0

1
0

文字

分享

0
1
0

鯨豚的水下聊天室,與鐵達尼號最後的求救──《茶杯裡的風暴》

三采文化集團_96
・2017/08/19 ・3799字 ・閱讀時間約 7 分鐘 ・SR值 547 ・八年級

-----廣告,請繼續往下閱讀-----

在墨西哥西北方的海岸與太平洋之間,有一個長達一千多公里的加利福尼亞灣,向南連接太平洋。海灣內的海域受到兩側高聳山脈的保護,而這些山區大多仍維持原始的狀態。

許多海洋生物在遷徙的過程中,都會進入這個區域休息與覓食。這裡的海象較為安穩,漁夫也可以乘著小船悠閒地捕魚。白天的陽光讓藍色的海面波光瀲灩,漁船受到海浪的搖晃而吱吱作響,這是平靜大海上唯一的聲音。忽然,一隻海豚從一望無際的海面一躍而出,然後伴隨飛濺的水花回到海中,水面上的世界很快地恢復如常的平靜,但實際上,海面下卻一直是個喧鬧的生態系統。

每隻海豚都可以透過前額的組織發出尖銳的聲音。圖/Pixabay

鯨豚的水中廣播聊天室

海豚潛入水中時,會開始發出高頻的口哨聲(whistle)來識別身分,並利用脈衝式的聲音(clicks)與海豚群交談。每隻海豚都可以透過前額的組織發出尖銳的聲音,這些聲音會藉由海水傳遞到其他海豚的身上,而海豚的下顎骨則會收集聲音,然後傳到內部的中耳產生聽覺。

海豚不斷發出的口哨聲、脈衝式的聲音和啁啾聲(chirps),會形成一個吵雜的環境,但是這些聲音不只幫助海豚溝通,還可以用來感測周圍的環境。海豚群時常在海面附近玩耍與呼吸,但是往往在忽然之間,牠們就會整群開始下潛,進入海洋更深更藍之處,因為牠們要執行一項重要的任務:狩獵。

-----廣告,請繼續往下閱讀-----

海面上充斥的陽光到了海下會迅速被吸收,因此光可以傳達的訊息非常有限;換句話說,視覺在海面下越深的地方就越沒有用處。雖然海豚擁有視覺,可以在淺層的海水中和跳出海面時使用,但對於光線的感知能力卻相當有限,無法區分顏色。這是因為在海中,顏色幾乎沒有變化,因此牠們的眼睛在演化上就不會出現對應的需求。雖然鯨魚身處在一個湛藍的世界中,不過牠們無法感受到藍色,海水對他們而言相當灰暗。可是鯨魚仍能看到魚身上反射的閃爍光點,這也證明動物之所以看到什麼,完全是依照牠們的需求演化而來。

海水的表面就像一面《愛麗絲夢遊仙境》的鏡子,雖然我們要穿過它不難,但是對於波來說,它卻隔開了兩個世界。海面上的聲波大部分不會進入海水裡,會從表面反彈回空氣中,至於海洋中的聲音也會留在海裡。空氣中的光波傳遞,往往有效而快速,但是光波到了海中就很容易被吸收;因此如果你在海中要獲得關於周圍環境的訊息,聲音是比光更好的選擇,除非是在海面附近,並且是觀察近距離的東西。

雖然海豚擁有視覺,可以在淺層的海水中和跳出海面時使用,但對於光線的感知能力卻相當有限,無法區分顏色。圖/Pixabay

海洋當中的聲音非常豐富。海豚能夠發出人耳聽不見的超音波,頻率是我們聽覺極限的 10 倍,而發出與接收這些短波長(高頻率)的聲波,意味著海豚可以利用回聲來獲得精確的定位,並感知到物體的細節。但是高頻率的聲音無法傳遞太遠,因此在一段距離之外,就不會聽到海豚群喋喋不休的聲音。不過若是頻率較低的聲音,就能傳遞得比較遠,例如一艘遠洋漁船引擎發出的轟轟聲,或是槍蝦(snapping shrimp)發出的衝擊聲,以及深海中一些低頻聲音,只是這些對於海豚來說都是聽不見的。

鬚鯨需要與遠距離的鯨魚溝通,衰減緩慢的低頻聲音是更好的選擇。圖/Roderick Eime@Flickr

低頻而遠播的鯨魚頻道

不過也有另外一群海洋動物會使用較低頻的頻道來溝通,牠們就是鯨魚,發出的聲音可以傳到數十公里外。此外,因為鯨魚不需要使用回音定位(echolocation),也就不會像海豚一樣發出高頻的聲音。於是,例如鬚鯨(baleen whales)需要與遠距離的鯨魚溝通,衰減緩慢的低頻聲音是更好的選擇。鯨魚聽不到海豚的高頻聲音,海豚聽不到低頻的鯨歌,但這些都發生在海洋當中,因此海洋生物透過選擇不同的頻段,發出或接收屬於自己族群的豐富訊息,可以生活在相近的區域,卻又不會彼此干擾。

