1

0
0

文字

分享

1
0
0

為何我的江蕙聽起來像蔡依林?—《音響入門誌》

PanSci_96
・2016/09/20 ・4329字 ・閱讀時間約 9 分鐘 ・SR值 470 ・五年級

文/Little Sound

640px-Dublin_Philharmonic_Orchestra_performing_Tchaikovsky's_Symphony_No_4_in_Charlotte,_North_Carolina
播放一曲交響樂團的演奏時,音響就像一人分飾多角,要維妙維肖的撥放出每一種樂器的音質和頻率。圖/Derek Gleeson @ wiki

音響像個演員,要演什麼像什麼,演小提琴、演電吉他、演爵士鼓……,樣樣都要演得像。但演員也有蹩腳的,那叫「演技差」,而音響蹩腳的,叫「失真大」。

從留聲機,保存聲音的技術誕生以來,音響的發展簡單來說就是從「失真」走向「傳真」。失真(Distortion)有很多種,諧波失真、振幅失真、頻率響應失真、相位失真……,失真讓你的音樂聽起來「不像真的」;中提琴聽起來像小提琴,江蕙聽起來像蔡依林……,凡此種種症頭都表示您的音響是個蹩腳的演員,演什麼不像什麼。

從失真到 Hi-Fi,從 Hi-Fi 到 Hi-End

從 1888 年由美國發明家伯利那(E.Berliner)展示留聲機以來,到了 1950 至 1960 年代,高傳真(High fidelity 或 Hi-Fi)這個名詞開始被廣泛使用,這名詞意味著噪音與失真很小,能「完美再現原音」。德國標準化學會並在 1973 年制訂了相關標準。換言之,音響工業在經過半世紀發展後,正式進入了低失真、高傳真的新時代。

-----廣告,請繼續往下閱讀-----

不過雖然技術能夠達到,商人可不見得都會生產好產品給客人,用人工香料的號稱是天然食材、回收餿水油跟你說是天然豬油的黑心商人在什麼時代都不缺,自從 Hi-Fi 這個名詞出現後,哪個音響廠商會不標示自己的產品 Hi-Fi 呢?於是從 1980 年代起,逐漸出現 Hi-End 這個名詞,用來表示比 Hi-Fi 更好的聲音品質,它意味著一種追求完美,比 Hi-Fi 更講究、更極致、更不惜工本的高階產品,以跟原來的 Hi-Fi 做區隔。發展到今,Hi-End 已成為「最高階音響」的同義詞,辦音響展必稱是 Hi-End 音響展,若只有 Hi-Fi 音響展聽起來就遜了,完全沒吸引力。

避免破壞性壓縮音樂格式

雖然音響的技術發展已經從失真到 Hi-Fi,又從 Hi-Fi 到了 Hi-End,可別以為從此每台音響都 Hi-End 了起來,就像手機也是有智慧機皇到智障黑心機一樣,音響市場上自然是失真、Hi-Fi、Hi-End 三大類產品並存,遺憾的是,失真的占絕大多數,而且絕對不會貼上「失真」兩個字讓客人知道。

elvis-presley-1482026_640
市場上失真、Hi-Fi、Hi-End 三大類產品並存,遺憾的是,失真的占絕大多數。圖/MikeBirdy @ pixabay

雪上加霜的是,隨著數位時代的來臨,破壞性壓縮的 MP3、串流音樂……等等方便流傳的音樂格式,讓原本音響硬體的失真外,又增加了「音樂軟體」的失真。是的,失真不但沒有消失過,甚至比以往更加普遍。MP3「失真壓縮」大約於 1993 年問世,隨著免費音樂播軟體 Winamp 在 1997 年的推出成為了網路音樂的主流格式。MP3 檔案的大小約為 CD 的 1 / 11,能將檔案壓縮到這麼小,靠的是破壞性資料壓縮(Lossy Compression)。用這種「有損壓縮」的方式來儲存訊號,會使播放出來的音樂嚴重失真,在早期的網路頻寬限制下,或許這是「必要的惡」,但在如今的網路頻寬條件下,選擇聆聽無失真壓縮(Lossless Compression)的音樂格式,像是 FLAC 或 APE,會是比較好的選擇。

目前多數音樂下載和串流服務已經改用更好的編碼,高解析音樂(High Resolution Audio ,簡稱 Hi-Res Audio)也逐漸興起,選擇這些高取樣規格的數位音樂,至少能避免音樂軟體的明顯失真。

