0

3
1

文字

分享

0
3
1

基礎交互作用與原力(第三部曲):反重力全面進攻——阿宅物理(6)

科學大抖宅_96
・2016/05/03 ・3821字 ・閱讀時間約 7 分鐘 ・SR值 601 ・九年級

在沒有很久以前、也沒那麼遙遠的銀河系裡……[1]
為找出原力的祕密,我們發現了作為基礎交互作用的電磁力、弱力和強力。然而,在這過程之中,卻有股神秘的力量,尚未顯露其真面目。它的無遠弗屆與威力,遍及宇宙的每個角落……

星際大戰開頭必備的跑馬燈
星際大戰開頭必備的跑馬燈

在科幻文本和動漫、電玩裡,重力一直是屢見不鮮的題材。古早以前,人類就已夢想能夠騰雲駕霧[2]、或者擁有翅膀[3]飛上青天;飛機發明後,我們更進一步希望能對抗引力、脫離地球——於是我們有了火箭和太空船。不過,飛機與火箭的原理,均是藉由產生新的推力,來抵銷地心引力的束縛;也因此,希冀從根本阻絕重力、甚或創造出反重力的嘗試,在歷史上一直方興未艾。更何況,就算不考慮重要性,反重力三個字聽起來就是酷呀!!在漫畫〈哆啦A夢〉(舊譯:小叮噹)裡,哆啦A夢便是因著腳底的反重力裝置而懸浮在三釐米的空中,以至於腳底不會被弄髒

漫畫裡,針對哆啦A夢腳底反重力機能的說明(圖片來源)
漫畫裡,針對哆啦A夢腳底反重力機能的說明(圖片來源

理所當然,要討論反重力如何可能做到之前,我們得先了解什麼是重力;而最簡單的方法,當然就是上批踢踢[4]八卦板post標題為「有沒有動漫裡能操縱重力的角色都很強的八卦?」的文章。除此之外,我們還可以從國中課本回想起牛頓(Isaac Newton)萬有引力定律:

b65000f8f887a68545ce63eb1cada232

上述方程式說的是,兩個物體之間的(吸)引力正比於兩者質量(分別為m1和m2)的乘積、而反比於之間距離(r)的平方。G則為比例常數,俗稱萬有引力常數。

然而,這個曾經在考試中試煉我們的著名公式,卻存在問題:現今的科學已經知道,光線的路徑會因重力而彎曲;更有甚者,黑洞作為宇宙中最神秘的天體,其所產生的重力連光都可以捕獲。但是,光,它根本沒有質量!根據牛頓的公式,光怎麼可能會受到重力吸引呢?[5]

-----廣告,請繼續往下閱讀-----

好在我們有愛因斯坦(Albert Einstein)。

約莫百年前,愛因斯坦的廣義相對論橫空出世,為重力帶來了全新的觀點:就像放在彈簧床上的鉛球會讓床面下陷一樣,愛因斯坦認為,帶質量的物體也會對時空產生影響、造成時空的扭曲;而附近的另一物體,就會因為明顯感受到時空的凹陷,而被吸引過去——這就是廣義相對論對重力的簡單詮釋。光在時空中行進,就像走在地面上的汽車,難免會受到路面的坑洞或斜坡影響而產生路徑的變化。[6]

太陽周圍變形的方格代表因太陽而凹陷的時空。由A發出的光線感受到時空的扭曲而改變路徑,使得我們看到A存在B處,此亦稱為重力透鏡效應(圖片來源)
太陽周圍變形的方格代表因太陽而凹陷的時空。由A發出的光線感受到時空的扭曲而改變路徑,使得我們看到A存在B處,此亦稱為重力透鏡效應(圖片來源

更進一步地,讓我們回想自身的經驗:當搭乘電梯,而電梯開始往上升的時候,冥冥中似乎有股力量把你往下拉、身體彷彿變重了(幸好不是在游泳)。換言之,電梯上升的加速度,會讓我們覺得像是多了一股向下的重力——加速度可以產生類似重力的功效。這件事情,其實正是愛因斯坦所提出的等效原理(equivalence principle):在小範圍底下,位於重力場內的觀測者所感受到的物理效應,跟其處於均勻加速運動的無重力環境所看到的物理效應,沒什麼兩樣。[7]

