1

3
0

文字

分享

1
3
0

高音唱不上去可以降 KEY,高頻聽不清楚可以……?──談助聽器降頻技術

雅文兒童聽語文教基金會_96
・2022/07/23 ・3793字 ・閱讀時間約 7 分鐘

  • 文/雅文基金會聽語科學研究中心 張逸屏

在 KTV 歡唱時,當挑戰高音不成,還偏偏硬是要唱,就會用大絕招──降 key!但你知道嗎?其實助聽器也有類似降 key 的功能喔!也就是所謂的「降頻技術」。但是,助聽器降頻技術到底是怎麼運作的呢?對於聽損者的語音理解真的有幫助嗎?

圖一:助聽器除了將音量放大外,某些型號也有降頻功能,針對高頻的聲音做處理,希望能讓聽損者更加享受聆聽的生活樂趣。圖/Unsplash

一般我們聆聽到的各種聲音,包含了許多高低不同的頻率,低頻的聲音像是打雷、海浪、抽油煙機和語音/ㄨ/等,而高頻的聲音則是像鳥叫、哨子、指甲刮黑板和語音/ㄙ/等聲音。但事實上,絕大多數的聲音都是由許多高低不同的頻率所組成,只是每個聲音的組成成份當中,高低頻的比例不同而已。

所以當我們說這是一個高頻的聲音或語音時,只是意味其中高頻聲音的佔比較多,並不代表當中完全沒有低頻的成份。因此,在討論聽力損失時,除了損失程度(類似近視度數)之外,對不同頻率聲音的接收程度也是需要考量的面向。例如,有些聽損者可能是從低頻到高頻的聽損程度都差不多,有些則在不同頻帶聽損程度變化很大。

一般而言,對於降頻技術使用反應較好的聽力損失者,是屬於高頻區域聽力受損較重的,主要是陡降型聽損和高頻型聽損這兩大族群(如圖二)。受限於助聽器放大強度的限制,無法將高頻的聲音放大到這些聽損者可利用的程度。再者,即使可放大到足夠大聲,但聽損者常有耳蝸死區 [註 1] 和頻率解析能力 [註 2] 不足的狀況,導致大腦無法接收及運用這些被放大後的高頻語音。

-----廣告,請繼續往下閱讀-----

因此,某些廠牌型號的助聽器,便具備降頻的功能,將降頻功能開啟後,聽損者在較小的音量時就能聽得到高頻的語音,讓高頻的聽力察覺閾值 [註 3] 能夠降低。如此一來,許多聽損者容易錯失的高頻語音,像是/ㄙ、ㄐ、ㄔ、ㄈ/等就都可以聽得到了,也可能比較不會產生誤聽的狀況,例如將「舌頭」聽成「額頭」(沒聽到/ㄕ/)[註 4]

圖二:臨床上使用助聽器降頻功能後,效果較好的兩種聽損類型(此處聽力圖類型僅為示意)。圖/雅文基金會

三種降頻技術,概念相似、作法不同 

那麼當助聽器的降頻功能開啟時,是怎麼進行訊號處理的呢?降頻技術的原文是 frequency lowering,有時也稱作移頻技術(frequency shifting),顧名思義就是將聽損者聽不到的、較高頻率帶的聲音,挪移到聽損者聽力較好的低頻率帶,讓聽損者能聽到。

在訊號處理方面,通常會依據個案的聽力圖先決定一個起始頻率,針對比起始頻率要高的頻帶來進行降頻處理。而訊號處理的方式大致可分為三種類型(不同廠牌的助聽器可能會使用不同的處理方式),包括:頻率搬移(frequency transposition)、頻率合成(frequency composition,有時亦稱為頻率轉換,即 frequency translation)和頻率壓縮(frequency compression)。[1]

如圖三(a)所示,頻率搬移是將起始頻率以上的聲音直接搬移到低頻帶,和低頻帶原本的聲音重疊在一起,而且被移走的部份並不保留,如同圖三(a)中,兩個紫色方形移到低頻的區域,原本高頻帶的地方變成灰色,表示沒有訊號。

-----廣告,請繼續往下閱讀-----
圖三:降頻技術共分為三種類型。圖/修改自 Oticon Whitepaper

頻率合成則和頻率搬移很相似,只是在搬移之前會把高頻帶的聲音先進行壓縮,如同圖三(b)中,搬移到橘黃色方形上方的兩個紫色方形疊在一起了(頻寬變小),而且在高頻帶仍然保留原本的聲音。

而第三種是如圖三(c)的頻率壓縮,是把高頻帶的聲音以不同壓縮比例的方式往低頻率帶擠壓,因為有不同的壓縮比例,也就是非線性的,故有時也稱作非線性頻率壓縮(non-linear frequency compression; NFC)。

