Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

鯨豚的水下聊天室,與鐵達尼號最後的求救──《茶杯裡的風暴》

三采文化集團_96
・2017/08/19 ・3799字 ・閱讀時間約 7 分鐘 ・SR值 547 ・八年級

-----廣告,請繼續往下閱讀-----

在墨西哥西北方的海岸與太平洋之間,有一個長達一千多公里的加利福尼亞灣,向南連接太平洋。海灣內的海域受到兩側高聳山脈的保護,而這些山區大多仍維持原始的狀態。

許多海洋生物在遷徙的過程中,都會進入這個區域休息與覓食。這裡的海象較為安穩,漁夫也可以乘著小船悠閒地捕魚。白天的陽光讓藍色的海面波光瀲灩,漁船受到海浪的搖晃而吱吱作響,這是平靜大海上唯一的聲音。忽然,一隻海豚從一望無際的海面一躍而出,然後伴隨飛濺的水花回到海中,水面上的世界很快地恢復如常的平靜,但實際上,海面下卻一直是個喧鬧的生態系統。

每隻海豚都可以透過前額的組織發出尖銳的聲音。圖/Pixabay

鯨豚的水中廣播聊天室

海豚潛入水中時,會開始發出高頻的口哨聲(whistle)來識別身分,並利用脈衝式的聲音(clicks)與海豚群交談。每隻海豚都可以透過前額的組織發出尖銳的聲音,這些聲音會藉由海水傳遞到其他海豚的身上,而海豚的下顎骨則會收集聲音,然後傳到內部的中耳產生聽覺。

海豚不斷發出的口哨聲、脈衝式的聲音和啁啾聲(chirps),會形成一個吵雜的環境,但是這些聲音不只幫助海豚溝通,還可以用來感測周圍的環境。海豚群時常在海面附近玩耍與呼吸,但是往往在忽然之間,牠們就會整群開始下潛,進入海洋更深更藍之處,因為牠們要執行一項重要的任務:狩獵。

-----廣告,請繼續往下閱讀-----

海面上充斥的陽光到了海下會迅速被吸收,因此光可以傳達的訊息非常有限;換句話說,視覺在海面下越深的地方就越沒有用處。雖然海豚擁有視覺,可以在淺層的海水中和跳出海面時使用,但對於光線的感知能力卻相當有限,無法區分顏色。這是因為在海中,顏色幾乎沒有變化,因此牠們的眼睛在演化上就不會出現對應的需求。雖然鯨魚身處在一個湛藍的世界中,不過牠們無法感受到藍色,海水對他們而言相當灰暗。可是鯨魚仍能看到魚身上反射的閃爍光點,這也證明動物之所以看到什麼,完全是依照牠們的需求演化而來。

海水的表面就像一面《愛麗絲夢遊仙境》的鏡子,雖然我們要穿過它不難,但是對於波來說,它卻隔開了兩個世界。海面上的聲波大部分不會進入海水裡,會從表面反彈回空氣中,至於海洋中的聲音也會留在海裡。空氣中的光波傳遞,往往有效而快速,但是光波到了海中就很容易被吸收;因此如果你在海中要獲得關於周圍環境的訊息,聲音是比光更好的選擇,除非是在海面附近,並且是觀察近距離的東西。

雖然海豚擁有視覺,可以在淺層的海水中和跳出海面時使用,但對於光線的感知能力卻相當有限,無法區分顏色。圖/Pixabay

海洋當中的聲音非常豐富。海豚能夠發出人耳聽不見的超音波,頻率是我們聽覺極限的 10 倍,而發出與接收這些短波長(高頻率)的聲波,意味著海豚可以利用回聲來獲得精確的定位,並感知到物體的細節。但是高頻率的聲音無法傳遞太遠,因此在一段距離之外,就不會聽到海豚群喋喋不休的聲音。不過若是頻率較低的聲音,就能傳遞得比較遠,例如一艘遠洋漁船引擎發出的轟轟聲,或是槍蝦(snapping shrimp)發出的衝擊聲,以及深海中一些低頻聲音,只是這些對於海豚來說都是聽不見的。

鬚鯨需要與遠距離的鯨魚溝通,衰減緩慢的低頻聲音是更好的選擇。圖/Roderick Eime@Flickr

低頻而遠播的鯨魚頻道

不過也有另外一群海洋動物會使用較低頻的頻道來溝通,牠們就是鯨魚,發出的聲音可以傳到數十公里外。此外,因為鯨魚不需要使用回音定位(echolocation),也就不會像海豚一樣發出高頻的聲音。於是,例如鬚鯨(baleen whales)需要與遠距離的鯨魚溝通,衰減緩慢的低頻聲音是更好的選擇。鯨魚聽不到海豚的高頻聲音,海豚聽不到低頻的鯨歌,但這些都發生在海洋當中,因此海洋生物透過選擇不同的頻段,發出或接收屬於自己族群的豐富訊息,可以生活在相近的區域,卻又不會彼此干擾。