明白等效原理後,讓我們回想以前學過的自由落體問題:兩個不同質量的物體,在不考慮空氣阻力的狀況下,何者比較快落地?等效原理告訴我們,不論你是在地球的比薩斜塔、還是在宇宙中由下往上加速行進的太空船裡,實驗的結論都是一樣的。然而,有別於在地球上還得靠伽利略(Galileo Galilei)證明物體掉落的快慢和質量無關;太空船內的結果倒是非常容易想像:當我們把手放開,二者會同時掉落到地面——因為其實是太空船的地板往上衝、撞到懸空的兩個物體。

-----廣告,請繼續往下閱讀-----
我們無法分辨在地球上、或在加速行進的太空船中,有什麼不同(圖片來源)
我們無法分辨在地球上、或在加速行進的太空船中,有什麼不同(圖片來源

得到等效原理這神兵利器,反重力的謎題就再也難不倒我們了:有沒有可能,存在某種反重力物質,其不但不會被地心引力吸引,還會被地球的重力排斥而往天空「掉落」?

不可能!當我們根據等效原理而把環境挪到加速飛行的太空船中,很顯然地,所有懸空的東西都會被往上衝的地板撞到、絕不會離地板愈來愈遠(除非我們施加外力)。

同樣地,有沒有可能,存在某種隔絕重力的物質,使得放於其上的物體,感受不到重力吸引?例如,電影〈顛倒世界(Upside Down)〉裡,就發現了消除重力作用的物質。

我以我爺爺的名譽發誓[8],答案仍然是否定的。除非太空船停止加速,否則懸空的物體保證都會被地板撞上;意味著,地球上的物體永遠會受到重力作用而向下掉落[9]——除非某一天,我們對重力有了更深層的理解,像〈星際效應(Interstellar)〉那般發現了量子重力[10]的祕密,事情或許才有轉圜的餘地。

-----廣告,請繼續往下閱讀-----

不過,除了反重力,人工重力也是科幻文本常見的題材。許多電影裡,包括星際爭霸戰(Star Trek)和星際大戰(Star Wars),太空船上的人們可是走來走去、跟在地表上沒兩樣。這可能嗎?

星艦的人工重力讓船員能夠活動自如(圖片來自〈闇黑無界:星際爭霸戰〉)
星艦的人工重力讓船員能夠活動自如(圖片來自〈闇黑無界:星際爭霸戰〉)

以目前科學的認知,因為重力是由質量而來;除非我們能夠創造如星球般龐大的質量(像是「現本土決戰用特別攻擊最終質量兵器」[11]),否則並無法在根本意義上產生足夠日常生活使用的重力。

等一下!等效原理這下子跳出來了:只要太空船一直保持加速,就可以有類似重力的效果!但這仍然有個實際的問題——太空船很快就會達到設計的最高速率,無法一直加速下去。

一般而言,現今最可行的方案,會是將太空船做成圓筒形或環形,利用旋轉時的離心力將人「固定」住(就像家裡的洗衣機進行脫水時,裡面的衣服都會貼在滾筒上)。於是,我們可以看到〈星際效應〉裡,主角前往土星的太空船就是做成環狀,並利用旋轉來製造重力(還提到了可能會頭暈);同時,電影結尾的庫柏太空站(Cooper Station)可能也是因此才做成圓筒狀,房子則依著圓筒的內壁建造。[12]

-----廣告,請繼續往下閱讀-----
〈星際效應〉裡的環狀太空船永續號(Endurance)利用旋轉造出人工重力(圖片來源)
〈星際效應〉裡的環狀太空船永續號(Endurance)利用旋轉造出人工重力(圖片來源

不過,即使我們可以利用離心力模擬重力的效果,但〈星際爭霸戰〉或〈星際大戰〉裡的太空船怎麼樣都不像是在旋轉;又例如,漫畫〈七龍珠〉裡的重力室根本就在地面上固定不動,那如何能製造重力呢?只能說,依目前的科學知識,那是不可能的任務,就算找湯姆.克魯斯(Tom Cruise)[13]來也一樣。換言之,他們果然擁有超越目前地球人的科技力呀!

