0

43
5

文字

分享

0
43
5

「屎滾尿流」背後的科學奧秘 ——搞笑諾貝爾獎得主楊佩良專訪

科技大觀園_96
・2021/03/24 ・4824字 ・閱讀時間約 10 分鐘 ・SR值 477 ・五年級

與胡立德教授(David Hu)團隊一同進行研究的楊佩良博士,曾以「尿尿時間是 21 秒」與「袋熊大便是方形」,兩次登上搞笑諾貝爾獎頒獎典禮。問起她是不是為了搞笑諾貝爾獎,刻意以「屎尿」作為研究主題,她只淡淡說了一句:「從頭到尾想都沒想過!」又追問她為什麼要做這些研究,楊佩良博士笑著說:「你不覺得這很有趣嗎?」

立定志向的演講

談起自己為何會開始生物力學的相關研究,楊佩良想起了大學時期聽到的一場演講,這場演講正是胡立德教授的研究分享,主題是「蛇的爬行方式」。

2015 年登上搞笑諾貝爾獎頒獎典禮的胡立德(頭上戴著馬桶蓋)、楊佩良(紅色洋裝)。(圖/ Improbable Research Youtube)

「如果光靠蠕動,蛇是不能前進的,還要靠鱗片的立放才能順利前進!」楊佩良說胡教授的分享為她的人生開啟了另一扇門,回想過去,小學時很喜歡看故事書,以為自己會當個作家,中學時則愛上了生物,到了高中又對物理與數學產生興趣,每個階段愛的都不同,「我愛的是生物加上力學,聽到兩者可以二合一的時候,有個念頭從我腦中一閃而過。」至於當時聽完胡立德的演講後有何感想,楊佩良說:

「很難的數學,很鬧的結果。」這就是楊佩良踏入科學研究的契機。

勇於面對質疑

在楊佩良求學過程中,其實也跟家人有過衝突,她說:「當然有阿!最常被問到的就是念了這個有什麼用?尤其我的博士論文(尿尿時間 21 秒)超怪的。不過畢竟是個博士,而且還是個不錯的博士(機械博士)。」

不只是家人有衝突,許多大眾在過去也很不諒解他的研究,「在還沒得獎(搞笑諾貝爾獎)之前,許多人聽到我的研究都是毀譽參半。」楊佩良分享之前接受美國媒體採訪的經驗,採訪的主題正是她的博士論文,當採訪上傳到 Youtube之後,like 跟 dislike 數是差不多的。

「不過在得獎(搞笑諾貝爾獎)之後,這些事情就沒發生過了。」楊佩良笑著說,也對搞笑諾貝爾獎傳播科學的能力感到驚訝,「以前都會說我們是不務正業、浪費資源,現在都說我們是有『玩心』的科學家。」

研究尿尿的契機

說起研究尿尿的原因,楊佩良分享了胡立德教授的生活故事。放假時,胡教授在家裡帶小孩,閒著無聊就開始觀察起小孩,發現小孩上廁所花的時間跟自己差不多,這個現象引起了胡教授的注意。

「我小孩跟我體型差這麼多,他的尿才那麼一點點,怎麼尿尿的時間會跟我差不多?」接著胡教授又跑去觀察他們家養的狗,發現尿尿的時間也跟自己差不多。

楊佩良研究發現哺乳類動物的尿尿時間都差不多是 21 秒,並以此獲得了 2015 年的搞笑諾貝爾獎。圖/Pixabay

「那時候我剛進(胡立德的)實驗室,然後我自己不是那麼喜歡坐在辦公室,所以我那時候跟他(胡立德)說,只要你讓我去動物園,我什麼都願意。」後來,胡教授便把研究尿尿的重責大任交給楊佩良,說:「那你去幫我調查全世界最大的(陸上哺乳類)動物,尿尿的時間是不是也差不多。」

尿尿觀測小組

為此,楊佩良與另外兩位學生組成了「尿尿觀測小組」,他們先是在網路上搜尋大象(最大的陸上哺乳類)的尿尿影片,也去附近的動物園駐點觀測動物尿尿,此外,也跟動物園協商某些動物是否能近距離觀察或採集尿液。

