0

0
0

文字

分享

0
0
0

魔鏡魔鏡,越看越美麗?

吳易軒
・2015/03/06 ・749字 ・閱讀時間約 1 分鐘 ・SR值 478 ・五年級

-----廣告,請繼續往下閱讀-----

你是否疑惑過,為什麼鏡子裡的自己明明美艷動人、英氣逼人,每次卻要自拍個一兩百張才能從中挑出那一兩張來?又或者怎樣拍都不對,只有對著鏡子拍能讓你滿意?先別急著換相機,因為原因就出在鏡子!

credit:Christian Holmér/flickr
credit:Christian Holmér/flickr

單純曝光效應(mere-exposure,也稱作重複曝光效應),在1968年由心理學家札瓊克(Robert Zajonc)提出,主要是在說人們對於重複出現在眼前的人事物比較容易產生好感,札瓊克讓受試者重複觀看不同形狀的物件、各種表情、甚至是毫無意義的文字,研究結果發現受試者對於重複觀看次數較頻繁者,產生正面評價的比率比較高。

從此研究來說,因為我們最常從鏡子中看到自己,也就比較喜歡鏡子映出的樣子。相對的,當你看到比較陌生的相機中的自己,也就容易理所當然覺得「這台相機拍不出我的美!」。

除此之外,2008年的一項研究顯示人們通常會認為自己比實際上更迷人。

-----廣告,請繼續往下閱讀-----

attractive (1)

在實驗中,研究人員將受試者的照片變得美一些或醜一些,然後分別將受試者美版與醜版的照片與其他陌生人的照片混在一起,接著他們必須從數張照片中找出自己,實驗結果發受試者能用較少的時間找出美麗版的自己,換言之,他們能比較快認出美麗的自己。

因此除了單純曝光效應的因素之外,我們比較不喜歡照片中的樣子也可能是因為我們對自己的外表有更高的期待。

總而言之,若想要讓自己拍照起來更好看,與其換一台相機,不如多看看相片中的自己吧(咦)。

參考資料:

-----廣告,請繼續往下閱讀-----
文章難易度
吳易軒
7 篇文章 ・ 0 位粉絲
Pansci實習編輯,喜歡接觸各種新鮮有趣的人事物,相信這世界沒有什麼不可能,最喜歡的一句話是「每個時間都要很穩定、很清楚的知道自己在做什麼」。

0

0
0

文字

分享

0
0
0
Intel® Core™ Ultra AI 處理器:下一代晶片的革命性進展
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/21 ・2364字 ・閱讀時間約 4 分鐘

本文由 Intel 委託,泛科學企劃執行。 

在當今快節奏的數位時代,對於處理器性能的需求已經不再僅僅停留在日常應用上。從遊戲到學術,從設計到內容創作,各行各業都需要更快速、更高效的運算能力,而人工智慧(AI)的蓬勃發展更是推動了這一需求的急劇增長。在這樣的背景下,Intel 推出了一款極具潛力的處理器—— Intel® Core™ Ultra,該處理器不僅滿足了對於高性能的追求,更為使用者提供了運行 AI 模型的全新體驗。

先進製程:效能飛躍提升

現在的晶片已不是單純的 CPU 或是 GPU,而是混合在一起。為了延續摩爾定律,也就是讓相同面積的晶片每過 18 個月,效能就提升一倍的目標,整個半導體產業正朝兩個不同方向努力。

其中之一是追求更先進的技術,發展出更小奈米的製程節點,做出體積更小的電晶體。常見的方法包含:引進極紫外光 ( EUV ) 曝光機,來刻出更小的電晶體。又或是從材料結構下手,發展不同構造的電晶體,例如鰭式場效電晶體 ( FinFET )、環繞式閘極 ( GAAFET ) 電晶體及互補式場效電晶體 ( CFET ),讓電晶體可以更小、更快。這種持續挑戰物理極限的方式稱為深度摩爾定律——More Moore。

-----廣告,請繼續往下閱讀-----

另一種則是將含有數億個電晶體的密集晶片重新排列。就像人口密集的都會區都逐漸轉向「垂直城市」的發展模式。對晶片來說,雖然每個電晶體的大小還是一樣大,但是重新排列以後,不僅單位面積上可以堆疊更多的半導體電路,還能縮短這些區塊間資訊傳遞的時間,提升晶片的效能。這種透過晶片設計提高效能的方法,則稱為超越摩爾定律——More than Moore。