-----廣告,請繼續往下閱讀-----

建立「真實」的參考標準

至於音響硬體的失真要如何判斷,首先要建立「真實」的參考標準。台灣音響圈常說「以現場為師」亦即「以現場聆聽的聲音為基準」,常聽音樂會、參加 Live 音樂節,對真實樂器的聲音有所認識,這樣在判斷音響播放的真實程度,將會有所幫助。

不過要知道,「絕對真實」是不存在的,從現場到錄音到後製到音響播放,註定是不會百分百相同的,在細節上過於計較並無幫助,重點在於「累積自己對真實樂器的聆聽經驗」,以食物為例,各式美食吃多了,自然也會建立心中一把尺,用以判斷美味與否,吃過放山土雞再吃一般肉雞自然知道有所差別,這些經驗累積,意在幫助建立「真實」的參考標準,而非按圖索驥,念念不忘某一隻美味的雞,從而失去享受別隻雞的可能。

以下有幾個重點,可以幫助我們在建立「真實」的參考標準時更有方向。

一、頻率響應範圍

每種樂器、每個人都有音域範圍,也就是頻率響應範圍。

1-1
點擊看大圖。圖/由《音響入門誌》提供

好的音響,應該要盡可能的涵蓋這些樂器的頻率響應範圍,通常來說 60Hz~20kHz 是一個不錯的標準,幾乎能涵蓋大提琴的全部範圍。然而,一般小喇叭,尤其是手機、筆電上面附設的,甚至大多數的電腦喇叭,通常都無法達到 60Hz 的低頻,一般約只能到達 200Hz,想當然爾,那不可能呈現「真實」的音樂。

-----廣告,請繼續往下閱讀-----

或許有些人會想問:為何不買到 20Hz 的音響呢?首先,很少有音響能忠實的呈現 20~40Hz 的極低頻,從頻率響應來說,音響最貴的部份就是「優秀」的極低頻,對器材、對空間,都有相當高的需求。總之,對入門者來說,60Hz~20kHz 的小系統,或 40Hz~20kHz 的中、大系統,都會是不錯的參考標準。

二、頻率響應的平坦

真實的音響系統應避免對頻率響應做過多的人工調味,讓高低頻分布平均,而非偏重某一頻率。

1-2
點擊看大圖。圖/由《音響入門誌》提供

對頻率響應進行調整的裝置叫做「等化器」,有硬體也有軟體的等化器,功能都是對某些頻率進行增強或減弱。以上圖為例,對高、低音都進行了相當的增強,這種聲音通常聽起來很刺激,但一樣不可能呈現音樂的「真實」面貌。等化器的正面意義在於「修正」,任何音響器材都不可能擁有完全平直的頻率響應,加上任何空間都有不同的駐波、殘響,適當的修正會有助於讓音響播放更接近真實。但過猶不及,過多的調整(或調味)只會造成偏離。

三、音場的定位與層次

用 Live 演唱會的錄音檢視音響系統是否真實的呈現不同樂器的位置與距離。

無論古典、爵士或流行,一場 Live 演唱會的舞台上,總有不同樂手各自的位置,忠實的音響系統應該要能呈現正確的位置,總不能在後面的鼓手,音響聽起來卻在前面;或是明明跟主唱有段距離,聽起來卻黏在一起,正確的定位跟層次感,也是音響是否「真實」的重要指標。

-----廣告,請繼續往下閱讀-----

音響是什麼?

對「真實」的參考標準有基本概念後,走進音響店聆聽各種器材前,我們有必要先了解一下:「音響是什麼?」

從原理來說,音響是一套將「電能轉變為聲能」的機器(所以電源的純淨與充沛很重要),而從組成要素來說,音響有訊源、擴大機、喇叭三部份。訊源,訊號的來源,無論是黑膠、CD、收音機、手機、電腦……,音響總有個發出訊號的東西,這就是訊源。而擴大機負責將訊源傳過來的音樂訊號,放大到足以推動喇叭,喇叭單體推動空氣產生聲波傳遞到耳朵,這就是音響不能缺少的三大部份。

1-3
點擊看大圖。圖/由《音響入門誌》提供

雖然音響分三部份,但有很多整合機種,例如收音機、攜帶式藍芽喇叭,是三部份都整合在一起,床頭音響主機,是把訊源與擴大機整合,電腦多媒體喇叭則把擴大機內建到喇叭音箱,將擴大機跟喇叭整合。這種插電的擴大機內建喇叭,通稱為主動式喇叭,而不插電的則稱為被動式喇叭,被動式喇叭就需要外接擴大機來驅動。