楊佩良提到動物園的動物,生活作息其實非常規律,有經驗的飼育員甚至能精準告訴你哪隻動物現在要準備尿尿,這讓數據蒐集與採樣變得簡單,但也有非常難搞的,像是動物收容中心裡的流浪狗。

「如果站在狗的後面,他們會直接跑掉。」這些流浪狗對人的警戒心很高,最後他們用了寵物尿墊蒐集尿液,以前後重量差異的方式來估算尿液的重量。

NHK 再次驗證

研究發表後,不少人寄信給楊佩良,說這研究的誤差值太大(誤差值為正負 13 秒,平均尿尿時間也才 21 秒)或是自己尿尿的時間根本不是 21 秒,楊佩良解釋:「這可是 5 公斤到 5000 公斤的動物的數據,所以我想這應該是一個很小的離峰值。」此外,其他需要考慮的變數也很多,像是每個人對於「想尿尿」的感覺不同,有人可能膀胱還沒滿就跑廁所了。

「由於太多人問人類相關的問題,日本 NHK 就找我們,還協調了一位日本的泌尿科醫師來做這件事(測量人類小便的時間)。」在節目中,泌尿科醫生在車站外面招募參與者,請他們去上廁所並用碼錶記下自己上廁所的時間,最後收集了約有兩千位參與者的尿尿數據。

「平均起來大概是 20.5 秒吧。」這個數值十分接近楊佩良的研究結果,在分享這個數據的同時,楊佩良也鬆了一口氣,「其實我一直很怕自己做的東西無法適用在人類身上,雖然我的模型理論上是 21 秒,但我沒有(人類的)數據可以支持。」

古老的問題:袋熊便便是方的

「在沒看到樣品之前,我一直認為這是假的。」楊佩良博士如此說道。在澳洲,「袋熊便便是方的」如常識般流傳在民間,一般人認為這是因為袋熊肛門是方的,才讓便便變成方的。

袋熊的方形便便。圖/Wikipedia

「為此,我們聯絡了澳洲當地的袋熊專家(Scott Carver),他跟當地政府配合處理路殺袋熊。」Scott 告訴楊佩良,在解剖袋熊屍體時,就能看到袋熊的腸道中有方形便便,Scott 把樣本寄到美國,楊佩良這才確認了袋熊便便真的是方的。後來,楊佩良也針對活體袋熊做了 CT 斷層掃描,發現袋熊的肛門形狀是圓的,肛門是方的說法也就不攻自破了。

這些現象直指袋熊「便便是方形」的秘密就在腸道中。在解剖路殺袋熊後發現,這些便便要到腸道末端才逐漸變硬、變方,而要形成我們所見到的方塊便便,則大約是到了腸道末端 8% 左右的地方才能見到。

方形便便的力學分析

會有這個現象主要原因,是袋熊的腸道肌肉發育不平均,如下圖 (a) 所示,紅色處代表肌肉較薄較容易變形的區域藍色則是肌肉較厚,較不易變形的區域

(a) 為袋熊腸道的截面模型。(b)為截面上的截點((a) 中的黑點)的力平衡分析。(c)、(d)、(e) 為腸道模型在不同狀態下(初始、蠕動後 7.9 秒、蠕動後 30 秒)的形狀。(f)、(g)、(h) 為不同狀態下,腸道模型各處的伸長量,可以看到在 0 – 90 度與 180 – 270 度處(模型紅色處),伸長量明顯變多。圖/參考文獻 1

我們可以把袋熊腸道的截面模型,當作兩種不同的彈簧組合在一起,紅色的部分是容易被拉開的彈簧,藍色的部分是不容易被拉開的彈簧。為了維持力平衡,各處彈簧連接處的受力必須相等,拉開角度與伸長量的分析方法如 (b) 所示。

腸道蠕動的過程則可以簡單理解為有外力壓縮腸道,由於兩種彈簧受外力後的伸長量不同,因此腸道無法繼續維持圓形,最終形成類似橢圓形的形狀(如圖中 (c)、(d)、(e) 所示)。不過,這個模型是沒有便便在腸道中的模型,也沒有考慮腸道中兩種不同彈簧的受力伸長量(原文為 Stiffness,剛度)的差異,把這兩個變數考慮進去後,形狀就會接近正方形了!