於前兩話,我們提過電磁力、弱力和強力都分別有相應的粒子負責傳遞。與上述類似,物理學家也假設重力乃由重力子(graviton)傳遞。然而,重力子目前尚未被觀測到[14];量子重力理論亦仍在發展當中,距離理論完備還有很長一段路要走。重力,雖然充斥於生活之中,現今對其所知卻是相當有限。

至此,對已知的基礎交互作用,我們均有了大概的理解。在下一話,如史詩般壯大的探尋原力之旅,即將邁入最終章!錯過可惜!敬請密切注意!

continue

參考資料:

-----廣告,請繼續往下閱讀-----
  • 1. 徐一鴻(A. Zee) (2006) 膨脹的宇宙——愛因斯坦的玩具

註釋:

  • [1] 請參考電影〈星際大戰(Star Wars)〉。該系列電影開頭總會有“A long time ago in a galaxy far, far away….”的跑馬燈字幕。
  • [2] 最著名的如〈西遊記〉或〈封神演義〉均有相關情節。
  • [3] 例如希臘神話伊卡洛斯(Icarus)的故事。
  • [4] 批踢踢(PTT)是台灣最知名的電子佈告欄系統(BBS)。
  • [5] 就牛頓的年代來說,其實對光的性質並不完全清楚、也沒有黑洞的想像。這邊我們偷吃步,把大家現今熟悉的概念拿出來說了——但牛頓是無辜的。
  • [6] 在歷史上,其實是愛因斯坦先提出廣義相對論、並預測了光線的路徑會因重力而彎曲,實驗才觀測到此一現象。
  • [7] 此亦稱為弱等效原理。另有所謂強等效原理,這邊便不做介紹。
  • [8] 請參見漫畫〈金田一少年之事件簿〉。
  • [9] 事實上,前面提及的光會因重力而偏折的現象,亦可用等效原理說明。大家不妨自行思考看看。
  • [10] 將量子力學與重力相結合的理論。
  • [11] 請參考動畫〈勇往直前2(トップをねらえ2!)〉。
  • [12] 有興趣進一步了解的讀者,不妨參考火星軍情局的好文。
  • [13] 好萊塢男星。主演〈不可能的任務〉系列電影。
  • [14] 大家或許有印象,於今年(2016)年初國外的LIGO團隊宣佈觀測到重力波。嚴格來說,重力波和重力子是不同的概念,亦無法混為一談。
-----廣告,請繼續往下閱讀-----
文章難易度
科學大抖宅_96
36 篇文章 ・ 1853 位粉絲
在此先聲明,這是本名。小時動漫宅,長大科學宅,故稱大抖宅。物理系博士後研究員,大學兼任助理教授。人文社會議題鍵盤鄉民。人生格言:「我要成為阿宅王!」科普工作相關邀約請至 https://otakuphysics.blogspot.com/

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

5
4

文字

分享

0
5
4
解析韋伯太空望遠鏡第一批影像背後的科學意義
EASY天文地科小站_96
・2022/07/14 ・4350字 ・閱讀時間約 9 分鐘

  • 作者:林彥興|EASY 天文地科小站主編、清大天文所碩士生,努力在陰溝中仰望繁星

萬眾矚目的詹姆士韋伯太空望遠鏡,在經過半年的校準與測試後,終於公開了它拍攝到的第一批成果。這些五彩斑斕、美麗絕倫的照片究竟是什麼樣的天體,照片的背後又有哪些深藏的意義?就讓我們一起深入解密,韋伯的第一批照片吧!

韋伯望遠鏡是什麼?

詹姆士.韋伯太空望遠鏡是美國、歐洲與加拿大太空總署合作開發的新一代旗艦級紅外線太空望遠鏡,也是無數天文學家夢寐以求、能幫助人類破解許多未解天文迷團的利器。

韋伯的研發其實早從 1996 年就已經開始,但是由於開發時遇到諸多困難,導致嚴重的預算超支與進度延宕,這台耗資上百億美金的超級望遠鏡,直到去年年底才終於從法屬圭亞那發射中心,用一枚亞利安 5 號運載火箭發射升空,前往距離地球 150 萬公里的日地第二拉格朗日點。

拉格朗日點是什麼?

日地拉格朗日點一共有五個。當物體在這些點上,其受到來自太陽與地球的重力恰到好處,因此太空船只需要少量的燃料,就可以長期與地球和太陽保持穩定的相對位置,可謂是地球軌道附近的風水寶地。

而韋伯繞行的,是位於地球後方的第二拉格朗日點,簡稱 L2。之所以選擇這裡,是因為只有 L2 的位置剛好會讓地球、太陽、月亮都在同一側,而這三個星體正是天文望遠鏡的主要紅外線光害來源。位在 L2 的韋伯,就可以用它的遮陽帆一次把三顆星體全部擋住,認真凝望遠方而不受干擾,因此 L2 可以說是觀測宇宙的絕佳地點。升空的幾個月之間,韋伯已經完成一系列的儀器校準工作,一步步把望遠鏡調整到最佳狀態。

-----廣告,請繼續往下閱讀-----

相比知名前輩「哈伯太空望遠鏡」,韋伯的優勢不只是擁有比哈伯大六倍的鏡面,更重要的是它是以紅外線為主力觀測波段。宇宙膨脹造成嚴重紅移,但哈伯望遠鏡的守備範圍主要是可見光,波長範圍是 90 – 2500 奈米,可說是鞭長莫及啊。

這時換上以波長 600 – 28500 奈米的紅外線為守備範圍的韋伯,就可以讓我們看到更遙遠、更古老的宇宙。此外,同一個天體在可見光和紅外線看起來,往往長得相當不一樣。這個強大的紅外線觀測能力,正是韋伯最引以為傲的武器。

作為深具儀式感的第一批科學影像,韋伯這次公布的影像分別對應四個主要科學主題:早期宇宙星系演化恆星的生命循環系外行星

1. 早期宇宙—— 星系團 SMACS 0723 與重力透鏡效應

星系團 SMACS 0723。圖/Webb Space Telescope

畫面中心黃白色的天體,是由成百上千的星系共同組成的星系團 SMACS 0723。在韋伯之前,哈伯太空望遠鏡就曾經花費數個禮拜的時間拍攝這個星系團。然而擁有更大鏡面、更精良儀器的韋伯,僅用了 12.5 個小時就拍出了解析度更高、畫面品質更好的照片,讓我們看到許多以前難以辨識的黯淡星系。可見哈伯與韋伯在觀測能力上的差距。

對天文學家來說,圖中最令人興奮的其實不是前景壯闊的星系團,而是後方這些經過重力透鏡扭曲和放大的小小星系們。星系團龐大的質量扭曲了周圍的時空,讓整個星系團好像一塊巨大的放大鏡一樣,可以偏折和聚焦通過的星光,稱為「重力透鏡效應」。

當星系團後方更遙遠、更古老的星系發出的光線通過星系團時,就會被星系團的重力透鏡效應偏折和聚焦,形成而圖中無數弧形的扭曲影像。

-----廣告,請繼續往下閱讀-----
紅圈為照片上受重力透鏡影響的區域之一,可以看到星系被拉長。

這些仍在襁褓中的小小星系,往往正在快速的孕育新的恆星,或是互相合併,因此有著混沌不規則的形狀。離我們越遠的星體發出的光,需要越長的時間才能到達我們的眼中。因此研究這些遙遠且古老的星系,能幫助天文學家理解宇宙早期的模樣。

2. 星系演化——史蒂芬五重奏(Stephan’s Quintet)

上一張照片讓我們認識星系的起源,這張「史蒂芬五重奏(Stephan’s Quintet)」則可以讓天文學家更仔細地研究星系內的複雜結構,以及星系與星系之間的交互作用。

史蒂芬五重奏(Stephan’s Quintet)。圖/Webb Scape Telescope

正如其名,「史蒂芬五重奏(Stephan’s Quintet)」是由五個視覺上相當靠近的星系所組成。但其實最左邊的這個星系(NGC7320)與另外四者並無關聯,只是從地球上看剛好位在天空中差不多的位置而已。

圖片中偏向黃白色,感覺如絲綢般順滑的部分是在近紅外線波段拍攝,主要顯示的是星系中恆星的分布;而醒目的橘紅色,則是來自中紅外波段的資料,展示的是星系中的高溫塵埃,以及星系中的氣體高速對撞時產生的震波(Shock wave)。

除了影像,韋伯還使用光譜儀仔細檢視了影像中右上方的星系(NGC 7319)中心,因為那裏有一顆比太陽重 2400 萬倍的超大質量黑洞,正在吸食周遭的氣體,並在過程中釋放巨大的能量。

-----廣告,請繼續往下閱讀-----

藉由觀察光譜的細節,韋伯可以分辨出像是氬離子、氖離子或是氫分子等等化學組成,甚至知道氣體的溫度、運動速度這些從一般照片難以辨識的資訊。

史蒂芬五重奏就像一個天然的實驗場,讓天文學家研究星系演化的詳細過程。

3. 系外行星——WASP-96 b 的大氣光譜

這一張照片可能是整批影像中,視覺上最不起眼的一張,它是系外行星 WASP-96 b 的大氣光譜。

WASP-96 b 的大氣光譜。圖/Webb Scape Telescope

最近 20 多年來,人類對太陽系以外行星的認識越來越多。截至今日,人類已經發現超過 5000 顆系外行星。然而,以現有的觀測技術,天文學家通常只能用一些間接的方法,測量它們的質量、半徑、軌道週期等粗略的特性。想知道這個行星是否適合生命生存,就不能少了行星大氣層的化學組成和溫度資訊。