而 Intel® Core™ Ultra 處理器便是具備兩者優點的結晶。

圖/PanSci

Tile 架構:釋放多核心潛能

在超越摩爾定律方面,Intel® Core™ Ultra 處理器以其獨特的 Tile 架構而聞名,將 CPU、GPU、以及 AI 加速器(NPU)等不同單元分開,使得這些單元可以根據需求靈活啟用、停用,從而提高了能源效率。這一設計使得處理器可以更好地應對多任務處理,從日常應用到專業任務,都能夠以更高效的方式運行。

CPU Tile 採用了 Intel 最新的 4 奈米製程和 EUV 曝光技術,將鰭式電晶體 FinFET 中的像是魚鰭般阻擋漏電流的鰭片構造減少至三片,降低延遲與功耗,使效能提升了 20%,讓使用者可以更加流暢地執行各種應用程序,提高工作效率。

-----廣告,請繼續往下閱讀-----
鰭式電晶體 FinFET。圖/Intel

Foveros 3D 封裝技術:高效數據傳輸

2017 年,Intel 開發出了新的封裝技術 EMIB 嵌入式多晶片互聯橋,這種封裝技術在各個 Tile 的裸晶之間,搭建了一座「矽橋 ( Silicon Bridge ) 」,達成晶片的橫向連接。

圖/Intel

而 Foveros 3D 封裝技術是基於 EMIB 更進一步改良的封裝技術,它能將處理器、記憶體、IO 單元上下堆疊,垂直方向利用導線串聯,橫向則使用 EMIB 連接,提供高頻寬低延遲的數據傳輸。這種創新的封裝技術不僅使得處理器的整體尺寸更小,更提高了散熱效能,使得處理器可以長期高效運行。

運行 AI 模型的專用筆電——MSI Stealth 16 AI Studio

除了傳統的 CPU 和 GPU 之外,Intel® Core™ Ultra 處理器還整合了多種專用單元,專門用於在本機端高效運行 AI 模型。這使得使用者可以在不連接雲端的情況下,依然可以快速準確地運行各種複雜的 AI 算法,保護了數據隱私,同時節省了連接雲端算力的成本。

MSI 最新推出的筆電 Stealth 16 AI Studio ,搭載了最新的 Intel Core™ Ultra 9 處理器,是一款極具魅力的產品。不僅適合遊戲娛樂,其外觀設計結合了落質感外型與卓越效能,使得使用者在使用時能感受到高品質的工藝。鎂鋁合金質感的沉穩機身設計,僅重 1.99kg,厚度僅有 19.95mm,輕薄便攜,適合需要每天通勤的上班族,與在咖啡廳尋找靈感的創作者。

-----廣告,請繼續往下閱讀-----

除了外觀設計之外, Stealth 16 AI Studio 也擁有出色的散熱性能。搭載了 Cooler Boost 5 強效散熱技術,能夠有效排除廢熱,保持長時間穩定高效能表現。良好的散熱表現不僅能夠確保處理器的效能得到充分發揮,還能幫助使用者在長時間使用下的保持舒適性和穩定性。

Stealth 16 AI Studio 的 Intel Core™ Ultra 處理器,其性能更是一大亮點。除了傳統的 CPU 和 GPU 之外,Intel Core™ Ultra 處理器還整合了多種專用單元,專門針對在本機端高效運行 AI 模型的需求。內建專為加速AI應用而設計的 NPU,更提供強大的效能表現,有助於提升效率並保持長時間的續航力。讓使用者可以在不連接雲端的情況下,依然可以快速準確地運行各種複雜的 AI 算法,保護了數據隱私,同時也節省了連接雲端算力的成本。

軟體方面,Intel 與眾多軟體開發商合作,針對 Intel 架構做了特別最佳化。與 Adobe 等軟體的合作使得使用者在處理影像、圖像等多媒體內容時,能夠以更高效的方式運行 AI 算法,大幅提高創作效率。獨家微星AI 智慧引擎能針對使用情境並自動調整硬體設定,以實現最佳效能表現。再加上獨家 AI Artist,更進一步提升使用者體驗,直接輕鬆生成豐富圖像,實現了更便捷的內容創作。