(a) 在不同的腸道剛度比(C),與腸道內糞便的雷諾數(Re)下,腸道形狀上的差異。
(b) 腸道的剛度比(C)越高,糞便越接近正方形(Squarenss), 
(c) 糞便的雷諾數(Re)越高,糞便越接近正方形(Squarenss)
圖/參考文獻 1

註解:剛度比(C),數值越大表示腸道軟與硬的部分剛度差異越大;雷諾數(Re),數值越大表示流體慣性力越強,流體無法朝同一方向移動,此狀況下可簡單理解為糞便越乾越硬,不是稀稀水水的。

簡言之,如果腸道的肌肉分布越不均勻(腸道軟與硬的部分差異越大),以及糞便越乾,就越容易形成方形便便!這也說明了為什麼袋熊便便只會在腸道的最末端變成方形,除了多次擠壓之外,這時的便便也比較乾燥。

至於我們有沒有可能大出不同形狀的花俏便便呢?楊佩良則分享了一位腸胃科醫師的意見:「大腸癌的初期的患者,其實就是大腸的某個角落開始硬化,因此有可能大出來的大便形狀會不太一樣。」下次大便的時後,記得多看一眼便便形狀,搞不好能及早發現大腸的病變!

2019 年,楊佩良以解開袋熊方便之謎再度二度獲頒搞笑諾貝爾獎。(圖/Improbable Research Youtube)

為了好奇心,學會名為「科學」的工具

「澳洲人很早以前就知道袋熊便便是方的,為什麼會等到我來做研究呢?」楊佩良的話令我們沉默,對楊佩良來說,數學或物理並不是課本中會考的知識,而是解決問題的「工具」。

也許澳洲人很早就發現了這個問題,也很想解開這個謎題,但這些想解開謎題的人,並沒有相稱的「工具」可以解謎,「澳洲袋熊專家(Scott)就是其中之一,因此當我告訴他想要研究這個問題的時候,他非常大方地提供各種幫助。」

其實澳洲人很早就知道袋熊擁有方形便便了,卻由來自臺灣的楊佩良解開「方便」的謎底。圖/Wikipedia

「如果不是為了好奇心,手腳就會動得慢!」楊佩良認為自己學習的動力就是好奇,只要真的想做,總會有方法解決。她分享自己在大學時遇到的外文與物理雙主修的學姊,雖然數學是個門檻,但學姊最後還是完成了雙主修。

「算了一下,這位學姊在大學時花在物理跟數學的總時數,絕對超過我們花在高中的總時數。」楊佩良認為並沒有命定論這回事,再次回憶起自己過去的學習歷程,都是順著自己的心意,認真想要回答自己遇到的問題,才會到處學各種新的事物。

為了不抹滅學生的好奇心,楊佩良在自己的流體力學課上,要學生針對自己有興趣的現象,做出「流體可視化」當作期末報告,她說:「只要拍出來我就給過。」

楊佩良分享了幾位學生的題目,一位游泳隊的學生好奇為什麼自己在學校的泳池游泳比較快,錄下了在不同泳池游泳時的水流狀況,足球隊的學生則拍下了逆風與順風射門時的差異,而另一位沒有社團活動的學生,則拍下了無葉風扇的氣流是怎麼流的。

「生活中其實有很多流體力學。」像是香菸的軌跡,或是蛋白打發,都是流體力學的守備範圍。雖然深入分析需要流體力學與工程數學的協助,但「流體可視化」只要花點巧思,就能看見流體現象、比較差異,而這種回饋感,正是好奇心的來源,有足夠的好奇心,補齊「工具」也不會是難事。

無用的傳承與啟發

談起研究應用,楊佩良說:「有用的東西,是建立在無法運用的基礎上,傳承後的結果。」也分享近三年內,關於尿尿研究的後續研究成果,包含了智慧馬桶與導尿管的設計,「這些研究是我一開始沒有想到的,但如果沒有我的研究,他們也不會想到。」