-----廣告,請繼續往下閱讀-----

即使海洋中有光波也有聲波,但是不同於海面上或陸地上的世界,聲音是在海中傳遞訊息最重要的方式,因此鯨魚與海豚都是色盲,畢竟在海裡的光線已經缺乏細節,深一點的地方甚至是漆黑一片。

然而海洋內的聲波與大氣中的光波,還是有相似之處。一如波長越長的聲波可以長途傳遞訊息,波長較長的光波也可以在大氣內傳遞相當遠的距離,不會快速衰減。就在一百多年前,人類開始利用波長非常長的無線電波通訊,因為我們生活在大氣中,光波傳遞的效率遠比聲波來得好。無線電波最早用於橫跨大洋的通訊,當年的鐵達尼號要是可以善用這套系統,接收並重視另外一艘船發出的警告訊息,也許就不會沉沒了。

圖/WikimediaCommons

曾經的海上巨人,成為最有名的船難悲劇

1912 年 4 月15 日的凌晨,就在鐵達尼號撞擊冰山後一個小時內,北大西洋的海面上有少數無線電波的圓形脈衝,間歇性地往外擴張,越往外就越弱,並逐漸消失。有些波紋抵達遠處的接收天線,訊息就成功地傳遞到遠方。其中最強烈的波紋,是位於加拿大紐芬蘭南方650 公里處,來自電報員傑克.菲利浦(Jack Phillips)的求救訊號。

傑克利用當時最強大的海上無線電發報機,不斷向周邊的船隻發送訊息,告訴他們世界上最大的船--鐵達尼號正在下沉,並且請求救援。傑克藉由發報機送出的電子脈衝訊號,從甲板上的漏斗狀電線引導到上方的天線,而高高橫掛在空中的天線藉由振盪的電流放出強烈的無線電波,因此在廣大區域內的船隻,藉由船上的天線都能收到訊號,並且解讀訊號中的訊息。

-----廣告,請繼續往下閱讀-----

電報之所以能夠發送出去,是因為無線電在天線上產生後,會朝四面八方擴散出去, 因此你不需要知道接收者所在的位置,所有在周邊的天線都能接收到無線電訊號。鐵達尼號發出的無線電波,可以傳達數百公里遠,在這範圍內的許多船隻,例如卡柏西亞號(Carpathia)、波羅的號(Baltic)、奧林匹克號(Olympic)等等,接收到求救訊號之後即刻前往救援。雖然電報所能夠傳達的訊息相當有限,以今日的角度看起來非常原始,但這是人類最早的海上通訊方式。如果鐵達尼號的悲劇提早二十年發生,那麼這場災難將會無聲無息地沒入冰冷的海水內,而在一週之後,人們才知道這艘船消失了。

沉沒的鐵達尼號。圖/Wikipedia

事實上,鐵達尼號航行的前十年,人類才第一次將無線電應用在橫跨海洋的通訊。只是那個發生在凌晨的恐怖船難,即使附近的船隻盡力救援,但現場黑暗而混亂,許多救援的船也只能無奈地看著悲劇發生。

這些像鋼琴斷音彈奏的電報,並不是隨機的訊號,而是先藉由固定模式編排,以此代表一連串的訊息。當電報員將安排過的訊息,藉由一些裝置讓天線產生無線電波後,它就會以光速往外傳播出去。人類從此進入大量無線電通訊的時代。

迴響天空的求救電波

鐵達尼號的嚴重船難之所以有名,有一部分是因為它發生在一個新時代的開端,顯示出無線電波的巨大通訊潛力,能夠發出求救訊號,讓卡柏西亞號在兩個小時後趕來救援,及時挽救許多人的性命,但同時也暴露出當時的無線電系統有著巨大的瑕疵。電報傳遞的訊息往往會互相干擾,鐵達尼號在出事之前曾經收到另外一艘船的冰山警告,當時鐵達尼號正在與另一方通訊,使得同時間還有其他訊號混雜在其中,造成聽報、發報混淆的狀況,因此有些訊息的片段就會遺失,或是根本沒聽到。