此外 Intel 也與眾多軟體開發商合作,針對 Intel 架構做了特別最佳化,讓 Intel® Core™ Ultra處理器將AI加速能力充分發揮。例如,與 Adobe 等軟體使得使用者可以在處理影像、圖像等多媒體內容時,能夠以更高效的方式運行 AI 算法,大幅提高創作效率。為各行專業人士提供了更加多元、便捷的工具,成為工作中的一大助力。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
199 篇文章 ・ 305 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

0
1

文字

分享

1
0
1
「黃金」角度——長腿背後的秘密,原來網美和服飾店的是這樣辦到的?!|2021 數感盃|高中專題|金獎
數感實驗室_96
・2021/12/25 ・5320字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者:王浤齡、陳玟蓉、高珮珊/台北市立大同高級中學

數感盃青少年寫作競賽」提供國中、高中職學生在培養數學素養後,一個絕佳的發揮舞台。本競賽鼓勵學生跨領域學習,運用數學知識,培養及展現邏輯思考與文字撰寫的能力,盼提升臺灣青少年科普寫作的風氣以及對數學的興趣。
本文為 2021 數感盃青少年寫作競賽/高中組專題報導類佳作之作品,為盡量完整呈現學生之作品樣貌,本文除首圖及標點符號、錯字之外並未進行其他大幅度編修。

在拍照時,我們總是希望能夠自然地呈現出最漂亮的自己,但這是一件何其困難的事情。法國傳奇攝影師——羅伯特・杜瓦諾曾說:「如果我知道如何拍出好照片,那我每次都會拍出好照片了。」然而有沒有什麼拍攝方法,可以讓照片中的身材比例變得更完美呢? 

有一天,我和一群朋友到某間知名服飾店逛街,試穿今年流行的秋冬款,並拍照片比較看看,選出較適合自己的衣服。在過程中,我發現一個問題:「為什麼在店家試穿時,全身鏡映照出的自己總是比照片中好看?」

嘗試幾次後,我們發現這是因為自己的身材比例,在鏡子與照片中的呈現是不一樣的,服飾店內的全身鏡,總是使腿的比例看起來比較長。

圖/envato elements

於是我們開始好奇,拍照時要如何拍攝出如同店裡的全身鏡具有長腿效果的方法,以及,是什麼原因讓這間服飾店內的全身鏡會有這樣長腿的效果呢? 

-----廣告,請繼續往下閱讀-----

上網搜尋之後,發現在這個社群軟體發達的時代,網路上有許多人分享不用俢圖軟體,就能「拍」出完美比例的文章或是教學影片,其結論是:「把手機或相機傾斜一個角度,就可以讓人的腿在照片中的比例變長。」然而,所謂的「傾斜一個角度」到底是幾度,卻沒有網站提供。

事實上,每個人身高比例皆不相同,取景的遠近都不一樣,甚至使用的拍攝器材也不 盡相同,使這個「角度」也會因情況而有所不同。因此,我們試著用所學的數學工具,去推論出不同人在拍照時,手機應該要傾斜幾度才能達到想要的長腿效果? 

關於服飾店內全身鏡有長腿效果的原因,我在觀察這些鏡子後,發現它們都有傾斜(如圖一),而且與地面都是夾 80 度。這個傾斜角度到底有什麼樣的用意呢?我們試圖去解開這個業界沒有說出來的秘密。 

首先,我們先解釋物理上的「成像原理」。人的眼睛之所以能看到物體、相機可以拍到畫面,都是因為物體反射的光線,進入到眼睛內的視網膜、或是相機裡的底片後所成的「像」。

-----廣告,請繼續往下閱讀-----

成像的原理與國中理化所教的凸透鏡成像原理相同,是由三條光線所交會而成的像(圖二),其中平行光通過透鏡後會穿過焦點,而穿過焦點的光通過透鏡後會成為平行光,交會處就是成像地點;並且第三條穿過透鏡的直線光也會與前兩條相交,因此可以由物距與像距算出成像縮放的倍率。 

如果我們在成像位置放一個平面,當成像的平面與物體是平行時,像會與實物相似,但是上下顛倒;但是如果把成像平面傾斜一個角度的話,成像的比例就會因為傾斜的角度,而 與實物的原比例不同。 

我們想要研究相機傾斜角度對照片中人物的身材比例的影響。 

考慮拍攝時,相機高度與被拍攝者的肚臍位置相同,如上面圖三所示,點 D 為相機的焦點,物體反射的光線直線穿過 D點,在另一側的平面上呈現一個倒立的像。

-----廣告,請繼續往下閱讀-----

把 \( \overline{AC} \) 當成為一位站立著的被拍攝者, \( \overline{AB} \) =b 為被拍攝者的頭頂到肚臍的長度,即為身長;而 \( \overline{BC} \) =l 為被拍攝者的肚臍到腳底的長度,即為腿長; \( \overline{BD} \) =d 為被拍攝者與相機的距離。

當成像平面垂直地面時,若把像距等比例放大到等於物距時(即是 \( \overline{DI} \) =d ),則 \( \overline{HJ} \) 會是一個全等的倒立像,即 \( \overline{HI} \) =l 為像的腿長、 \( \overline{IJ} \) =b 為像的身長。

若把成像平面傾斜一個角度,轉成 \( \overline{EJ} \) , 則像的身長會被拉成 \( \overline{IJ} \) → \( \overline{FJ} \)  ,像的腿長會被拉成 \( \overline{IH} \) → \( \overline{FE} \) 。

接下來,我們將推導出一條公式,可以算出相機該傾斜幾度,才能讓被拍攝者的身長及腿長呈現我們所想要的比例。 

-----廣告,請繼續往下閱讀-----
圖四

假設在照片中,身長比腿長的比例為 \( \overline{FJ} \) : \( \overline{EF} \) =1 : r,先求出 \( \overline{HD} \) : \( \overline{HE} \) 。

如圖四,我們利用「孟氏定理」, ΔJEH 被直線 \( \overline{FD} \) 所截的線段比為

 \( \frac{\overline{JI}}{\overline{IH}} \) ✕ \( \frac{\overline{HD}}{\overline{DE}} \) ✕ \( \frac{\overline{EF}}{\overline{FJ}} \) =1  \( \Rightarrow \) \( \frac{b}{l} \) ✕ \( \frac{\overline{HD}}{\overline{DE}} \) ✕ \( \frac{r}{1} \) =1,則 \( \frac{\overline{HD}}{\overline{DE}} \) = \( \frac{l}{br} \)

又因為圖三中, \( \overline{IH} \) // \( \overline{EG} \) ,所以 \( \frac{l}{br} \) = \( \frac{\overline{HD}}{\overline{DE}} \) =  \( \frac{\overline{DI}}{\overline{DG}} \) = \( \frac{d}{\overline{DG}} \)  \( \Rightarrow \)  \( \overline{DG} \) = \( \frac{bdr}{l} \)

-----廣告,請繼續往下閱讀-----

\( \overline{IG} \) = \( \overline{DG} \) – \( \overline{DI} \) = \( \frac{bdr}{l} \) -d

因為 ΔEFG ≈ ΔJFI,所以  \( \frac{\overline{IF}}{\overline{FG}} \) =  \( \frac{\overline{FJ}}{\overline{EF}} \) =  \( \frac{1}{r} \) ;可推得:

\( \overline{IF} \) = \( \frac{1}{(1+r)} \) ✕ \( \overline{IG} \) = \( \frac{1}{(1+r)} \) ✕  \( \left ( \frac{bdr}{l}-d \right ) \)

因此,若相機傾斜的斜率為 m,則

-----廣告,請繼續往下閱讀-----

 \( m=\frac{\overline{IJ}}{\overline{IF}}=\frac{b}{\frac{1}{(1+r)}\left ( \frac{bdr}{l}-d \right )}=\frac{(1+r)lb}{rbd-ld} \)

從這個公式可知,我們只要知道以下數據,代入公式之中即可算出相機的斜率:

若圖中 \( \overline{AJ} \) 的斜率與 \( \overline{CH} \) (原文使用的是雙箭頭線段符號,但公式表中找不到,所以就先以線段符號代替)的斜率分別令成 mb ml ,則相機傾斜的斜率公式可用斜率簡化表示為

 \( m=\frac{(1+r)m_{b}m_{l}}{rm_{b}+m_{l}} \)

我們根據此公式進行以下實作。 

拍攝工具為 iPhone 手機,被拍攝同學的身體數據如下表一: 

-----廣告,請繼續往下閱讀-----

我們設定畫面高度與人物身高的比例黃金比例(約為 1:0.618),而由〈物距計算器〉網站,可算出此畫面下的拍攝距離為 144.7 公分。並且,我們希望拍攝出的身長與腿長也是黃金比 例,即  \( r=\frac{1}{0.618}=1.618 \)。

由表一,因為 mb = -身高 / 物距 =  \( \frac{-67.5}{144.7} \),ml = 腿長 / 物距 =  \( \frac{95.5}{144.7} \),所以帶入公式可得:

\( m=\frac{(1+1.618)\times \left ( \frac{-67.5}{144.7} \right )\times \left ( \frac{95.5}{144.7} \right )}{1.618\times \left ( \frac{-67.5}{144.7} \right )+\left ( \frac{95.5}{144.7} \right )}\approx 8.538 \)

因此,拍攝時手機傾斜的斜率約為 8.538,換算成角度: 

\( 8.538=tan\theta \Rightarrow tan^{-1}(8.538)\approx 83.3^{\circ} \)

所以手機在拍攝這位同學時應該要傾斜 83.3°。

下圖是手機傾斜前後拍照出來的照片效果對比: 

從右圖看得出來,照片中的腿部確實有拉長的效果,其比例為 1 : 1.84,但並非是當初我們給 定的黃金比例。這個原因是來自於 iPhone 手機鏡頭視角的限制,當手機傾斜時,放在腰部的高度,被拍者會無法全身入鏡。所以,我們將手機高度降低至能夠完全拍攝到整個人,因而導致加大拉長效果。

因此,我們建議在拍攝時,若需要降低手機高度,則手機與地面夾角,要比原計算出來的角度更接近 90° 一點。 

接下來,我們利用研究的結果去計算,各個年齡層與性別的人在拍照時,身長與腿長在照片中要呈現黃金比例,手機適當的傾斜角度分別為幾度。

下圖五,是內政部〈建築使用行為與本土人因工程關連性研究〉指出的 19 項人體計測尺寸中的部份數據;而下圖六,則是將圖表的數據進行以下的計算,去推論一般人平均的身長與腿長。

  • 膝蓋高度 − 膝膕高度 = 大腿厚度 
  • 坐高 − 大腿厚度 = 身長(頭頂到肚臍) 
  • 身高 − 身長 = 腿長 

把各個年齡層與性別的平均身長與腿長整理成下表二。最後,我們各別將數據代入公式計算得出,不同人在拍照時,手機的傾斜角度,如下表三所示。 

表格三中,65 歲以上的民眾要拍出黃金比例的手機角度比較垂直,是因為數據的統計有將駝背也考慮進去,導致統計出的結果,相對其它年齡層來說腿的比例較長。但普遍來說, 在未滿 65 歲的各個年齡層拍照時,手機傾斜角度分布在 65 ~ 70° 之間。

然而,考慮到手機傾斜時又要全身入鏡,需要降低手機拍攝的高度,會更加拉大腿長的比例,因此,一般人在拍照時,若想讓身長比腿長接近黃金比例的話,我們建議:

手機與地面的夾角以「70°」為最佳。

服飾業內不能說的秘密,全身鏡傾斜 80° 的原因!

在前文中,我們想探討第二個問題,是服飾店的全身鏡為什麼都與地面夾 80°。其斜置的原因,明顯是要讓腿看起比較長,但為何不用其它的角度而恰好是 80° 呢? 

斜鏡面會產生仰視效果,讓人感覺鏡中的人像向後仰,使腿的視覺效果變長。事實上, 長腿效果與我們研究的主題一致,同樣是實物(鏡中後仰的人像)與成像平面(視網膜)不平行,因此後仰角度與視覺比例的關係,符合前文推論的公式。

如下圖七所示,全身鏡傾斜 80° 後,由於鏡子和直立的人夾角 為 10°,因為鏡射原理,鏡子和像的夾角也為為10°, 所以像會傾斜 70°,且 ∠ACD = ∠AOB = 10° 。

實際到店家測量全身鏡前的走道寬度,約為 78 公分。也就是一般民眾會站在距離約 78 公分的位置使用全身鏡,即 \( \overline{DE} \) = 78,則 

78+ \( \overline{EC} \) = \( \overline{DC} \) = \( \overline{AC} \) cos(10º)

 \( \Rightarrow \) 78+ \( \overline{EC} \) = 2 \( \overline{BC} \) cos(10º)

 \( \Rightarrow \) 78+ \( \overline{EC} \) = 2 \( \overline{EC} \) cos(10º)

因此,可以算出 \( \overline{EC}=\frac{78}{2cos^{2}(10^{\circ})-1}\approx 83 \)

所以當我們照鏡子時,眼睛與成像的距離為 78+83=161 公分。若成年女性(平均身長 75.6 公分、 腿長 81.8 公分)使用服飾店的全身鏡時,看到鏡中自己的比例(腿長 / 身長)為 r,則

 \( \frac{(1+r)\times \left ( -\frac{75.6}{161} \right )\times \left ( \frac{81.8}{161} \right )}{r\times \left ( -\frac{75.6}{161} \right )+\left ( \frac{81.8}{161} \right )}=tan(70^{\circ})\approx 2.747 \)

 \( \Rightarrow \) r ✕ [(-0.4696) ✕ 0.5081+2.747 ✕ 0.4696] = 0.4696 ✕ 0.5081 + 2.747 ✕ 0.5081

 \( \Rightarrow r=\frac{0.4696\times 0.5081 + 2.747\times 0.5081}{ [(-0.4696)\times 0.5081+2.747\times 0.4696] }=\frac{1.63435446}{1.0.5138744}\approx 1.565 \)

這個結果非常接近黃金比例。

用其它年齡層與性別的數據去計算,也可得到 r ≈ 1.618 ± 0.05

因此,我們發現服飾店會在店內全身鏡會斜置 80° 的原因,很可能是因為要讓顧客認為穿上自家的衣服後,會讓比例接近於黃金比例,以提升購買慾望。

結合我們計算的數據和實作的結果,可以得出一些結論:大多數的人拍攝時,如果想要拍出身體的比例接近黃金比例,手機需要傾斜的角度大約為 65° ~ 70°。若將傾斜時,可能會把手機高度降低的因素考慮進去,則是以 70° 為最佳角度。

下次拍照時,不妨也將手機傾斜成 70°,或許會有意想不到的效果!

參考資料

所有討論 1
數感實驗室_96
69 篇文章 ・ 45 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

2

9
1

文字

分享

2
9
1
「腦海中的自我」與真實的你差很大?——心像準確度與「自尊狀態」高度相關
Bonnie_96
・2021/12/09 ・2008字 ・閱讀時間約 4 分鐘

「回想一下你昨天晚餐吃了些什麼?」此時,你的腦海是不是開始浮現各種餐點的圖像,像是大阪燒、泡麵等等。而這就是心理學當中的「心像」(Mental Image)概念。但是如果問大家說,「回想你長什麼樣」,你出現的畫面會是什麼呢?這也成為研究者超好奇的事。

以前我們都曾在課堂中畫自畫像,看看旁邊繪畫技巧超厲害的同學,畫得有夠像。但再看看自己手中那張,內心只會驚恐地想說:這到底是誰?!

事實上,畫在紙上的自畫像,完全取決於個人的繪畫技巧。但是出現在我們腦海中的,基本上就可以忽略有沒有高超繪畫技巧的因素,而是與我們對自我的「心像」構成有關。

圖/Pexels

其實你的「心像自拍」,跟你只有 87 分像……

於是實驗開始!修但幾勒,你一定會問說,我腦中浮現的畫面,是要怎麼「實體」呈現出來?

-----廣告,請繼續往下閱讀-----

英國班戈大學(Bangor University)和倫敦大學( University of London)的心理學家就開發了一種方法,能夠簡單地讓你把腦海中的「自畫像」(或是自拍)形象化。

他們隨機給參與者兩張不同人臉,讓你選出「最接近自己長相」的那張。就在這不斷重複「人臉二選一」數百次後。實驗者就會將參與者選出所有「最接近自己長相」的照片全部綜合、平均起來,就變成每個人腦海中獨特的「自拍」。

照理來說,如果參與者都選出「最接近自己長相」的照片,那麼最終出現的那張會趨近「我們真實的長相」,對吧?!

但是,結果告訴我們只有87分像啊……因為最後呈現的照片,是會選出一張和自己長得不太一樣的人臉。

-----廣告,請繼續往下閱讀-----

對自我的看法,會強烈影響心中的自我形象

所以,為什麼我們腦海中的自畫像,會和真實的自己長得不一樣呢?其實,這和我們內心如何看待自己、覺得自己是什麼樣的人,有很大的關係。

在讓參與者不斷經歷「人臉二選一」的實驗後,實驗者讓他們都填寫人格特質和自尊相關的問卷,來了解在他們心中自己是什麼樣子的人。結果,非常有趣地是,「你覺得自己是什麼樣的人,會影響你如何想像自己的外表!」

在數據收集的初級階段,每個參與者的臉都被拍成了護照式的照片。(a)在髮際線周圍裁剪,去除無關的特徵。 (b)參與者在隨機產生的面孔之間進行選擇,以創建他們覺得看起來像自己的「自畫像」面孔。 隨後填寫問卷。(c)測量他們的人格特質(BFI-10)和自尊狀態(SSES)。在數據收集的第二階段,向 112 位評估者展示參與者的真實面孔和 「自畫像」面孔 。(d)評估者使用 BFI-10 來評估他們對兩張臉的每個個性特徵的感知程度。 參考資料

研究發現,參與者對自己的看法和信念,會強烈地影響他們如何對自己的外表想像。也就是說,如果參與者認為自己是一個外向的人,那麼他們在腦中浮現自己的臉,會比在其他人面前看起來更自信和善於社交。

你一定也聽過,不管是面試或是約會等,千萬記得一定要留下好的「第一印象」。而這和心理學中的初始效應(primacy effect)有關。因為在一開始所得到的資訊,往往會比後來得到的有更大的影響。

-----廣告,請繼續往下閱讀-----

身為論文作者之一馬諾斯‧察基里斯(Manos Tsakiris)就解釋,「當我們看到一張新的臉時,其實在不到幾秒的時間,我們就已經根據我們所接收到的資訊,形成對某個人的印象。」

重點來了,不論對方所形成的第一印象是否正確,它都會影響我們對別人的看法。而同樣地,這件事情也反映在這項實驗中,因為我們對自己的印象,會影響我們在腦海中是如何看待自己的。

臉只有 87 分像……那身材呢?

如果說想像和真實的自己,長得不一樣。那我們對自己想像中的身材,也會有落差嗎?

在另個實驗中,繼續利用「身材二選一」的方式,最後會形成一張你所有「最接近自己身材」的照片全部綜合、平均起來。結果,這張在參與者腦海中「想像的身材」還是明顯長得不一樣啊……。

-----廣告,請繼續往下閱讀-----

同樣,參與者對自己身材的態度和信念,會強烈地影響我們對於身材的想像。值得注意的是,對自己的外表或身材,有負面情緒或態度的人,傾向會覺得自己的身材比真實的自己要胖很多。

我們對於自己的外貌和身材的想像,大多時候和「真實的自己」其實會有落差。而會造成差距的因素,就是和我們的內心怎麼看待自己有很大的關係。

而實驗者也提到,希望這項研究未來能夠幫助到身體畸形恐懼症(body dysmorphic disorder, 主要指患者會過度關注自己的身材和外表等缺陷,並過度誇張的臆想、甚至出現強迫行為等)等臨床中的評估。

圖/GIPHY

參考資料

  • Maister, L., De Beukelaer, S., Longo, M. R., & Tsakiris, M. (2021). The Self in the Mind’s Eye: Revealing How We Truly See Ourselves Through Reverse Correlation. Psychological Science. https://doi.org/10.1177/09567976211018618
所有討論 2
Bonnie_96
21 篇文章 ・ 33 位粉絲
喜歡以科普的方式,帶大家認識心理學,原來醬子可愛。歡迎來信✉️ lin.bonny@gmail.com