當諾貝爾生理或醫學獎剛成立時,馮.貝林的抗白喉研究工作被認為是具創新的發現而且有深遠貢獻,因此成為有史以來首位諾貝爾生理醫學獎得主。幾年後,他的老師柯霍也獲得了諾貝爾獎。

-----廣告,請繼續往下閱讀-----

在抗白喉藥物研究這期間,破傷風也是種令人懼怕的病。

科學家深入研究後,發現破傷風的致病原因和白喉類似,是由破傷風病菌釋放毒素引起的。馮.貝林的實驗室以類似的研究方式證明抗毒素的存在,並且以毒素加抗毒素混合物做為抗破傷風療法。他的研究同時證明有些細菌並不是由於細菌本身致命,而是因細菌釋放出來的毒素。以毒素為標的,才能發展出有效的疫苗。

圖/torange.biz

「抗毒素」的發現就像是茫茫大海中的燈塔,為免疫學指出了新大陸。而發現新大陸的則是保羅.埃爾利希。埃爾利希與馮.貝林是同輩,而且是同一個時期在柯霍實驗室工作。他們合作研發抗白喉的血清療法。後來因商業利益衝突,埃爾利希和馮.貝林教授分道揚鑣,埃爾利希把研究方向轉向較基礎的問題。

-----廣告,請繼續往下閱讀-----

他是史上第一位以抗體來解釋「抗毒素」作用的學者。後來發現病毒的疫苗如牛痘疫苗及狂犬病疫苗之所以有效,也是藉由產生抗體。而且抗體不只是疫苗的武器,更是免疫的原動力。

 

 

 

 

——本文摘自《免疫的威力》,2019 年 2 月,遠流出版。

遠流出版_96
59 篇文章 ・ 30 位粉絲
遠流出版公司成立於1975年,致力於台灣本土文化的紮根與出版的工作,向以專業的編輯團隊及嚴謹的製作態度著稱,曾獲日本出版之《台灣百科》評為「台灣最具影響力的民營出版社」。遠流以「建立沒有圍牆的學校」、滿足廣大讀者「一生的讀書計畫」自期,積極引進西方新知,開發作家資源,提供全方位、多元化的閱讀生活,矢志將遠流經營成一個「理想與勇氣的實踐之地」。