那要怎麼取得行星的大氣資訊呢?當行星通過恆星跟地球中間時,恆星的一部分星光將會通過行星的大氣層,並被行星的大氣吸收。吸收的多寡和波段,取決於行星大氣層的溫度和化學組成等特性。此時,天文學家就可以藉由分析光譜中的各種特徵,去回推行星大氣層的性質。

圖片中的白點,即是韋伯實際觀測 WASP-96 b 時取得的光譜資訊。而藍色的線,則是天文學家認為最貼合觀測數據的理論模型。

-----廣告,請繼續往下閱讀-----

根據這個觀測結果,天文學家計算出 WASP-96 b 的大氣溫度約為 725°C,大氣中明顯有著水氣,並推測可能還有雲和霾存在。未來進一步的分析和觀測,將為世人揭開更多系外行星的神祕面紗。

4. 恆星的生命循環——「南環狀星雲」與「船底座大星雲(Carina)」

最後兩張照片都與恆星的生命循環有關。正如人會有生老病死,恆星也是一樣。

恆星一般誕生在巨大分子雲中,氣體在重力吸引下逐漸塌縮、升溫並點燃核融合,成為一顆恆星。

當小質量的恆星步入晚年,其結構容易變得不穩定,最終將自己的外層氣體拋射出去,形成美麗的行星狀星雲,也將氣體吐回到星際空間中,成為下一代恆星的養分。氣體都拋射完之後留下的核心,就是白矮星。

-----廣告,請繼續往下閱讀-----

各位現在看到的,是暱稱「南環狀星雲」的行星狀星雲,左右兩張圖分別於近紅外線與中紅外線拍攝。

南環狀星雲。圖/Webb Scape Telescope

我們可以看到,左圖中的影像比右圖要更清晰一些,這是因為在相同的望遠鏡口徑下,波長越短所能達到的理論解析度就越高。

有趣的是,在左圖中看起來位於星雲中心的明亮恆星,其實並不是行星狀星雲的核心。真正的核心其實是在其左下方,一顆被塵埃包裹著的黯淡白矮星。在近紅外線波段的影像中,這顆白矮星幾乎淹沒在隔壁恆星的炙烈星芒之中。

但在中紅外波段,由於恆星的亮度相對降低,包裹著白矮星的塵埃發出的光就變得清晰可見。再次展示即使是同一個天體,使用不同的波段進行觀測,往往可以看到不同的東西。

最後這片壯麗的宇宙山崖,則是位於「船底座大星雲 Carina」西北角的 NGC3324 恆星形成區。在這裡,源自星雲中無數初生恆星所發出的炙烈輻射、恆星風與噴流,吹散、游離了星雲中原有的濃密氣體與塵埃。交織出這片壯闊而複雜的結構。

船底座大星雲(Carina)。圖/Webb Scape Telescope

這張照片一共結合了這六個不同的濾鏡的影像拍攝而成。每個濾鏡涵蓋的波段各不相同,代表的物理意義也不一樣。比如(F090W、F200W、F444W)這三個寬帶濾鏡,分別在影像中按照波長順序,以藍色、綠色和紅色這三原色呈現,為照片打下骨幹。而在此之上,照片的製作團隊又疊上青色代表氫原子的(F187N)濾鏡影像,以黃色代表氫分子的(F470N)濾鏡影像,以及用橘色代表甲烷和多環芳香烴的 (F335M) 濾鏡影像,為照片再添更多的細節。

-----廣告,請繼續往下閱讀-----

想要將這麼多個波段的影像全部結合起來,仔細調整讓細節更加突出,最終呈現出一張如此絢麗又震撼的照片,是非常不容易的。這展示了韋伯太空望遠鏡不僅在科學上相當重要,在藝術上也價值非凡。

最後別忘了,以上只挑選介紹了第一批資料中最具代表性的幾張,更多關於五個目標的照片和光譜,可以在韋伯的官網上找到。而這批照片,又只是韋伯未來二十年服役生涯中,前兩個月的小試牛刀而已。韋伯的時代,才剛剛要開始!