「聽得到」和「聽得清楚」的拉鋸戰

這三種降頻技術都是將原本聽損者聽不到的高頻聲音,搬移到聽損者聽力較好的低頻帶,藉此讓助聽器使用者能聽到原本無法聽到的聲音。但是,有別於 KTV 的降 key 是全部聲音往低頻搬移,助聽器的降頻技術只有針對部份高頻的聲音處理,所以整體來說會有某種程度的扭曲 [2]。若以視覺來比喻,降頻技術則有點類似遊樂園的哈哈鏡(曲面鏡),對於不同區域採用不同方式的反射,所以會有扭曲現象。

哈哈鏡的扭曲影像讓人發笑,但降頻技術若導致聲音過度扭曲而無法辨識,那可不好玩!所以,降頻技術雖然可以提升「察覺」高頻聲音的表現,但能否提升「理解」就不一定了。也就是說,即便降頻技術讓聽損者能聽到/ㄙ、ㄐ、ㄔ、ㄈ/等高頻語音,但聽起來也許已經不像這些聲音了,有些人或許透過訓練和適應後能辨識這些語音,但也有些人會完全無法適應。因此,如同圖四,降頻技術就是「聽到」和「扭曲聲音」兩者之間的權衡取捨 [3]

-----廣告,請繼續往下閱讀-----
圖四:降頻技術雖然可以讓原本聽不到的聲音變成聽得到,但代價是聲音或多或少地被扭曲了。因此必需在聽到(察覺)和聽懂(理解)之間取得平衡。圖/修改自 Flaticon

有一項針對高頻聽損者的研究,分析使用降頻技術的效益和高頻帶平均聽力閾值間的關係,發現高頻聽力閾值愈高(高頻聽力相對較差),使用降頻技術後在聽能表現的提升愈顯著 [3],因為對這些聽損者而言,能聽到高頻的聲音是比較重要的,因此可以接受一點聲音扭曲的代價,來換取聽得到高頻聲音的效益。

但對高頻聽力相對較好的人來說,可能原本可以聽得到一些高頻語音,因此也比較會感受到聲音被扭曲了。這樣的研究發現讓我們了解,降頻技術並不一定適合每個聽損者。

參數設定和聆聽情境是關鍵

除了要選擇合適的對象來使用降頻技術之外,聽力師也需要針對聲音處理技術的參數做合適的設定,才能在「聽到」和「扭曲聲音」兩者之間找到完美的平衡點。因為研究也發現,當降頻處理的程度愈大,也就是起始頻率愈低或壓縮程度愈大,那麼搬移/壓縮的聲音就愈多、聲音特性改變的幅度也愈大,此時助聽器使用者也容易覺得音質變差了 [3]。因此,挑選到合適的參數設定,才能在音質變化不大的情況下,享受到改善高頻語音察覺的益處!

此外,對降頻技術效益有影響的因素還包括了聆聽的情境,例如環境是安靜/吵雜、或內容是語音/音樂。相對於安靜的環境,在吵雜的環境中,助聽器使用者較能接受大程度的降頻處理 [3],可能是在安靜情境下較能感受到降頻處理帶來的音質改變,而在吵雜時,「聽得到」的重要性會更加凸顯。

-----廣告,請繼續往下閱讀-----

而相較於語音,降頻技術可能會對聆聽音樂產生負面影響 [4]。對語音來說,頻率的搬移和壓縮影響比較小,因為許多高頻子音其實有點類似寬頻的噪音,所以即使頻率被悄悄偷天換日到低頻帶了,再加上情境和上下文的線索,聽者仍然能理解接收到的語音。但在聆聽音樂時,精準的頻率是很重要的。概念上可以從「和絃」來理解,和絃中的組成音符,每個音都必須在正確的頻率上,組合起來的和絃才會是正確而且悅耳。這樣就不難理解降頻技術可能會對於聆聽音樂造成較大的負面影響,造成聲音聽起來不和諧。

圖五:助聽器降頻技術可能對於音樂聆聽來說有較大的負面影響。圖/Irasutoya

和聽力師共同尋求最佳解方

綜合以上的研究發現,我們知道聽損者和聽力師針對降頻技術的討論,除了自己是否適合使用外,也要嘗試不同的參數設定,甚至是在不同聆聽環境中選擇是否開啟降頻功能、或設定不同的參數。其實就和所有的助聽器選配和調整一樣,都需要和聽力師密切討論、並說明在使用上的感受,才能讓助聽器發揮最理想的效果。

總結來說,降頻助聽器可能可以提升聽損者的聽音表現,但不見得適用於每個人。而且,若降頻處理的範圍或壓縮程度較大,也可能會讓聲音的音質改變、或語音的特性被扭曲,而導致聽不清楚的狀況。總結來說,使用降頻助聽器時,關鍵就是要以「最少的聲音扭曲」來換取「聽得到」高頻音的好處 [2]