未來,楊佩良也將繼續投入更多有趣(但可能無用)的研究題目上,像是鳥類(候鳥)群聚飛行時,為什麼不會有豬隊友讓他們撞在一起?而胡立德教授的團隊也持續研究各種有趣的現象,像是一大群蛆如何每隻都能吃到食物,或是動物舌頭的相關後續研究。

參考資料

  1. Yang, P. J., Lee, A. B., Chan, M., Kowalski, M., Qiu, K., Waid, C., … & Hu, D. L. (2021). Intestines of non-uniform stiffness mold the corners of wombat feces. Soft Matter17(3), 475-488.
  2. Yang, P. J., Pham, J., Choo, J., & Hu, D. L. (2014). Duration of urination does not change with body size. Proceedings of the National Academy of Sciences111(33), 11932-11937.

數感宇宙探索課程,現正募資中!

文章難易度
科技大觀園_96
82 篇文章 ・ 1090 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。


2

6
3

文字

分享

2
6
3

既是科學家,也是樂團鼓手!──專訪數學物理學家程之寧

研之有物│中央研究院_96
・2022/03/11 ・5978字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|郭雅欣、簡克志
  • 美術設計|林洵安、蔡宛潔

在學術與搖滾的多重維度上行走

還記得美劇《The Big Bang Theory》嗎?劇中常常出現的物理名詞「弦論」,是描述物理世界基本結構的理論。中央研究院「研之有物」專訪院內數學研究所程之寧研究員,她正是研究弦論的科學家,也是熱愛音樂的搖滾樂團鼓手,這種跨領域身份並不衝突,兩邊都需要創造力與紀律。由於天生斜槓的性格,讓程之寧在數學和物理領域大展身手,透過數學的深入探討,她試圖將弦論更往前推進。最近程之寧更跨足到人工智慧領域,為學界提供理論物理上的貢獻。

中研院數學所程之寧研究員,主要研究 K3 曲面(特殊的四維空間)的弦論,她發現模函數和有限對稱群之間有 23 個新的數學關聯,稱之為「伴影月光猜想」(Umbral Moonshine)。圖/研之有物

萬有理論和難以捉摸的「月光」

世界從那裡來呢?物理世界的本質是什麼呢?回答這樣的大哉問,一直是理論物理學家所追求的目標。從牛頓力學(日常應用)、廣義相對論(探討很重的物質)到量子力學(探討很小的物質),隨著物理學不斷發展,我們似乎一步步接近答案,但至今卻還未走到終點。

舉例來說,如果有個東西很重又很小,就像「黑洞」,或是大爆炸時的宇宙,我們要怎麼用數學描述?於是科學家試圖整合廣義相對論和量子力學,找出所謂的「萬有理論」(Theory of Everything)──能完全解釋物理世界基本結構的核心理論。

程之寧研究的「弦論」就企圖發展成這樣一個萬有理論。弦論一如其名的「玄妙」,它設定宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。

「人類一直以來的夢想之一就是,如果能用一句話解釋所有事情,那該有多麼美好。」中研院數學所研究員程之寧說道。

程之寧的研究牽涉到數學上的「月光猜想」(Moonshine)與弦論中 K3 曲面的連結。月光猜想是存在於模函數係數與特殊群之間的數學關聯,程之寧與其研究夥伴共發現了 23 個新的關連,並稱之為「伴影月光猜想」(Umbral Moonshine)。

基於弦論的假設,我們的世界是十維的,除了人們在日常生活中可以感知到的 3+1 維(空間+時間),還有六維是因為尺寸太小而無法用肉眼觀察的,這些看不到的維度影響著物理世界,最終也產生了我們這個物理世界所需的各種條件與特性。

綜觀程之寧的研究,橫跨了物理與數學兩個領域,她笑稱自己「天生斜槓」。在學術上,程之寧原先喜歡文學,之後卻走上數理研究的道路;在音樂上,程之寧喜愛搖滾樂,至今仍在自己的樂團裡擔任鼓手。

她如何看待自己一路走來的各種轉折?游徜在數學與物理之間,她又對這兩個領域的連結有怎樣的體會?在與「研之有物」的訪談中,程之寧侃侃而談她的經歷、想法,以及對學術研究的熱忱所在。

在弦論的設定中,宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。圖/iStock
  • 請問您是如何對數學及物理產生興趣?從何時開始?