-----廣告,請繼續往下閱讀-----
EASY天文地科小站_96
23 篇文章 ・ 1560 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

1

14
11

文字

分享

1
14
11
為什麼在下雨天時,你不會被雨滴狠狠痛扁?
若芽_96
・2022/04/21 ・5518字 ・閱讀時間約 11 分鐘

下雨天的時候走在路上,天氣涼涼的,聽著雨聲的感覺非常好。但是你有沒有想過,為什麼雨滴會從天上掉下來?

「啊!就像蘋果會掉到地面一樣,會受到重力的作用嗎?」你可能會這麼說。

好,那我們這邊就來帶大家算一下,一滴雨從高空落到地面,純粹只有受到重力時,應該是什麼樣子的感覺吧!

只有受到重力作用雨滴的運動分析

當不考慮空氣阻力時,由高空落下的物體全程會受到重力加速度值 g 的作用,而因為地表的重力加速度約為定值,以海平面且緯度 45º 為標準,其數值為 9.8m/s2 [1]。因此雨滴從高空落下時,可以視為一個單純的等加速度運動,而這個運動我們又稱之為自由落體

-----廣告,請繼續往下閱讀-----

假設雨滴是靜止落下且受到重力加速度值 g 作用,即可根據等加速度運動公式,求得雨滴從高度 h 自由落下時的末速度值:

然而,在探討雨滴落下的末速度之前,我們必須對於雲的分類以及大致上的高度有一個基本的了解,才能比較明確地知道我們要探討的雨滴大概是從什麼樣的高度落下來的。

氣象學家 Luke Howard 於 1803 年中的著作《論雲的變形》(The Essay on the Modification of Clouds)中,按照不同雲的形狀、組成、形成原因,將雲分為 10 大雲屬,並且將這 10 大雲屬劃為三個雲族,分別為:位於距地表 6,000 至 7,000 公尺的高雲族,位於距地表 2,000 至 6,000 公尺的中雲族,以及位於距地表 0 至 2,000 公尺的低雲族[2]。另外,則還有橫跨了三個不同雲族高度的直展雲族,常常造成短暫但是相當豐沛的降雨量[3]

國際氣象組織所提供的基本雲的分類標準對照圖。圖/世界氣象組織[2]

按照國際氣象組織所提供的分類,以及 Luke Howard 的定義,天空中主要的降雨來源為積雨雲(cumulonimbus)以及雨層雲(nimbostratus),降雨來源以雨層雲較為常見,且其雲底多為 1,200 公尺以下。故我們這邊計算雨滴的高度時,便以 1,200 公尺作為高度的參考依據。

-----廣告,請繼續往下閱讀-----

因此,當一滴雨從高空落下,代入前述自由落體公式,即可計算出雨滴理論上應該要有的末速度:

根據上述的計算式子可以知道,當雨滴從高處落下時,如果沒有任何的空氣阻力,雨滴落到地面的速度大約會是 153 m/s。

對於這個數字沒有感覺嗎?那這邊簡單地計算給你看一下,讓你有點 fu。但是在這個計算之前,首先我們要先對於雨滴的大小有個概念。

依照 2009 年的相關研究[4]顯示,小雨滴在降落時幾乎是圓形,可是隨著體積越大,就會變得越扁平,受到空氣的影響也會越明顯。當雨滴達到特定的大小時,就會被切割為較小的雨滴,也因此最大的雨滴直徑會被限制在 6 mm 左右。

而按照另一個研究[5]對於雨滴粒徑的分布探討,發現雨滴的直徑多數是落在 0.5 mm 至 4 mm 之間,也就是半徑 0.25 mm 至 2 mm 之間。

-----廣告,請繼續往下閱讀-----
不同大小的雨滴受到空氣影響的形變研究示意圖。圖/Wikipedia [6]

這邊先姑且不論雨滴本身的化學成分所帶來的密度差異,以及落下過程中的密度和質量變化。因此我們可以簡單的利用密度、質量和體積的關係式,假設有一顆雨滴的成分皆為水,密度為 1 g/cm3,半徑 2 mm,且為均勻球體的情況下,計算這顆雨滴的質量如下:

接著,我們利用牛頓第二運動定律動量衝量的概念,來計算平均一顆雨滴所造成的衝擊力大小。這邊,我們假設你是淋雨的狀態,雨滴跟你的腦袋接觸的時間大約為 0.001 秒,且雨滴最後會完全靜止在你的腦袋上,也就是末速度為 0。

此時,造成雨滴會有速度變化的作用力有二,一為雨滴所受到的重力、二為腦袋給雨滴的正向力。根據牛頓第三運動定律,腦袋給雨滴的作用力,與雨滴給腦袋的作用力,為「作用力與反作用力」之間的關係。

那我們要怎麼知道雨滴對於腦袋的衝擊力有多少呢?