註解

註 1:相對於聽力損失是耳蝸中的毛細胞不健全或功能異常,耳蝸死區(cochlear dead regions)則是某些區域完全沒有毛細胞,導致有某些特定頻率的聲音,再怎麼放大也無法聽到。

-----廣告,請繼續往下閱讀-----

註 2:頻率解析能力為分辨兩個不同頻率聲音的能力,一般來說聽損者的頻率解析能力也會較差。

註 3:「聽力察覺閾值」為某一頻率下,個人能聽到(察覺)聲音的最小音量。閾值愈高,表示要愈大聲才聽得到,聽損的程度就愈重。

註 4:想了解更多關於「高頻聽力損失」和「微聽損」相關資訊,可參閱雅文基金會「微聽損網站」和「如果小美人魚失去的是聽力,幸福也沒有比較容易:談輕微聽力損失『微聽損』」一文。

  1. Angelo, K., Alexander, J. M., Christiansen, T. U., Simonsen, C. S., & Jespersgaard, C. F. C. (2015). Oticon Frequency Lowering: Access to high-frequency speech sounds with Speech Rescue technology. Oticon Whitepaper.
  2. McCreery, R.W. (2016, October). 20Q: Frequency lowering ten years later – evidence for benefit. AudiologyOnline, Article 18370.
  3. Souza, P. E., Arehart, K. H., Kates, J. M., Croghan, N. B., & Gehani, N. (2013). Exploring the limits of frequency lowering. Journal of Speech, Language, and Hearing Research, 56(5), 1349–1363.
  4. Chasin, M. (n.d.). The Problem with Frequency Compression and Music.
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
雅文兒童聽語文教基金會_96
62 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
一次搞懂主動式 vs 被動式降噪,讓你耳朵甲百二的法寶
雅文兒童聽語文教基金會_96
・2024/08/27 ・2155字 ・閱讀時間約 4 分鐘

  • /王子宜|雅文基金會 聽力師

世界衛生組織 ( WHO ) 統計,目前全球約有 5% 人口正接受聽力復健措施,如:助聽輔具協助,並預估到 2050 年前,將有 2.5 億人口存在一定程度的聽力損失,並有近 700 萬人,聽力度數已影響日常聆聽需介入,也就是說每十人就有一人需要助聽輔具協助,顯示聽力問題持續存在,影響人數逐年提升,且為全球重視議題。除了受損後的介入處遇外,預防更勝於治療,WHO 也發現全球約 11 億人面臨噪音性聽損風險,且相關防護裝置的使用仍不普及,可見噪音暴露是為有損聽力健康之高風險因素之一。

有什麼方式可以幫助我們遠離噪音傷害呢?因應而生的就是「聽覺防護工具」,可以是使用被動式降噪的耳塞,或是現在風行的耳機搭配主動式降噪設計,那到底主動和被動,哪一個降噪效果比較好呢?用這些防護工具有沒有需要注意的地方?以下就讓我們來探探究竟。

被動式降噪

被動式降噪的操作方式是將聲音傳入耳朵的通道堵住,盡可能降低進到耳朵裡面的音量,但我們如何知道各款耳塞的降噪能力呢?可透過產品提供的 NRR 值估算,NRR ( Noise Reduction rating ) 值指的是噪音衰減率,若要評估環境中使用耳塞後耳內仍有的噪音量,可利用原廠提供的 NRR 值做簡單計算如下

耳內噪音量 ( ENL ) [ dBA ] = 環境噪音 ( dBC ) – NRR = 環境噪音 ( dBA ) – ( NRR – 7 )* 計算時仍需考量耳塞密合度的影響,普遍來說若耳塞無氣孔,且佩戴大致貼合,則降噪效果約為原廠提供 NRR 值的 50%~70%。

依照耳道共振的特性,當我們將耳道口以各式耳塞塞住,雖塞入深度及耳塞材質仍有影響,但研究顯示可產生的降噪音量為高頻多於低頻 ( 如下圖 ),尤其在 3000-6000Hz 處可達最佳降噪效益,此段頻率也恰為噪音型聽力損失前期,耳蝸毛細胞先受到損傷的區段吻合,由此可見雖然各家抗噪耳塞的設計及佩戴方式不進相同,但只要在可能有噪音暴露風險的聆聽環境中使用抗噪耳塞,就能夠減低使耳蝸毛細胞受損,進一步產生不可逆聽力損失的風險。

-----廣告,請繼續往下閱讀-----
參考資料 3 表 1.