一開始考大學時,其實我想去念中文系(笑)。不過,因為我高中是選理組,而且只念了一兩年,對文科考試比較沒把握,加上對工程科系沒興趣,最後就選擇臺大物理系就讀。

後來發生兩個轉折,第一個是我很認真的去修了大學中文系的課,結果發現真的沒有想像中容易。第二個就是我發現物理系的課還蠻有趣的,像量子力學和相對論,讓我覺得還想再多學一點、多知道一點。

我開始覺得如果念完臺大物理系就停下來,好像有一種小說沒讀完的感覺,所以就想繼續讀碩士班。那時還沒有覺得自己會走上學術研究的路,單純抱著想把故事看完的想法。

  • 後來是如何接觸到弦論?弦論是如何引起您的興趣?

後來我去荷蘭念碩士,指導教授是諾貝爾物理獎得主 Gerard ’t Hooft。他其實蠻不認同弦論,但他對於如何處理量子力學與相對論很有興趣。

當時 ’t Hooft 教授在建議我碩士題目時就說:「你也知道我不太認為弦論是一條正確的道路,不過聽說弦論最近真的在量子重力這一塊有一些成果。不如妳去讀一讀,看看是不是真的有一些東西在那裡,也可以比較一下其他量子重力理論。」

在我很認真的比較各個量子重力理論之後,就變成弦論派了(笑)。’t Hooft 教授對此也保持開放態度,他有幾個不錯的博士生後來也變成弦論學家,之後我在 Erik Verlinde 的指導下念博士時,就完全以弦論為研究主題了。

  • 研究理論物理會影響您對現實世界的理解嗎?

蠻多人會問我說,妳學了量子力學,是不是就會比較了解這個世界不是非黑即白?或問我量子力學跟宗教是不是有關?可是我覺得我分得很開,我不會去做這樣的連結,我還是活在現實裡,走路時大部分都在專注於自己不要跌倒之類的。

如果真的要講,我蠻感激我們的存在,因為我所學的東西讓我知道這是沒有必然性的。我們能這樣以一種人形的很奇怪的生物的形式存在,然後在這樣一個環境過一輩子,是機率很低的事情,而且我還蠻開心我是當人,而不是奇怪的阿米巴蟲或外星生物!有些人會從這裡連結到宗教或轉世,但我不會,我就停在這裡。

  • 來談談您的研究,伴影月光猜想與 K3 曲面弦論之間是什麼關係?

弦論中有很多的可能性,我們可以挑選特定的四維,然後假設這四維空間是個 K3 曲面。例如說,我們可以把兩個甜甜圈乘起來,在上面做特殊的奇異點,來製造出一個 K3 曲面。這個曲面有一些很有趣的對稱性。從弦論的角度來講,我們可以透過這個過程,找出一個解釋為何有伴影月光猜想的框架。

「把維度乘起來」這個概念很難想像,但這在數學上是成立的。我舉例一個我們能想像的「乘起來」:如果有一個空間是一條線,另一個空間是一個圓,乘起來就變成一個圓柱形,從一個方向剖面可以切出圓,另一個方向則切出線。而在數學上,不管幾維,能不能在紙上畫的出來,都可以這樣操作。

程之寧向「研之有物」採訪團隊解釋「把維度乘起來」的概念。圖/研之有物
  • 如何透過計算,發現捉摸不定的「月光」?

有時候這看似湊巧,一個數學上的函數正好就是弦論某個問題的答案。但其實並不是真的那麼巧,弦論看起來很有彈性,好像什麼都可以解釋,但它其實有非常多結構及限制。

當我在計算一個弦論理論時,它的內部結構可能原本就具有某些特定的性質,然後我再去觀察數學中,有這樣性質的函數可能就只有一兩個,只要再初步算一下,就能知道哪一個是答案。弦論學家日常的計算常常是這樣的,所以這是巧合嗎?是也不是。

  • 您曾經發現 23 個新的伴影月光猜想,您對這類題目特別有興趣嗎?