-----廣告,請繼續往下閱讀-----

即使海洋中有光波也有聲波,但是不同於海面上或陸地上的世界,聲音是在海中傳遞訊息最重要的方式,因此鯨魚與海豚都是色盲,畢竟在海裡的光線已經缺乏細節,深一點的地方甚至是漆黑一片。

然而海洋內的聲波與大氣中的光波,還是有相似之處。一如波長越長的聲波可以長途傳遞訊息,波長較長的光波也可以在大氣內傳遞相當遠的距離,不會快速衰減。就在一百多年前,人類開始利用波長非常長的無線電波通訊,因為我們生活在大氣中,光波傳遞的效率遠比聲波來得好。無線電波最早用於橫跨大洋的通訊,當年的鐵達尼號要是可以善用這套系統,接收並重視另外一艘船發出的警告訊息,也許就不會沉沒了。

圖/WikimediaCommons

曾經的海上巨人,成為最有名的船難悲劇

1912 年 4 月15 日的凌晨,就在鐵達尼號撞擊冰山後一個小時內,北大西洋的海面上有少數無線電波的圓形脈衝,間歇性地往外擴張,越往外就越弱,並逐漸消失。有些波紋抵達遠處的接收天線,訊息就成功地傳遞到遠方。其中最強烈的波紋,是位於加拿大紐芬蘭南方650 公里處,來自電報員傑克.菲利浦(Jack Phillips)的求救訊號。

傑克利用當時最強大的海上無線電發報機,不斷向周邊的船隻發送訊息,告訴他們世界上最大的船--鐵達尼號正在下沉,並且請求救援。傑克藉由發報機送出的電子脈衝訊號,從甲板上的漏斗狀電線引導到上方的天線,而高高橫掛在空中的天線藉由振盪的電流放出強烈的無線電波,因此在廣大區域內的船隻,藉由船上的天線都能收到訊號,並且解讀訊號中的訊息。

-----廣告,請繼續往下閱讀-----

電報之所以能夠發送出去,是因為無線電在天線上產生後,會朝四面八方擴散出去, 因此你不需要知道接收者所在的位置,所有在周邊的天線都能接收到無線電訊號。鐵達尼號發出的無線電波,可以傳達數百公里遠,在這範圍內的許多船隻,例如卡柏西亞號(Carpathia)、波羅的號(Baltic)、奧林匹克號(Olympic)等等,接收到求救訊號之後即刻前往救援。雖然電報所能夠傳達的訊息相當有限,以今日的角度看起來非常原始,但這是人類最早的海上通訊方式。如果鐵達尼號的悲劇提早二十年發生,那麼這場災難將會無聲無息地沒入冰冷的海水內,而在一週之後,人們才知道這艘船消失了。

沉沒的鐵達尼號。圖/Wikipedia

事實上,鐵達尼號航行的前十年,人類才第一次將無線電應用在橫跨海洋的通訊。只是那個發生在凌晨的恐怖船難,即使附近的船隻盡力救援,但現場黑暗而混亂,許多救援的船也只能無奈地看著悲劇發生。

這些像鋼琴斷音彈奏的電報,並不是隨機的訊號,而是先藉由固定模式編排,以此代表一連串的訊息。當電報員將安排過的訊息,藉由一些裝置讓天線產生無線電波後,它就會以光速往外傳播出去。人類從此進入大量無線電通訊的時代。

迴響天空的求救電波

鐵達尼號的嚴重船難之所以有名,有一部分是因為它發生在一個新時代的開端,顯示出無線電波的巨大通訊潛力,能夠發出求救訊號,讓卡柏西亞號在兩個小時後趕來救援,及時挽救許多人的性命,但同時也暴露出當時的無線電系統有著巨大的瑕疵。電報傳遞的訊息往往會互相干擾,鐵達尼號在出事之前曾經收到另外一艘船的冰山警告,當時鐵達尼號正在與另一方通訊,使得同時間還有其他訊號混雜在其中,造成聽報、發報混淆的狀況,因此有些訊息的片段就會遺失,或是根本沒聽到。

