1

0
0

文字

分享

1
0
0

為何我的江蕙聽起來像蔡依林?—《音響入門誌》

PanSci_96
・2016/09/20 ・4329字 ・閱讀時間約 9 分鐘 ・SR值 470 ・五年級

-----廣告,請繼續往下閱讀-----

文/Little Sound

640px-Dublin_Philharmonic_Orchestra_performing_Tchaikovsky's_Symphony_No_4_in_Charlotte,_North_Carolina
播放一曲交響樂團的演奏時,音響就像一人分飾多角,要維妙維肖的撥放出每一種樂器的音質和頻率。圖/Derek Gleeson @ wiki

音響像個演員,要演什麼像什麼,演小提琴、演電吉他、演爵士鼓……,樣樣都要演得像。但演員也有蹩腳的,那叫「演技差」,而音響蹩腳的,叫「失真大」。

從留聲機,保存聲音的技術誕生以來,音響的發展簡單來說就是從「失真」走向「傳真」。失真(Distortion)有很多種,諧波失真、振幅失真、頻率響應失真、相位失真……,失真讓你的音樂聽起來「不像真的」;中提琴聽起來像小提琴,江蕙聽起來像蔡依林……,凡此種種症頭都表示您的音響是個蹩腳的演員,演什麼不像什麼。

從失真到 Hi-Fi,從 Hi-Fi 到 Hi-End

從 1888 年由美國發明家伯利那(E.Berliner)展示留聲機以來,到了 1950 至 1960 年代,高傳真(High fidelity 或 Hi-Fi)這個名詞開始被廣泛使用,這名詞意味著噪音與失真很小,能「完美再現原音」。德國標準化學會並在 1973 年制訂了相關標準。換言之,音響工業在經過半世紀發展後,正式進入了低失真、高傳真的新時代。

-----廣告,請繼續往下閱讀-----

不過雖然技術能夠達到,商人可不見得都會生產好產品給客人,用人工香料的號稱是天然食材、回收餿水油跟你說是天然豬油的黑心商人在什麼時代都不缺,自從 Hi-Fi 這個名詞出現後,哪個音響廠商會不標示自己的產品 Hi-Fi 呢?於是從 1980 年代起,逐漸出現 Hi-End 這個名詞,用來表示比 Hi-Fi 更好的聲音品質,它意味著一種追求完美,比 Hi-Fi 更講究、更極致、更不惜工本的高階產品,以跟原來的 Hi-Fi 做區隔。發展到今,Hi-End 已成為「最高階音響」的同義詞,辦音響展必稱是 Hi-End 音響展,若只有 Hi-Fi 音響展聽起來就遜了,完全沒吸引力。

避免破壞性壓縮音樂格式

雖然音響的技術發展已經從失真到 Hi-Fi,又從 Hi-Fi 到了 Hi-End,可別以為從此每台音響都 Hi-End 了起來,就像手機也是有智慧機皇到智障黑心機一樣,音響市場上自然是失真、Hi-Fi、Hi-End 三大類產品並存,遺憾的是,失真的占絕大多數,而且絕對不會貼上「失真」兩個字讓客人知道。

elvis-presley-1482026_640
市場上失真、Hi-Fi、Hi-End 三大類產品並存,遺憾的是,失真的占絕大多數。圖/MikeBirdy @ pixabay

雪上加霜的是,隨著數位時代的來臨,破壞性壓縮的 MP3、串流音樂……等等方便流傳的音樂格式,讓原本音響硬體的失真外,又增加了「音樂軟體」的失真。是的,失真不但沒有消失過,甚至比以往更加普遍。MP3「失真壓縮」大約於 1993 年問世,隨著免費音樂播軟體 Winamp 在 1997 年的推出成為了網路音樂的主流格式。MP3 檔案的大小約為 CD 的 1 / 11,能將檔案壓縮到這麼小,靠的是破壞性資料壓縮(Lossy Compression)。用這種「有損壓縮」的方式來儲存訊號,會使播放出來的音樂嚴重失真,在早期的網路頻寬限制下,或許這是「必要的惡」,但在如今的網路頻寬條件下,選擇聆聽無失真壓縮(Lossless Compression)的音樂格式,像是 FLAC 或 APE,會是比較好的選擇。

目前多數音樂下載和串流服務已經改用更好的編碼,高解析音樂(High Resolution Audio ,簡稱 Hi-Res Audio)也逐漸興起,選擇這些高取樣規格的數位音樂,至少能避免音樂軟體的明顯失真。