除了整合,當然也有細分,例如將一台 CD Player 分成轉盤跟 DAC(Digital to Analog Converter 數位類比轉換器),將一台綜合擴大機分為前、後級擴大機,或將喇叭分為左、右聲道跟重低音(2.1聲道),但無論整合或細分,萬變不離其宗,訊源的訊號被擴大機放大到推動喇叭的過程,是不會改變的。

-----廣告,請繼續往下閱讀-----

如果音響是一條河或一棟大樓

訊源的好壞影響系統極大,以河流來做比喻,上游的水若是髒的,到下游當然也還是髒的,訊源沒給的細節、訊源已經失真的訊號,擴大機也不會憑空再生出細節,或修正失真,你給擴大機垃圾,擴大機也只能把垃圾放大,到了喇叭那邊當然也一樣,可以說訊源決定了整棟音響大樓的「高度」。

擴大機既然是負責將訊源傳過來的訊號,放大到足夠驅動喇叭,基本重點便在於低失真與驅動力,然後當然還要有美好的音色。其中驅動力是一個相對性的條件,亦即要看匹配的喇叭與空間大小,如果喇叭很吃功率,空間也很大,那擴大機自然功率不能小,喇叭若效率夠高,又放在小空間聆聽,那倒是可以挑功率小點的擴大機。只要搭配合宜,擴大機就是一個大樓強健的鋼筋結構。

至於喇叭,雖然是整套音響的最下游,但卻可以說是整套音響最重要的部份,因為所有的「呈現」都在喇叭上,喇叭等級不夠,表現不出上游的美好,喇叭可以說是整套系統的「地基」,沒有夠深的地基,是蓋不了高樓的。在整套系統的搭配上,因為喇叭跟空間的關係最密切,要放桌上自然不能買落地喇叭;要放大空間自然不能買小喇叭,加上音色、頻寬這些東西都最關係到每個人的主觀喜好,所以選音響應該要先挑喇叭,然後再依照喇叭的需求跟特色,挑擴大機與訊源。

speaker
喇叭關係到空間與音樂的呈現,是音響最重要的部分。圖/Charles Rondeau @ PDP

實踐自己的聲音美學

玩音響有很多方法,有人喜歡買 Hi-End 名牌,有人喜歡找古董音響,有的人則喜歡 DIY 自己組裝,條條大路通羅馬,路不重要,重要的是羅馬。不管是什麼音響器材,重要的是它發出來的聲音是不是你想要的。 同一張 CD 給十個發燒友的系統播放,自然不會十套音響發出來的聲音都相同,其中的差異是每個人的品味差異,也就是聲音美學的差異。

-----廣告,請繼續往下閱讀-----

日本《Stereo Sound》雜誌將發燒友稱為「唱片演奏家」,音響就是我們的樂器,透過音響我們呈現自己對唱片的詮釋,建立個人的美學價值。就像一個劇本,十個導演去導都會有不同的面貌,音響最終的目的不是「重現」而是「詮釋」。相機不也一樣?相機不是重點,重點是相片。有人能用傻瓜相機當攝影大師,用平價音響也有人能漂亮地實踐自己的聲音美學。如果音響越貴聲音就越好,那直接看購買發票就能判斷誰家音響好聽了不是?事情當然不會這麼簡單,人是有創造力的,而這,才是音響有意思的地方,也是人生有趣的地方不是嗎?

音響小撇步

1、想知道什麼是失真的聲音嗎?可以到這個網站做個測試看看喔:http://www.klippel.de/listeningtest/lt/
2、除了訊源、擴大機、喇叭三個組成部分之外,空間跟電源也是影響音響系統聲音優劣至為重要的因素,就像買了超跑要有好路才能發揮,法拉利在鄉間小路也是英雄無用武之地啊。


Vol 1

 

本文轉載自《音響入門誌》vol.1:揚聲器篇。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
PanSci_96
1226 篇文章 ・ 2337 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

3
0

文字

分享

0
3
0
舞池太冷該怎麼炒熱氣氛?DJ 請下點聽不到的低頻 BASS!
Peggy Sha/沙珮琦
・2022/12/07 ・1640字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

「Despacito~Quiero respirar tu cuello despacito~」聽到這段旋律,你是不是也開始不由自主地跟著搖擺了呢?跟著音樂一起流動實在是再自然不過的事了,不過,假設你完全聽不到這些動感「音樂」,它還能發揮同樣的效果嗎?