我覺得數學有兩種,有些數學家喜歡系統性的事情,就像蓋房子一樣,在數學裡建造一個很美麗、非常有系統性的結構,可以把很多事情都放入這個結構來理解。

另一種比較少數的,就是喜歡獵奇,去收集分類奇奇怪怪的特殊東西,例如有這些性質的函數在哪裡?可能你算出來就是 5 個,你也不知道為什麼。月光猜想很明顯就屬於這一類。

兩種的樂趣感覺是不一樣的,我覺得應該都很棒,但我可能是屬於偏好獵奇的這種。

  • 您的研究連結了物理上的弦論與數學上的月光猜想,您怎麼看待這兩個知識體系的互動?

弦論是一個需要很多數學理論配合的物理理論,它是一個有點繁複的框架,我們什麼都要會一些,才能看懂這個理論。當你把許多不一樣的學門的知識加起來,有時候就會在某一個學門──例如幾何──有意想不到的收穫。

弦論在數學上也扮演探索與找尋新方向的角色,讓數學家有新的發現。雖然最後數學定理的證明還是得仰賴傳統數學方法,但在這二三十年間,我們一直從弦論身上找尋數學研究的新方向或有趣的猜想,看到了弦論與數學之間的互動。

數學家有兩種,一種人喜歡建立美麗又有系統性的結構,另一種人喜歡尋找和收集奇怪特殊的數學物件(比如函數),程之寧表示自己屬於後者。圖/研之有物
  • 剛才一開始提到,您高中只念了一兩年,是因為對學校沒有興趣嗎?

其實我一直都覺得上學很無聊。我小時候臺灣教育和現在很不一樣,一班 50 幾個人,老師必須盡量軍事化管理,大家最好都一模一樣,比較好管理。我和學校一直處於互相磨合的狀況,我自認已經努力配合學校,但學校一直覺得我在反抗,這可能是一個認知上的差別。

舉例來說,我小學的時候不想睡午覺,可是老師說大家都一定要睡午覺,不睡午覺的人要罰抄課文,所以我早上到學校時就會把已經抄好的課文交給老師。我覺得我這樣做是在配合老師的規定,可是以老師的立場會覺得我在反抗,學校教育中我遇到了很多類似的情況。

還有就是不喜歡高中的升學氛圍,同學和老師好像都只有一個活著的目標,就是「考大學」。我當時無法習慣升學氛圍,感覺好像活在平行宇宙一樣。

  • 高中休學後,您去唱片行工作,可否談談當時的想法?

我國中開始聽音樂,這是我除了看書之外的重要興趣,我也很快就喜歡上了搖滾樂。高中休學的時候,我唯一的謀生技能可能就是我對音樂的各類知識吧!所以我就去了唱片行,這是唯一一個我會做又有興趣的工作,還好那時候還有很多唱片行(笑)。

  • 對音樂的熱忱,讓您與朋友共組了樂團,並擔任鼓手。您是否比較過樂團生活和學術研究之間的異同之處?

有些人覺得我這樣很跳 tone,但我自己覺得還好。音樂和學術都是我發自內心覺得好玩的東西,兩者也有相同之處,例如它們都需要創造性,也都有需要了解的框架。數學需要嚴謹的證明,音樂演奏也需要遵循結構,例如不能掉拍。

音樂領域還有一點和數學類似──玩樂團的圈子也是以男性為主。我們樂團則是只有一個男生,其他都是女生,可能我真的天生對框架有點遲鈍,玩團之後才發現:「怎麼大家都是男生?」

程之寧表示,學術界仍有許多性別不平等問題未受重視。圖/研之有物
  • 也就是說,目前數學學術圈仍是男性主導,在研究路上,您有因為性別而感受到一些衝擊或眼光嗎?您怎麼面對?