-----廣告,請繼續往下閱讀-----

建立「真實」的參考標準

至於音響硬體的失真要如何判斷,首先要建立「真實」的參考標準。台灣音響圈常說「以現場為師」亦即「以現場聆聽的聲音為基準」,常聽音樂會、參加 Live 音樂節,對真實樂器的聲音有所認識,這樣在判斷音響播放的真實程度,將會有所幫助。

不過要知道,「絕對真實」是不存在的,從現場到錄音到後製到音響播放,註定是不會百分百相同的,在細節上過於計較並無幫助,重點在於「累積自己對真實樂器的聆聽經驗」,以食物為例,各式美食吃多了,自然也會建立心中一把尺,用以判斷美味與否,吃過放山土雞再吃一般肉雞自然知道有所差別,這些經驗累積,意在幫助建立「真實」的參考標準,而非按圖索驥,念念不忘某一隻美味的雞,從而失去享受別隻雞的可能。

以下有幾個重點,可以幫助我們在建立「真實」的參考標準時更有方向。

一、頻率響應範圍

每種樂器、每個人都有音域範圍,也就是頻率響應範圍。

1-1
點擊看大圖。圖/由《音響入門誌》提供

好的音響,應該要盡可能的涵蓋這些樂器的頻率響應範圍,通常來說 60Hz~20kHz 是一個不錯的標準,幾乎能涵蓋大提琴的全部範圍。然而,一般小喇叭,尤其是手機、筆電上面附設的,甚至大多數的電腦喇叭,通常都無法達到 60Hz 的低頻,一般約只能到達 200Hz,想當然爾,那不可能呈現「真實」的音樂。

-----廣告,請繼續往下閱讀-----

或許有些人會想問:為何不買到 20Hz 的音響呢?首先,很少有音響能忠實的呈現 20~40Hz 的極低頻,從頻率響應來說,音響最貴的部份就是「優秀」的極低頻,對器材、對空間,都有相當高的需求。總之,對入門者來說,60Hz~20kHz 的小系統,或 40Hz~20kHz 的中、大系統,都會是不錯的參考標準。

二、頻率響應的平坦

真實的音響系統應避免對頻率響應做過多的人工調味,讓高低頻分布平均,而非偏重某一頻率。

1-2
點擊看大圖。圖/由《音響入門誌》提供

對頻率響應進行調整的裝置叫做「等化器」,有硬體也有軟體的等化器,功能都是對某些頻率進行增強或減弱。以上圖為例,對高、低音都進行了相當的增強,這種聲音通常聽起來很刺激,但一樣不可能呈現音樂的「真實」面貌。等化器的正面意義在於「修正」,任何音響器材都不可能擁有完全平直的頻率響應,加上任何空間都有不同的駐波、殘響,適當的修正會有助於讓音響播放更接近真實。但過猶不及,過多的調整(或調味)只會造成偏離。

三、音場的定位與層次

用 Live 演唱會的錄音檢視音響系統是否真實的呈現不同樂器的位置與距離。

無論古典、爵士或流行,一場 Live 演唱會的舞台上,總有不同樂手各自的位置,忠實的音響系統應該要能呈現正確的位置,總不能在後面的鼓手,音響聽起來卻在前面;或是明明跟主唱有段距離,聽起來卻黏在一起,正確的定位跟層次感,也是音響是否「真實」的重要指標。

-----廣告,請繼續往下閱讀-----

音響是什麼?

對「真實」的參考標準有基本概念後,走進音響店聆聽各種器材前,我們有必要先了解一下:「音響是什麼?」

從原理來說,音響是一套將「電能轉變為聲能」的機器(所以電源的純淨與充沛很重要),而從組成要素來說,音響有訊源、擴大機、喇叭三部份。訊源,訊號的來源,無論是黑膠、CD、收音機、手機、電腦……,音響總有個發出訊號的東西,這就是訊源。而擴大機負責將訊源傳過來的音樂訊號,放大到足以推動喇叭,喇叭單體推動空氣產生聲波傳遞到耳朵,這就是音響不能缺少的三大部份。