根據前面的假設,我們假設腦袋給雨滴的作用力使用變項為 N,可以列式如下:

-----廣告,請繼續往下閱讀-----

雖然我們前面說,在計算正向力 N 時,應該要將重力納入考量,不過實際計算後會發現雨滴本身重量也不算大,相較之下,後面的重力項是可以忽略的,因此計算出來的衝擊力約為 0.52 kgw。

嗯?你說你還是沒有感覺嗎?再說白話一點好了,這個重量就差不多是一瓶 500 ml 的礦泉水壓在你身上的感覺。這只是單一顆雨滴,平常在下雨的時候絕對不可能只有一顆雨滴。一瓶礦泉水壓在身上其實是有感覺的,那很多雨滴下在身上,等同於很多很多瓶礦泉水壓在身上,那肯定也是非常有感。

修但幾勒,這個結論跟我們平常淋雨的感覺完全不同吧!那到底問題出在哪裡?

其實雨滴不只受到重力的作用

雨雲本身存在於大氣層的對流層內,而對流層內充滿很多空氣分子。當雨滴在這些空氣分子所形成的「流體」裡面移動的時候,會使得雨滴本身除了受到重力以外,還會額外受到空氣阻力(drag force)的作用。

-----廣告,請繼續往下閱讀-----

在流體動力學中,在流體中移動的物體會受到一個和運動方向相反的阻力。這個阻力來自流體,會存在於兩個流體層之間,或者是流體與固體之間。可是,這和以往我們所學的固體和固體之間的摩擦力不同,因為物體在流體中受到的阻力其實是和物體移動的速度有關[7][8]

物體在流體中所受到的阻力,會受到物體大小、形狀、特性,以及流體性質的影響。阻力方程式(drag equation)概括了這些因素,描述如下[7]

其中,ρ 為流體的密度(如果是在空氣中,則是空氣的平均密度)、A 為物體在流體中的有效面積、v 為物體在流體中之速度;CD 則是阻尼係數,是一個沒有因次的數字,一般來說會跟物體的形狀以及雷諾數(Reynolds number)有關。

而雷諾數則是在流體動力學之中,流體慣性力(inertial force)和黏性力(viscous force)的比值,用來預測流體狀態的無因次物理量。對於不同的流體來說,雷諾數會有很多不同的表達方式,但一般來說都會包含流體的密度(density)、黏滯性(viscosity)、流體的流速,以及特徵長度或尺寸。

-----廣告,請繼續往下閱讀-----

最基本的雷諾數可以表示如下[9]

其中,ρ 為流體的密度,v 為流體的平均流速、D 為特徵長度,而 μ 則為流體的黏滯性。

雷諾數低的時候,流體會呈現層流(laminar flow)的狀態。流體分子會在每一層中平順流動,相鄰層之間就像堆疊的紙牌,鮮少或甚至幾乎沒有混合,當然也不會產生漩渦[10]

相反地,在雷諾數高的時候,流體則是會呈現紊流(turbulent flow)的狀態,流體的流速跟壓力沒有一定的變化規律,流體分子也沒有明顯的平行層,很常會互相混合在一起[11]

-----廣告,請繼續往下閱讀-----
圖 a 為層流的流線示意圖,而圖 b 則為紊流的流線示意圖。圖/SimScale [12]
黏滯力是一種流體受到外來作用力所產生的阻力,來源為液體內部的摩擦力。黏度較高的流體比較不容易流動,黏度較低的流體反之。本圖為不同黏性的流體所呈現出來的狀態模擬。左邊為黏性低的流體、右邊則為黏性高的流體。圖/Wikipedia [13]

扯遠了扯遠了,我們還是繼續回到原本的阻力方程式。

根據實驗觀察,在雷諾數較高,也就是流體的密度較大、流速較快,而且黏滯性較小時,阻力係數可以幾乎視為定值。此時,阻力就會跟流體流速的平方成正比,公式如下:

而在雷諾數低,也就是流體密度較小、流速較慢且黏滯性較大時,阻力係數會和雷諾數的倒數成正比,因此我們結合雷諾數本身的定義以及阻力方程式,就可以知道「在雷諾數較低時,阻力與流速之間的關係為線性關係」,公式如下:

依照前面講過的阻力方程式和流速之間關係的背景知識,讓我們回到最一開始遇到的雨滴問題。

之前在分析雨滴的受力時,只有考慮到重力的作用,計算出雨滴自 1200 m 高的雨雲雲底落到頭上時,速度約為 153 m/s。在考慮到空氣阻力時,由於阻力與雨滴的運動方向恆相反,因此我們可以將雨滴的質量先以 m 作為變項,假設雨滴為正球形且半徑為 R,繪製雨滴所受到的力圖如下:

雨滴所受到的力。圖/筆者親繪

因為空氣阻力恆與物體運動的速度反向,而雨滴在落下的時候,速度一定是向下的,加速度也向下,故空氣阻力會向上。

阻力方程式中的 A 是投影的等效面積,在球形的雨滴中,即為上圖斜線部分,可以用半徑 R 和圓面積的公式來計算。此時,我們利用牛頓第二運動定律計算雨滴運動過程中所受到的加速度量值,來觀察雨滴運動的情形:

如果今天的流體狀況是屬於高雷諾數的情況(流體的密度較大、流速較快且黏滯性較小)時,則前述的式子可以下表示,並計算出加速度的關係式:

反之,如果是低雷諾數的情形(流體的密度較小、流速較慢且黏滯性較大),則前述的式子可以下表示,也順手計算出加速度的關係式:

從前面的兩條化簡式子,可以看出雨滴掉落時,不論雷諾數如何,速度漸大都將造成阻力漸大,並使得加速度漸小。當達到一定的速度時,雨滴就不再會有加速度,而是改以等速度的方式落下。此時,雨滴所具有的速度即終端速度(terminal velocity, vt)。在終端速度時,我們可以知道雨滴所受到的重力與拖曳力達到力平衡,因此可以根據不同的雷諾數而列式。高雷諾數的情況下所計算出的終端速度如下:

低雷諾數的情況下所計算出的終端速度如下:

我們這邊以高雷諾數的流體情形來考量大氣中的情況,與前面的條件相同假設,也就是雨滴為半徑是 2 mm 的正球體,雨滴密度主要成分為水,因此密度為 1000 kg/m3,而阻尼係數這邊我們根據雨滴的形狀和經驗公式簡單取 0.6 來概略估算[14]

利用高雷諾數的情況計算終端速度實際值時,會需要流體的密度。在這裡,我們討論的對象是空氣中的雨滴,故理想上(當然,這是很理想的情況下)可以使用理想氣體方程式來求出於 1 大氣壓、20ºC 時候的空氣密度,來代入終端速度的公式。

代入我們目前空氣的條件,也就是 1 大氣壓、20ºC 的情形,而這邊務必將所有單位都轉為 SI 制,加上理想氣體常數,此時使用的是 8.314。其中,M 為空氣的分子量,我們這邊使用 28.97 g 配合以上的條件代入計算[15]

將前述所得到的空氣密度數值,結合前面的其他條件,代入高雷諾數情況的終端速度公式,即可計算終端速度:

由計算結果可以知道,當考慮到空氣阻力時,雨滴會以 8.52 m/s 的終端速度落下,比起之前純粹考慮重力時,求出的 153 m/s 來說小了非常多,是原本的二十分之一。按照牛頓第二運動定律,這樣的雨滴打到腦袋時,對於腦袋瓜的正向力也會減為原本的二十分之一。如此一來,就比較像我們平常淋雨的情況了。

由前面的計算過程,我們可以明白從高空落下的雨滴不只有受到重力。能夠讓我們下雨天走在路上不被雨滴狠狠槌死的最重要因素,其實就是空氣阻力的功勞。同時,我們可以知道,造成雨滴落下的運動過程並非等加速度,而是變加速度運動。利用牛頓第二運動定律得出加速度的關係式後,也知道速度越來越大,加速度就會越來越小。在加速度為 0 時,則會以終端速度等速落下。

最後,讓我們來感謝空氣阻力,讓每一個人在下雨天的時候都能安心走在路上。

註解

-----廣告,請繼續往下閱讀-----
所有討論 1
若芽_96
1 篇文章 ・ 2 位粉絲
因為人生想要追求知識跟技能樹的全開,而遊走在物理、法律、職業安全衛生、數位行銷、數據分析等各種不同領域的人。下一個領域會去哪呢?我也不知道,不過持續不停向前這是絕對必要的。個人網站:https://wakame.tw