-----廣告,請繼續往下閱讀-----

在當時,發送電報必須要透過其他方式通知對方打開收報機,而且船上發報的系統實際上只是一個開關,藉由開開關關的方式傳遞訊息,再者所有船上的無線電報系統都共用一個頻道。鐵達尼號並非只有透過無線電求救,同時也發射求救照明彈(distress flares),當時鄰近的加州人號(Californian)曾試圖以摩斯信號燈(Morse lamps)與其聯繫。

無線電通訊還有一個方式可以讓它傳遞更遠--當無線電進入大氣層上方(電離層的位置)時,會像遇到鏡子一般地反射回來,因此鐵達尼號的求救訊號不只在海面上向外擴散、掠過,還會藉由反射而傳遞到更遠的地方(因為地球的表面是曲面,如果不經由大氣層的反射,那麼直線傳播的無線電波,將使得在水平線的另外一方無法接收到訊息),達成無線電跨越大洋的通訊。藉由電離層這片「鏡子」,無線電波得以從高空反射到地平線的另外一端,但是對於波長較短的可見光而言,電離層不再是一面鏡子,因此傳遞的距離相當有限。

夜空中充滿電報員傑克發送的無線電波,試圖向所有正打開收報機的船隻傳達求救訊號與鐵達尼號的位置,直到最後,海水淹入電報室、而他也隨之殉職為止。由於無線電的通訊,趕來救援的船隻得以讓載滿 2223 人的鐵達尼號在沉沒時,能有 706 人倖存,這些因為無線電而獲救的人,也見證了往後無線電通訊的發展,從沉默無聲到滿天喧囂,透過這些看不見的波,讓人類的通訊發生史無前例的變革。如今,無線電訊號覆蓋地球所有的角落,人類彼此的通訊達到歷史上從未有過的便利。

 


 

 

本文摘自泛科學2017年8月《茶杯裡的風暴:丟掉公式,從一杯茶開始看見科學的巧妙與奧祕》,三采文化出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
三采文化集團_96
25 篇文章 ・ 8 位粉絲
閱讀在生活中不曾改變, 它讓我們看見一句話的力量,足以撼動你我的人生。而產生一本書的力量,更足以改變全世界

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
從 3G 到 6G:行動通信的進化之路
數感實驗室_96
・2024/06/20 ・825字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

摩斯發明電報和貝爾發明電話,這些似乎是上古時代的科技,其實都發生在過去兩百年內。而手機,作為近五十年來的產物,又經歷了怎樣的演變呢?

讓我們來探討行動通信是如何從 3G 發展到 6G 的。

1989 年,一張名為《The Great Radio Controversy》的搖滾專輯發布,迅速走紅,登上告示牌熱門榜。雖然專輯的歌詞與通信無關,但它的名字「偉大的無線電爭議」確實讓人聯想到無線通信的歷史。而這張專輯的樂團名為 Tesla,沒錯,這正是向那位傳奇的天才科學家特斯拉致敬。特斯拉對無線通信的貢獻可謂奠基石般的重要,而從 3G 到 6G,行動通信技術又經歷了哪些突破和變革呢?讓我們一起深入了解。

-----廣告,請繼續往下閱讀-----

行動通信的歷史雖然只有短短幾十年,但其中包含的豐富內容實在說不完。從精彩的發明故事到商業競爭,再到行動通信所帶來的社會變革,每一個環節都值得深入探討。而在這集影片中,我們僅僅觸及了冰山一角。

下一集將深入探討 WiMAX 那成功的哥哥——Wi-Fi,也就是大家熟悉的無線區域網路技術。讓我們繼續探索這些改變世界的科技!

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

參考資料

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

1
1

文字

分享

0
1
1
電磁波全揭秘:了解頻帶、頻寬、頻率和通信技術的基礎知識
數感實驗室_96
・2024/06/13 ・672字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

先前我們介紹了多位為通信科技發展做出貢獻的科學家。現在,我們要深入探討無線通信的技術層面。

無線通信,顧名思義不像傳統的電話或電報那樣需要一條實體的線路來傳遞信號。但這些信號並非憑空傳遞,它們依賴的正是電磁波。

電磁波在現代社會無處不在,從微波爐、手機到基地台,這些設備都會發射電磁波。但其實即使沒有這些科技裝置,電磁波依然存在於我們周圍。什麼意思呢?答案就是:當我們白天走到戶外,看到的光,它其實也是電磁波的一種。

-----廣告,請繼續往下閱讀-----

希望大家掌握了這些電磁波、頻帶、頻寬等基礎知識後,未來在閱讀相關的電信新聞時更加了解他們提到的術語,以及各種縮寫。以後無論是科技發展的動態還是市場新技術,都能更有概念地理解。

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/