1-3
點擊看大圖。圖/由《音響入門誌》提供

雖然音響分三部份,但有很多整合機種,例如收音機、攜帶式藍芽喇叭,是三部份都整合在一起,床頭音響主機,是把訊源與擴大機整合,電腦多媒體喇叭則把擴大機內建到喇叭音箱,將擴大機跟喇叭整合。這種插電的擴大機內建喇叭,通稱為主動式喇叭,而不插電的則稱為被動式喇叭,被動式喇叭就需要外接擴大機來驅動。

除了整合,當然也有細分,例如將一台 CD Player 分成轉盤跟 DAC(Digital to Analog Converter 數位類比轉換器),將一台綜合擴大機分為前、後級擴大機,或將喇叭分為左、右聲道跟重低音(2.1聲道),但無論整合或細分,萬變不離其宗,訊源的訊號被擴大機放大到推動喇叭的過程,是不會改變的。

-----廣告,請繼續往下閱讀-----

如果音響是一條河或一棟大樓

訊源的好壞影響系統極大,以河流來做比喻,上游的水若是髒的,到下游當然也還是髒的,訊源沒給的細節、訊源已經失真的訊號,擴大機也不會憑空再生出細節,或修正失真,你給擴大機垃圾,擴大機也只能把垃圾放大,到了喇叭那邊當然也一樣,可以說訊源決定了整棟音響大樓的「高度」。

擴大機既然是負責將訊源傳過來的訊號,放大到足夠驅動喇叭,基本重點便在於低失真與驅動力,然後當然還要有美好的音色。其中驅動力是一個相對性的條件,亦即要看匹配的喇叭與空間大小,如果喇叭很吃功率,空間也很大,那擴大機自然功率不能小,喇叭若效率夠高,又放在小空間聆聽,那倒是可以挑功率小點的擴大機。只要搭配合宜,擴大機就是一個大樓強健的鋼筋結構。

至於喇叭,雖然是整套音響的最下游,但卻可以說是整套音響最重要的部份,因為所有的「呈現」都在喇叭上,喇叭等級不夠,表現不出上游的美好,喇叭可以說是整套系統的「地基」,沒有夠深的地基,是蓋不了高樓的。在整套系統的搭配上,因為喇叭跟空間的關係最密切,要放桌上自然不能買落地喇叭;要放大空間自然不能買小喇叭,加上音色、頻寬這些東西都最關係到每個人的主觀喜好,所以選音響應該要先挑喇叭,然後再依照喇叭的需求跟特色,挑擴大機與訊源。

speaker
喇叭關係到空間與音樂的呈現,是音響最重要的部分。圖/Charles Rondeau @ PDP

實踐自己的聲音美學

玩音響有很多方法,有人喜歡買 Hi-End 名牌,有人喜歡找古董音響,有的人則喜歡 DIY 自己組裝,條條大路通羅馬,路不重要,重要的是羅馬。不管是什麼音響器材,重要的是它發出來的聲音是不是你想要的。 同一張 CD 給十個發燒友的系統播放,自然不會十套音響發出來的聲音都相同,其中的差異是每個人的品味差異,也就是聲音美學的差異。

-----廣告,請繼續往下閱讀-----

日本《Stereo Sound》雜誌將發燒友稱為「唱片演奏家」,音響就是我們的樂器,透過音響我們呈現自己對唱片的詮釋,建立個人的美學價值。就像一個劇本,十個導演去導都會有不同的面貌,音響最終的目的不是「重現」而是「詮釋」。相機不也一樣?相機不是重點,重點是相片。有人能用傻瓜相機當攝影大師,用平價音響也有人能漂亮地實踐自己的聲音美學。如果音響越貴聲音就越好,那直接看購買發票就能判斷誰家音響好聽了不是?事情當然不會這麼簡單,人是有創造力的,而這,才是音響有意思的地方,也是人生有趣的地方不是嗎?

音響小撇步

1、想知道什麼是失真的聲音嗎?可以到這個網站做個測試看看喔:http://www.klippel.de/listeningtest/lt/
2、除了訊源、擴大機、喇叭三個組成部分之外,空間跟電源也是影響音響系統聲音優劣至為重要的因素,就像買了超跑要有好路才能發揮,法拉利在鄉間小路也是英雄無用武之地啊。


Vol 1

 

本文轉載自《音響入門誌》vol.1:揚聲器篇。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
PanSci_96
1262 篇文章 ・ 2568 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
0

文字

分享

0
3
0
舞池太冷該怎麼炒熱氣氛?DJ 請下點聽不到的低頻 BASS!
Peggy Sha/沙珮琦
・2022/12/07 ・1640字 ・閱讀時間約 3 分鐘

「Despacito~Quiero respirar tu cuello despacito~」聽到這段旋律,你是不是也開始不由自主地跟著搖擺了呢?跟著音樂一起流動實在是再自然不過的事了,不過,假設你完全聽不到這些動感「音樂」,它還能發揮同樣的效果嗎?