-----廣告,請繼續往下閱讀-----

在當時,發送電報必須要透過其他方式通知對方打開收報機,而且船上發報的系統實際上只是一個開關,藉由開開關關的方式傳遞訊息,再者所有船上的無線電報系統都共用一個頻道。鐵達尼號並非只有透過無線電求救,同時也發射求救照明彈(distress flares),當時鄰近的加州人號(Californian)曾試圖以摩斯信號燈(Morse lamps)與其聯繫。

無線電通訊還有一個方式可以讓它傳遞更遠--當無線電進入大氣層上方(電離層的位置)時,會像遇到鏡子一般地反射回來,因此鐵達尼號的求救訊號不只在海面上向外擴散、掠過,還會藉由反射而傳遞到更遠的地方(因為地球的表面是曲面,如果不經由大氣層的反射,那麼直線傳播的無線電波,將使得在水平線的另外一方無法接收到訊息),達成無線電跨越大洋的通訊。藉由電離層這片「鏡子」,無線電波得以從高空反射到地平線的另外一端,但是對於波長較短的可見光而言,電離層不再是一面鏡子,因此傳遞的距離相當有限。

夜空中充滿電報員傑克發送的無線電波,試圖向所有正打開收報機的船隻傳達求救訊號與鐵達尼號的位置,直到最後,海水淹入電報室、而他也隨之殉職為止。由於無線電的通訊,趕來救援的船隻得以讓載滿 2223 人的鐵達尼號在沉沒時,能有 706 人倖存,這些因為無線電而獲救的人,也見證了往後無線電通訊的發展,從沉默無聲到滿天喧囂,透過這些看不見的波,讓人類的通訊發生史無前例的變革。如今,無線電訊號覆蓋地球所有的角落,人類彼此的通訊達到歷史上從未有過的便利。

 


 

 

本文摘自泛科學2017年8月《茶杯裡的風暴:丟掉公式,從一杯茶開始看見科學的巧妙與奧祕》,三采文化出版。

-----廣告,請繼續往下閱讀-----
文章難易度
三采文化集團_96
25 篇文章 ・ 8 位粉絲
閱讀在生活中不曾改變, 它讓我們看見一句話的力量,足以撼動你我的人生。而產生一本書的力量,更足以改變全世界

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

2
0

文字

分享

0
2
0
從 3G 到 6G:行動通信的進化之路
數感實驗室_96
・2024/06/20 ・825字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

摩斯發明電報和貝爾發明電話,這些似乎是上古時代的科技,其實都發生在過去兩百年內。而手機,作為近五十年來的產物,又經歷了怎樣的演變呢?

讓我們來探討行動通信是如何從 3G 發展到 6G 的。

1989 年,一張名為《The Great Radio Controversy》的搖滾專輯發布,迅速走紅,登上告示牌熱門榜。雖然專輯的歌詞與通信無關,但它的名字「偉大的無線電爭議」確實讓人聯想到無線通信的歷史。而這張專輯的樂團名為 Tesla,沒錯,這正是向那位傳奇的天才科學家特斯拉致敬。特斯拉對無線通信的貢獻可謂奠基石般的重要,而從 3G 到 6G,行動通信技術又經歷了哪些突破和變革呢?讓我們一起深入了解。

-----廣告,請繼續往下閱讀-----

行動通信的歷史雖然只有短短幾十年,但其中包含的豐富內容實在說不完。從精彩的發明故事到商業競爭,再到行動通信所帶來的社會變革,每一個環節都值得深入探討。而在這集影片中,我們僅僅觸及了冰山一角。

下一集將深入探討 WiMAX 那成功的哥哥——Wi-Fi,也就是大家熟悉的無線區域網路技術。讓我們繼續探索這些改變世界的科技!

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

參考資料

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 49 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

1
1

文字

分享

0
1
1
電磁波全揭秘:了解頻帶、頻寬、頻率和通信技術的基礎知識
數感實驗室_96
・2024/06/13 ・672字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

先前我們介紹了多位為通信科技發展做出貢獻的科學家。現在,我們要深入探討無線通信的技術層面。

無線通信,顧名思義不像傳統的電話或電報那樣需要一條實體的線路來傳遞信號。但這些信號並非憑空傳遞,它們依賴的正是電磁波。

電磁波在現代社會無處不在,從微波爐、手機到基地台,這些設備都會發射電磁波。但其實即使沒有這些科技裝置,電磁波依然存在於我們周圍。什麼意思呢?答案就是:當我們白天走到戶外,看到的光,它其實也是電磁波的一種。

-----廣告,請繼續往下閱讀-----

希望大家掌握了這些電磁波、頻帶、頻寬等基礎知識後,未來在閱讀相關的電信新聞時更加了解他們提到的術語,以及各種縮寫。以後無論是科技發展的動態還是市場新技術,都能更有概念地理解。

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

參考資料

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 49 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/