剛剛提到耳塞的材質、密合度及使用方式也會相應的有不同降噪表現,以下舉兩種常見耳塞供讀者參考。

3M 耳塞

3M 廠牌推出各種造型及佩戴方式的防護工具,主要可分為耳罩式和塞入式兩種,右圖為市面常見的橘色塞入式耳塞,原廠提供的 NRR 值為 29 分貝,平均來說,各塞入式耳塞的 NRR 值約落在 25-33 分貝間,詳細降噪效果請見參考資料 4。

非塞入式矽膠耳塞

此種耳塞的使用方式為利用將矽膠的延展性,密封住耳道口,即不用將耳塞塞入耳道內,提升佩戴舒適性,部分耳塞可透過清洗方式清潔並重複利用,各家廠商的抗噪能力不盡相同,網路搜尋商品資訊,平均降噪能力 ( NRR值 ) 落在 20-40 分貝間。

矽膠耳塞佩戴方式 ↑ ( 參考自耳酷點子官網 )

主動式降噪

How Does Noise Cancelling Work? | Built In

-----廣告,請繼續往下閱讀-----

主動式降噪的操作原理簡單來說就是透過降噪系統產生與外界噪音相等的反向聲波,以破壞性干擾原理消除噪音,因此需先由耳機麥克風收集並分析外部聲源後,才能複製並產生反向聲波來進行降噪,對於持續出現的噪音,如:風切聲、交通工具運轉聲效果較佳,但若是突然出現的噪音,如:他人聊天對話,則會因來不及進行運算分析,降噪效益較有限。

參考自 Noise-cancelling headphones: originally appeared in How It Works (issue 80)

研究統計,主動式降噪音量平均為 30 分貝,針對重複性的低頻噪音有機會達 60 分貝的降噪量,但因麥克風濾波設計,主動式降噪技術對於高於 1000Hz 的音頻處理較弱,也就是說他主要能夠降低的外部干擾多為低頻噪音。目前幾家耳機大廠皆有針對主動式降噪搭配藍芽串流的耳機設計,若佩戴方式為耳道 ( 塞入 ) 式,因不像耳罩式耳機多了被動式透過耳罩多一層降噪的設計,所以在高頻方面的效益會稍弱一些,建議讀者可依據聆聽情境、使用需求及佩戴舒適性做綜合考量。

隨著聽力保健意識抬頭,科技的快速發展也幫助我們有更多的防護工具選擇,然這些抗噪工具並非萬能,在使用上也會有其不便利之處,如:雖目前研究皆顯示主動式降噪為安全有效的技術,但有部分個案對低頻反向波刺激大腦時會相應有頭暈的症狀、若在馬路行走時使用,當外部噪音都被消除時,會有交通安全上的疑慮。

想達到聽能保健之成效,除了有效利用工具之外,在日常生活的一些細節調整,如把握 66 原則:「在聆聽個人音訊裝置時,音量須小於 60% 且每天不超過 60 分鐘」,也能幫助自己在享受聲音的同時,有效避免面臨噪音性聽力損失的風險。

-----廣告,請繼續往下閱讀-----
  1. https://www.ctwant.com/article/257729
  2. NRR Rating – Custom Protect EarCustom Protect Ear
  3. Niloofar Ziayi Ghahnavieh, Siamak Pourabdian, and Farhad Forouharmajd, 2018. Protective earphones and human hearing system response to the received sound frequency signals.
  4. https://multimedia.3m.com/mws/media/1064417O/3m-hearing-line-card.pdf
  5. 聽不聽,由你決定:降噪技術背後的奧秘 – Samsung Newsroom 台灣
  6. How Does Noise Cancelling Work? | Built In
  7. How do noise-cancelling headphones work? – How It Works (howitworksdaily.com)
  8. 聽覺照顧雲 (psa.org.tw)
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

雅文兒童聽語文教基金會_96
62 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

1
1

文字

分享

0
1
1
電磁波全揭秘:了解頻帶、頻寬、頻率和通信技術的基礎知識
數感實驗室_96
・2024/06/13 ・672字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

先前我們介紹了多位為通信科技發展做出貢獻的科學家。現在,我們要深入探討無線通信的技術層面。

無線通信,顧名思義不像傳統的電話或電報那樣需要一條實體的線路來傳遞信號。但這些信號並非憑空傳遞,它們依賴的正是電磁波。

電磁波在現代社會無處不在,從微波爐、手機到基地台,這些設備都會發射電磁波。但其實即使沒有這些科技裝置,電磁波依然存在於我們周圍。什麼意思呢?答案就是:當我們白天走到戶外,看到的光,它其實也是電磁波的一種。

-----廣告,請繼續往下閱讀-----

希望大家掌握了這些電磁波、頻帶、頻寬等基礎知識後,未來在閱讀相關的電信新聞時更加了解他們提到的術語,以及各種縮寫。以後無論是科技發展的動態還是市場新技術,都能更有概念地理解。

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/