科學家也想知道這個問題的答案,於是乎,他們把實驗室搬到舞池啦!

人會跟著聽不到的低頻音樂動次動嗎? 圖/GIPHY

超酷的實驗,就要在超酷的表演廳進行!

沒錯!最近發表在《當代生物學》(Current Biology)期刊上的研究就是這麼嗨!這份研究的第一作者是來自麥克馬斯特大學(McMaster University)的神經科學家 Daniel Cameron,他本身就是個音樂愛好者,除了會打鼓外,研究的主要方向也離不開音樂,總是在探索音樂和人類間的互動關係。

想要從事如此動感的實驗,一般的研究室可沒辦法進行,研究者們選擇的地點是麥克馬斯特大學裡面的「LIVELab」,這個地方算是個研究型表演劇院,裡面既能進行各式演出,也能同時進行各種測試和研究。

LIVELab 介紹影片。影/YouTube

劇場裡不僅有 3D 動作捕捉系統,還有可以模擬各種音樂環境的超強大 Meyer 音響系統,最重要的是,它還配備了本次研究的主角──能產生極低頻率的喇叭!普遍來說,我們耳朵能聽到的聲音頻率介在 20 Hz~20,000 Hz 之間,更高或更低都聽不見,那麼,問題來了:聽不見的聲音,還會對我們產生影響嗎?

-----廣告,請繼續往下閱讀-----

偷偷來點低頻音,大家真的會感受得到嗎?

為了尋找答案,研究者邀請加拿大的電子音樂雙人組合「 Orphx」到 LIVELab 辦了場表演,並招募了一群實驗參與者來參加。想聽這場演出,需要比平常多一點點的準備。

首先,觀眾需要戴上運動感應頭帶,用以偵測舞蹈動作;再來,觀眾在參加前和參加後都需要填寫調查表,好衡量他們對於演出的喜愛程度、相關生理感受,並確認他們沒有聽到那些偷偷塞進去的低頻聲音。

加拿大的電子音樂組合 Orphx 在 2008 年的現場表演照片。圖/Wikipedia

在整整 45 分鐘的演出中,研究人員會悄悄在幕後控制撥放低頻聲音的喇叭 ,這些喇叭會撥放 8~37 Hz 間的聲音,每兩分鐘開關一次,結果發現,當喇叭開著、放出低音的時候,觀眾的運動量竟然增加了近 12%!

為什麼我們聽不到低音卻還是想跳舞?聲音能被「感受」嗎?

不過,為什麼這些超低聲音會讓人們更愛跳舞呢?研究者們現在還不知道確切的生理運作機制,但他們有些推測。研究者認為,低頻聲音雖然無法被聽見,也不會讓大腦中處理聲音的部分變得活躍,但是,卻能被神經系統的其他部分接收到。

-----廣告,請繼續往下閱讀-----

Cameron 表示,我們腦中的前庭系統,也就是專門負責平衡感和空間感的感覺系統對於低頻刺激非常敏感。另一方面,觸覺也扮演了很重要的角色,我們身上的機械性受器(mechanoreceptor)同樣對於低頻的刺激很敏感,會隨著震動而移動,這也就是為什麼,當你站在很大聲的音響前方時,會感覺全身彷彿都在跟著震動。

圖/Pexels

或許,就是這些系統,讓我們能夠用不同的方式來「感受」到音樂、接收我們聽不見的低頻聲音。

如果想要完整了解背後的機制,勢必還要多辦幾場這樣的「科學音樂表演」,但在那之前,如果大家想要讓舞池嗨一些的話,低頻音催下去就對啦!

參考資料

  1. Want to fire up the dance floor? Play low-frequency bass
  2. Cameron, D. J., Dotov, D., Flaten, E., Bosnyak, D., Hove, M. J., & Trainor, L. J. (2022). Undetectable very-low frequency sound increases dancing at a live concert. Current Biology32(21), R1222-R1223.
  3. Low-Frequency Bass Encourages Dancing
  4. Inaudible, low-frequency bass makes people boogie more on the dancefloor
Peggy Sha/沙珮琦
69 篇文章 ・ 390 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。

0

0
0

文字

分享

0
0
0
不管在哪裡都行,教你拍出更酷的自拍照!——《這麼做就對了!最ㄎ一ㄤ的生活科學指南》
天下文化_96
・2020/02/20 ・1757字 ・閱讀時間約 3 分鐘 ・SR值 444 ・四年級

廣角自拍

這種使月亮顯得很小的廣角效果,同樣也會影響自拍的效果。

當某人用智慧型手機拍自己的臉時,他們的構圖本能可能會告訴他們把手機拿近一點,近到足以使自己的臉充滿整個鏡頭的絕大部分。但是在那樣的距離(通常比別人看你時站的地方近很多),智慧型手機的廣角鏡頭會產生很不自然的視角。

你的鼻子和臉頰比耳朵和頭部的其他部位更靠近鏡頭,使得鼻子和臉頰看起來比較大,正如在智慧型手機拍攝的照片裡,前景的建築物看起來比月亮大。這種「失真」(distortion)會使臉孔看起來和預期的樣子不太一樣。

為了減少這種效果,請將手機拿遠一點再變焦放大,可以在拍照時用相機的應用程式放大,或是拍完後再放大裁剪。

手機應該要拿多遠呢?為了盡量減少鏡頭裡多個物體之間的透視失真(perspective distortion),你和手機的距離,應該遠大於「手機與臉部最遠的距離」減去「手機與臉部最近的距離」。

-----廣告,請繼續往下閱讀-----

圖/天下文化提供

手機到臉部最近和最遠的五官的距離,兩者之間的差距可能不到 30 公分。也就是說,臉部的失真程度,端看你是把相機拿在離臉部正常的距離,還是手臂長長的伸出去。

將相機拿在離臉部 150 至 180 公分遠的地方,幾乎可以完全消除這種失真的現象,但是我們的手臂不夠長,這多少有助於解釋自拍桿的大受歡迎。

試試不同的視野,拍出更酷的自拍照

透視失真可能會改變臉部五官的相對大小,但還有另一種方法也會影響你的照片,這種方法可能會帶來各種前所未見的自拍照。

-----廣告,請繼續往下閱讀-----

當使用變焦放大時,會改變背景物體的外觀大小。如果你站在距離很遠的大型物體前面(例如一座山),照相機的變焦對於「山看起來有多大」可能有顯著的影響。

如果你設定好照相機的計時器,然後走到離照相機很遠的地方,就能把一座很小的山拍得看起來像是巨山一樣。

圖/天下文化提供

月亮自拍照

智慧型手機鏡頭的變焦範圍有限,但是如果你的照相機具有功能強大的望遠變焦鏡頭,便可拍攝一些非常有趣的自拍照。你甚至可以重現那些「月亮在天際線後方」的照片,不過是利用你自己的身體來拍,而不是建築物。

圖/天下文化提供

-----廣告,請繼續往下閱讀-----

我們可以利用幾何學來計算,照相機需要離你多遠,才能拍出「月亮在你的後方當背景」的照片。

圖/天下文化提供

這個算式告訴我們,照相機要離你大約 183 公尺遠,才能拍出「月亮自拍照」。

圖/天下文化提供

-----廣告,請繼續往下閱讀-----

既然沒有人製造 183 公尺長的自拍桿,你可能要將照相機裝設在某種三腳架上,再用遙控的方式按快門。

像這樣的照片,要對準鏡頭可能會很麻煩;你需要找到一塊區域,有很高的地方可以站,而且在你與月亮之間要有長長的、一覽無遺的視野。月亮移動迅速,所以等到一切都對準了,你只有一小段空檔可以拍照,差不多 30 秒而已。只要短短兩分鐘出頭,月亮就會完全移出視線。

圖/天下文化提供

利用適當的濾鏡(如果你非常謹慎),你甚至可以拍攝類似的太陽自拍照。這樣可能會損壞照相機,所以在你嘗試拍攝之前,請先諮詢當地的天文俱樂部或攝影器材店。

-----廣告,請繼續往下閱讀-----

如果貿然行事,你很有可能會讓照相機著火。當你用照相機對準太陽時,絕對不要透過光學取景器觀看。你的眼睛和照相機也許功能不太一樣,但是都一樣很容易燒出破洞。(編按:危險動作,請勿模仿!)

圖/天下文化提供

——本文摘自泛科學 2020 年 2 月選書《這麼做就對了!:最ㄎ一ㄤ的生活科學指南》,2020 年 1 月,天下文化

天下文化_96
139 篇文章 ・ 621 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。