科學家也想知道這個問題的答案,於是乎,他們把實驗室搬到舞池啦!

人會跟著聽不到的低頻音樂動次動嗎? 圖/GIPHY

超酷的實驗,就要在超酷的表演廳進行!

沒錯!最近發表在《當代生物學》(Current Biology)期刊上的研究就是這麼嗨!這份研究的第一作者是來自麥克馬斯特大學(McMaster University)的神經科學家 Daniel Cameron,他本身就是個音樂愛好者,除了會打鼓外,研究的主要方向也離不開音樂,總是在探索音樂和人類間的互動關係。

想要從事如此動感的實驗,一般的研究室可沒辦法進行,研究者們選擇的地點是麥克馬斯特大學裡面的「LIVELab」,這個地方算是個研究型表演劇院,裡面既能進行各式演出,也能同時進行各種測試和研究。

LIVELab 介紹影片。影/YouTube

劇場裡不僅有 3D 動作捕捉系統,還有可以模擬各種音樂環境的超強大 Meyer 音響系統,最重要的是,它還配備了本次研究的主角──能產生極低頻率的喇叭!普遍來說,我們耳朵能聽到的聲音頻率介在 20 Hz~20,000 Hz 之間,更高或更低都聽不見,那麼,問題來了:聽不見的聲音,還會對我們產生影響嗎?

-----廣告,請繼續往下閱讀-----

偷偷來點低頻音,大家真的會感受得到嗎?

為了尋找答案,研究者邀請加拿大的電子音樂雙人組合「 Orphx」到 LIVELab 辦了場表演,並招募了一群實驗參與者來參加。想聽這場演出,需要比平常多一點點的準備。

首先,觀眾需要戴上運動感應頭帶,用以偵測舞蹈動作;再來,觀眾在參加前和參加後都需要填寫調查表,好衡量他們對於演出的喜愛程度、相關生理感受,並確認他們沒有聽到那些偷偷塞進去的低頻聲音。

加拿大的電子音樂組合 Orphx 在 2008 年的現場表演照片。圖/Wikipedia

在整整 45 分鐘的演出中,研究人員會悄悄在幕後控制撥放低頻聲音的喇叭 ,這些喇叭會撥放 8~37 Hz 間的聲音,每兩分鐘開關一次,結果發現,當喇叭開著、放出低音的時候,觀眾的運動量竟然增加了近 12%!

為什麼我們聽不到低音卻還是想跳舞?聲音能被「感受」嗎?

不過,為什麼這些超低聲音會讓人們更愛跳舞呢?研究者們現在還不知道確切的生理運作機制,但他們有些推測。研究者認為,低頻聲音雖然無法被聽見,也不會讓大腦中處理聲音的部分變得活躍,但是,卻能被神經系統的其他部分接收到。

-----廣告,請繼續往下閱讀-----

Cameron 表示,我們腦中的前庭系統,也就是專門負責平衡感和空間感的感覺系統對於低頻刺激非常敏感。另一方面,觸覺也扮演了很重要的角色,我們身上的機械性受器(mechanoreceptor)同樣對於低頻的刺激很敏感,會隨著震動而移動,這也就是為什麼,當你站在很大聲的音響前方時,會感覺全身彷彿都在跟著震動。

圖/Pexels

或許,就是這些系統,讓我們能夠用不同的方式來「感受」到音樂、接收我們聽不見的低頻聲音。

如果想要完整了解背後的機制,勢必還要多辦幾場這樣的「科學音樂表演」,但在那之前,如果大家想要讓舞池嗨一些的話,低頻音催下去就對啦!

參考資料

  1. Want to fire up the dance floor? Play low-frequency bass
  2. Cameron, D. J., Dotov, D., Flaten, E., Bosnyak, D., Hove, M. J., & Trainor, L. J. (2022). Undetectable very-low frequency sound increases dancing at a live concert. Current Biology32(21), R1222-R1223.
  3. Low-Frequency Bass Encourages Dancing
  4. Inaudible, low-frequency bass makes people boogie more on the dancefloor
-----廣告,請繼續往下閱讀-----