有。那感覺很明顯,日復一日地要去面對,尤其是年紀還比較輕、還必須每一天去證明自己的能力的時候,特別有感。

我遇到時的反應就是,在心裡暗罵一句髒話,然後繼續做我要做的事。我不會想改變別人的想法,感覺那是浪費時間,就算環境給我的阻礙是這樣,我還是繼續去做該做的事。

可是有些事情沒那麼簡單,現在我也當過老師,有時候會看到年輕女生在學術界因為性別而被欺負,或遭到不公平待遇、甚至騷擾。

對此我感到心痛,覺得為何我們學術領域還是這樣的狀況?甚至為什麼性騷擾至今還是一個議題?可以確定的是,學術界許多性別不平等問題未受到重視。

  • 您現在已經有傑出的研究成果,還會因為性別而遭受質疑嗎?

我現在比較會遇到一個狀況反而是來自學生的質疑。我在荷蘭阿姆斯特丹大學教書時,有時候學生會因為我是女教授,而且我的外表在許多歐洲人眼中看起來就像小妹妹,所以比較容易去挑我的毛病。

在課堂上,下面坐的可能都是男學生,只有一兩個女學生,那個氣氛就會變得很奇怪。例如說偶爾會聽到學生評論我的身材或樣貌。

我有和其他一些在歐洲或美國的女性教授聊過這樣的問題,似乎不少人都有類似的不太愉快的經驗。感覺不是很好。

  • 看到您最近的研究和人工智慧(AI)有關,為何會想往這個方向發展?

我有兩個動機。一個就是我真的想深入了解人工智慧。我也可以像普羅大眾,看看 AI 下圍棋,讚嘆「哇!好厲害!」這樣就好,可是我覺得我一定可以真的去理解它,這可能就是數學家的自大吧!

另一方面,我知道對科學研究來說,未來 AI 將會是一個非常重要的工具。這是「在職訓練」的概念,我可能會用到這個新工具,或以後我可能會需要教這樣的課,因為學生是下一代的科學家。因為這些原因,我覺得我需要去訓練自己使用新的工具。在我的領域裡,也有一些有趣的、還沒被解答的科學問題,是 AI 有可能幫得上忙的,我看到了一些潛力。

  • 弦論和 AI 感覺差距很大,AI 也可以應用到弦論的研究嗎?

乍看之下,弦論的確比較抽象,也不像其他許多實驗會產生大量數據。但其實弦論有大量的可能性,我認為使用 AI 來在這些巨量的可能性當中搜尋特別有趣的理論,是一個有潛力能夠加深我們對弦論理解的新的研究方法。

而且 AI 的應用絕不僅限於巨量資料。如果是面對一些比較新的挑戰,在沒有現成的演算法可以用的情形之下,可以自己做出需要的功能嗎?這過程我覺得也非常很有趣,而且應該是會有成果的一條路。這種不是那麼顯而易見的事情,我覺得很有挑戰性,也蠻好玩的。

除了用 AI 來幫助物理跟數學的研究之外,我也試著物理研究當做靈感來源,找出新的 AI 的可能性,我覺得這也是一個很有趣的研究方向。我現在有和 AI 的學者合作,嘗試做出一些創新的演算法,真的還蠻有趣的。

  • AI 對您而言是全新的領域,您如何面對跨領域遇到的門檻?

一開始會覺得真的要去碰這個新的領域嗎?其實現在也還是偶爾會有這樣的懷疑。我在弦論領域可能已經是專家,但去了一個新的領域,我學得不會比二十歲的人快,要怎麼去跟人家競爭?是不是在浪費時間?

但也會想,與其想這麼多,不如先做再說。到目前為止我做了兩年多,感覺還蠻好的,我有學到東西,也有做出小小的貢獻。

其實我還蠻感激有這樣的學習機會。對我來說當科學家最大的好處就是,去搞懂一個新的東西就是工作的一部分。當科學家雖然蠻辛苦,但就結果論來說,我還蠻開心能當一位科學家!

延伸閱讀

  1. Moonshine Master Toys With String Theory | Quanta Magazine
  2. Mathematicians Chase Moonshine’s Shadow | Quanta Magazine
  3. 林正洪教授演講 一 怪物與月光(Monster and Moonshine),《數學傳播》

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
8 篇文章 ・ 16 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook