Loading [MathJax]/extensions/tex2jax.js

0

45
6

文字

分享

0
45
6

「屎滾尿流」背後的科學奧秘 ——搞笑諾貝爾獎得主楊佩良專訪

科技大觀園_96
・2021/03/24 ・4824字 ・閱讀時間約 10 分鐘 ・SR值 477 ・五年級

-----廣告,請繼續往下閱讀-----

與胡立德教授(David Hu)團隊一同進行研究的楊佩良博士,曾以「尿尿時間是 21 秒」與「袋熊大便是方形」,兩次登上搞笑諾貝爾獎頒獎典禮。問起她是不是為了搞笑諾貝爾獎,刻意以「屎尿」作為研究主題,她只淡淡說了一句:「從頭到尾想都沒想過!」又追問她為什麼要做這些研究,楊佩良博士笑著說:「你不覺得這很有趣嗎?」

立定志向的演講

談起自己為何會開始生物力學的相關研究,楊佩良想起了大學時期聽到的一場演講,這場演講正是胡立德教授的研究分享,主題是「蛇的爬行方式」。

2015 年登上搞笑諾貝爾獎頒獎典禮的胡立德(頭上戴著馬桶蓋)、楊佩良(紅色洋裝)。(圖/ Improbable Research Youtube)

「如果光靠蠕動,蛇是不能前進的,還要靠鱗片的立放才能順利前進!」楊佩良說胡教授的分享為她的人生開啟了另一扇門,回想過去,小學時很喜歡看故事書,以為自己會當個作家,中學時則愛上了生物,到了高中又對物理與數學產生興趣,每個階段愛的都不同,「我愛的是生物加上力學,聽到兩者可以二合一的時候,有個念頭從我腦中一閃而過。」至於當時聽完胡立德的演講後有何感想,楊佩良說:

「很難的數學,很鬧的結果。」這就是楊佩良踏入科學研究的契機。

勇於面對質疑

在楊佩良求學過程中,其實也跟家人有過衝突,她說:「當然有阿!最常被問到的就是念了這個有什麼用?尤其我的博士論文(尿尿時間 21 秒)超怪的。不過畢竟是個博士,而且還是個不錯的博士(機械博士)。」

-----廣告,請繼續往下閱讀-----

不只是家人有衝突,許多大眾在過去也很不諒解他的研究,「在還沒得獎(搞笑諾貝爾獎)之前,許多人聽到我的研究都是毀譽參半。」楊佩良分享之前接受美國媒體採訪的經驗,採訪的主題正是她的博士論文,當採訪上傳到 Youtube之後,like 跟 dislike 數是差不多的。

「不過在得獎(搞笑諾貝爾獎)之後,這些事情就沒發生過了。」楊佩良笑著說,也對搞笑諾貝爾獎傳播科學的能力感到驚訝,「以前都會說我們是不務正業、浪費資源,現在都說我們是有『玩心』的科學家。」

研究尿尿的契機

說起研究尿尿的原因,楊佩良分享了胡立德教授的生活故事。放假時,胡教授在家裡帶小孩,閒著無聊就開始觀察起小孩,發現小孩上廁所花的時間跟自己差不多,這個現象引起了胡教授的注意。

「我小孩跟我體型差這麼多,他的尿才那麼一點點,怎麼尿尿的時間會跟我差不多?」接著胡教授又跑去觀察他們家養的狗,發現尿尿的時間也跟自己差不多。

-----廣告,請繼續往下閱讀-----
楊佩良研究發現哺乳類動物的尿尿時間都差不多是 21 秒,並以此獲得了 2015 年的搞笑諾貝爾獎。圖/Pixabay

「那時候我剛進(胡立德的)實驗室,然後我自己不是那麼喜歡坐在辦公室,所以我那時候跟他(胡立德)說,只要你讓我去動物園,我什麼都願意。」後來,胡教授便把研究尿尿的重責大任交給楊佩良,說:「那你去幫我調查全世界最大的(陸上哺乳類)動物,尿尿的時間是不是也差不多。」

尿尿觀測小組

為此,楊佩良與另外兩位學生組成了「尿尿觀測小組」,他們先是在網路上搜尋大象(最大的陸上哺乳類)的尿尿影片,也去附近的動物園駐點觀測動物尿尿,此外,也跟動物園協商某些動物是否能近距離觀察或採集尿液。

楊佩良提到動物園的動物,生活作息其實非常規律,有經驗的飼育員甚至能精準告訴你哪隻動物現在要準備尿尿,這讓數據蒐集與採樣變得簡單,但也有非常難搞的,像是動物收容中心裡的流浪狗。

「如果站在狗的後面,他們會直接跑掉。」這些流浪狗對人的警戒心很高,最後他們用了寵物尿墊蒐集尿液,以前後重量差異的方式來估算尿液的重量。

-----廣告,請繼續往下閱讀-----

NHK 再次驗證

研究發表後,不少人寄信給楊佩良,說這研究的誤差值太大(誤差值為正負 13 秒,平均尿尿時間也才 21 秒)或是自己尿尿的時間根本不是 21 秒,楊佩良解釋:「這可是 5 公斤到 5000 公斤的動物的數據,所以我想這應該是一個很小的離峰值。」此外,其他需要考慮的變數也很多,像是每個人對於「想尿尿」的感覺不同,有人可能膀胱還沒滿就跑廁所了。

「由於太多人問人類相關的問題,日本 NHK 就找我們,還協調了一位日本的泌尿科醫師來做這件事(測量人類小便的時間)。」在節目中,泌尿科醫生在車站外面招募參與者,請他們去上廁所並用碼錶記下自己上廁所的時間,最後收集了約有兩千位參與者的尿尿數據。

「平均起來大概是 20.5 秒吧。」這個數值十分接近楊佩良的研究結果,在分享這個數據的同時,楊佩良也鬆了一口氣,「其實我一直很怕自己做的東西無法適用在人類身上,雖然我的模型理論上是 21 秒,但我沒有(人類的)數據可以支持。」

古老的問題:袋熊便便是方的

「在沒看到樣品之前,我一直認為這是假的。」楊佩良博士如此說道。在澳洲,「袋熊便便是方的」如常識般流傳在民間,一般人認為這是因為袋熊肛門是方的,才讓便便變成方的。

-----廣告,請繼續往下閱讀-----
袋熊的方形便便。圖/Wikipedia

「為此,我們聯絡了澳洲當地的袋熊專家(Scott Carver),他跟當地政府配合處理路殺袋熊。」Scott 告訴楊佩良,在解剖袋熊屍體時,就能看到袋熊的腸道中有方形便便,Scott 把樣本寄到美國,楊佩良這才確認了袋熊便便真的是方的。後來,楊佩良也針對活體袋熊做了 CT 斷層掃描,發現袋熊的肛門形狀是圓的,肛門是方的說法也就不攻自破了。

這些現象直指袋熊「便便是方形」的秘密就在腸道中。在解剖路殺袋熊後發現,這些便便要到腸道末端才逐漸變硬、變方,而要形成我們所見到的方塊便便,則大約是到了腸道末端 8% 左右的地方才能見到。

方形便便的力學分析

會有這個現象主要原因,是袋熊的腸道肌肉發育不平均,如下圖 (a) 所示,紅色處代表肌肉較薄較容易變形的區域藍色則是肌肉較厚,較不易變形的區域

(a) 為袋熊腸道的截面模型。(b)為截面上的截點((a) 中的黑點)的力平衡分析。(c)、(d)、(e) 為腸道模型在不同狀態下(初始、蠕動後 7.9 秒、蠕動後 30 秒)的形狀。(f)、(g)、(h) 為不同狀態下,腸道模型各處的伸長量,可以看到在 0 – 90 度與 180 – 270 度處(模型紅色處),伸長量明顯變多。圖/參考文獻 1

我們可以把袋熊腸道的截面模型,當作兩種不同的彈簧組合在一起,紅色的部分是容易被拉開的彈簧,藍色的部分是不容易被拉開的彈簧。為了維持力平衡,各處彈簧連接處的受力必須相等,拉開角度與伸長量的分析方法如 (b) 所示。

-----廣告,請繼續往下閱讀-----

腸道蠕動的過程則可以簡單理解為有外力壓縮腸道,由於兩種彈簧受外力後的伸長量不同,因此腸道無法繼續維持圓形,最終形成類似橢圓形的形狀(如圖中 (c)、(d)、(e) 所示)。不過,這個模型是沒有便便在腸道中的模型,也沒有考慮腸道中兩種不同彈簧的受力伸長量(原文為 Stiffness,剛度)的差異,把這兩個變數考慮進去後,形狀就會接近正方形了!

(a) 在不同的腸道剛度比(C),與腸道內糞便的雷諾數(Re)下,腸道形狀上的差異。
(b) 腸道的剛度比(C)越高,糞便越接近正方形(Squarenss), 
(c) 糞便的雷諾數(Re)越高,糞便越接近正方形(Squarenss)
圖/參考文獻 1

註解:剛度比(C),數值越大表示腸道軟與硬的部分剛度差異越大;雷諾數(Re),數值越大表示流體慣性力越強,流體無法朝同一方向移動,此狀況下可簡單理解為糞便越乾越硬,不是稀稀水水的。

簡言之,如果腸道的肌肉分布越不均勻(腸道軟與硬的部分差異越大),以及糞便越乾,就越容易形成方形便便!這也說明了為什麼袋熊便便只會在腸道的最末端變成方形,除了多次擠壓之外,這時的便便也比較乾燥。

至於我們有沒有可能大出不同形狀的花俏便便呢?楊佩良則分享了一位腸胃科醫師的意見:「大腸癌的初期的患者,其實就是大腸的某個角落開始硬化,因此有可能大出來的大便形狀會不太一樣。」下次大便的時後,記得多看一眼便便形狀,搞不好能及早發現大腸的病變!

2019 年,楊佩良以解開袋熊方便之謎再度二度獲頒搞笑諾貝爾獎。(圖/Improbable Research Youtube)

為了好奇心,學會名為「科學」的工具

「澳洲人很早以前就知道袋熊便便是方的,為什麼會等到我來做研究呢?」楊佩良的話令我們沉默,對楊佩良來說,數學或物理並不是課本中會考的知識,而是解決問題的「工具」。

-----廣告,請繼續往下閱讀-----

也許澳洲人很早就發現了這個問題,也很想解開這個謎題,但這些想解開謎題的人,並沒有相稱的「工具」可以解謎,「澳洲袋熊專家(Scott)就是其中之一,因此當我告訴他想要研究這個問題的時候,他非常大方地提供各種幫助。」

其實澳洲人很早就知道袋熊擁有方形便便了,卻由來自臺灣的楊佩良解開「方便」的謎底。圖/Wikipedia

「如果不是為了好奇心,手腳就會動得慢!」楊佩良認為自己學習的動力就是好奇,只要真的想做,總會有方法解決。她分享自己在大學時遇到的外文與物理雙主修的學姊,雖然數學是個門檻,但學姊最後還是完成了雙主修。

「算了一下,這位學姊在大學時花在物理跟數學的總時數,絕對超過我們花在高中的總時數。」楊佩良認為並沒有命定論這回事,再次回憶起自己過去的學習歷程,都是順著自己的心意,認真想要回答自己遇到的問題,才會到處學各種新的事物。

為了不抹滅學生的好奇心,楊佩良在自己的流體力學課上,要學生針對自己有興趣的現象,做出「流體可視化」當作期末報告,她說:「只要拍出來我就給過。」

-----廣告,請繼續往下閱讀-----

楊佩良分享了幾位學生的題目,一位游泳隊的學生好奇為什麼自己在學校的泳池游泳比較快,錄下了在不同泳池游泳時的水流狀況,足球隊的學生則拍下了逆風與順風射門時的差異,而另一位沒有社團活動的學生,則拍下了無葉風扇的氣流是怎麼流的。

「生活中其實有很多流體力學。」像是香菸的軌跡,或是蛋白打發,都是流體力學的守備範圍。雖然深入分析需要流體力學與工程數學的協助,但「流體可視化」只要花點巧思,就能看見流體現象、比較差異,而這種回饋感,正是好奇心的來源,有足夠的好奇心,補齊「工具」也不會是難事。

無用的傳承與啟發

談起研究應用,楊佩良說:「有用的東西,是建立在無法運用的基礎上,傳承後的結果。」也分享近三年內,關於尿尿研究的後續研究成果,包含了智慧馬桶與導尿管的設計,「這些研究是我一開始沒有想到的,但如果沒有我的研究,他們也不會想到。」

未來,楊佩良也將繼續投入更多有趣(但可能無用)的研究題目上,像是鳥類(候鳥)群聚飛行時,為什麼不會有豬隊友讓他們撞在一起?而胡立德教授的團隊也持續研究各種有趣的現象,像是一大群蛆如何每隻都能吃到食物,或是動物舌頭的相關後續研究。

  1. Yang, P. J., Lee, A. B., Chan, M., Kowalski, M., Qiu, K., Waid, C., … & Hu, D. L. (2021). Intestines of non-uniform stiffness mold the corners of wombat feces. Soft Matter17(3), 475-488.
  2. Yang, P. J., Pham, J., Choo, J., & Hu, D. L. (2014). Duration of urination does not change with body size. Proceedings of the National Academy of Sciences111(33), 11932-11937.
-----廣告,請繼續往下閱讀-----
文章難易度
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

0
4

文字

分享

1
0
4
成體幼體大不同:為什麼哺乳類的幼崽這麼「萌」?——《生物轉大人的種種不可思議》
商周出版_96
・2023/11/20 ・1765字 ・閱讀時間約 3 分鐘

無法分辨成體和幼體的生物

小孩與大人不一樣。但是有些生物的幼體形態與成體型態相同。

舉例來說,鱷魚的幼體與成體幾乎長得一模一樣,剛破蛋而出的鱷魚寶寶已經具有完整的鱷魚外形,出生後逐年長大,巨大的鱷魚可以長達好幾公尺。不過鱷魚的成長速度在不同環境和溫度下不盡相同,光從大小無法判斷年紀,只看外形也無法分辨是成體或幼體。有些生物的成體和幼體的形態則相差甚遠,好比蝴蝶和蛙類;也有些生物的成體和幼體沒有太大區別,如同鱷魚。

這兩類生物的差別是什麼?

海葵就是幼體和成體相差很多的生物。海葵幼體是一種很像水母的生物,叫做「浮浪幼蟲」 。浮浪幼蟲在海中自由自在漂游,找到喜歡的岩石區時就會落腳,落腳後就不再移動,附著在岩石上長成海葵。移動是海葵幼體的重要任務,長大後的海葵則是肩負產卵留下子代的使命。

-----廣告,請繼續往下閱讀-----

蛙類和蝴蝶的成體與幼體形態也各不相同,不過任務分配上與海葵不同,負責移動的是成體不是幼體。
由此可見,如果一個生物的幼體與成體各有不同任務,彼此的形態就不會相同,而沒有區分任務的生物就具有相同形態。

人類的大人與小孩 

我們人類又是什麼情況呢? 

人類不會因為長大而生出翅膀或尾巴消失。人類的大人和小孩的外型非常相似,但並非完全相同的個體。舉例來說,嬰兒在我們眼中看起來就很可愛。

小孩子可愛的祕密在於他們的寬額頭。嬰兒的眼睛和鼻子集中在臉的下半部,額頭顯得很寬闊,寬額頭會使得整張臉看起來就惹人憐愛。而且嬰兒頭大、四肢短,整體感覺圓滾滾的,帶有人類大人不具備的「可愛感」。假如出現了一個比成年人更巨大的嬰孩,所有人應該還是能夠辨識出他是個嬰兒。人類不像鱷魚,我們不會分辨不出來誰是大人、誰是小孩。 

-----廣告,請繼續往下閱讀-----

人類的大人和小孩具有不同的外型。除了人類,貓狗的寶寶也長得很可愛,即便是凶猛的獅子與灰狼,牠們的幼崽看起來還是很討喜。哺乳類動物的一大特徵,就是「幼體很可愛」。

哺乳類動物的一大特徵,就是「幼體很可愛」。圖/pexels

嬰兒為什麼可愛?

哺乳類動物的嬰兒擁有可愛的外型。

人類出生後先是嬰兒,嬰兒長大是兒童,童年時期的人類依然保有他們的可愛,但是在長大的過程中卻會漸漸失去這種特質。

蛙類的成體和幼體雖然具有不同形態,但是蝌蚪並不是很可愛;蝴蝶小時候是毛毛蟲,反而比較多人覺得毛毛蟲噁心,只有少數人認為牠們可愛。 

-----廣告,請繼續往下閱讀-----

既然如此,哺乳類動物的嬰兒為什麼會可愛?

原因就在於,嬰孩需要大人的保護。哺乳類動物具有育幼行為,牠們的子代需要親代的養育。小孩的可愛外形是為了獲得大人的保護。烏龜以堅硬的龜殼防身,毛毛蟲透過毒毛保護自己,而哺乳類動物的嬰兒則是把「可愛」當護身符。 

嬰兒的寬額頭惹人憐愛。圖/pexels

嬰兒的額頭很寬。為什麼額頭寬看起來就比較討人喜歡呢?因為大人的腦袋裡內建了寬額頭等於可愛的程式。 證據就是只要額頭寬,不管是不是嬰兒看起來都很萌。不過額頭寬並不是為了可愛。

如果說紅燈是「停止」的信號,寬額頭就代表「不可以攻擊」與「要保護他」的信號。

-----廣告,請繼續往下閱讀-----

對於哺乳類動物來說,大人要保護小孩,小孩要被大人保護。大人與小孩的外型相似卻又不盡相同,因為他們肩負不一樣的任務。這樣說來,小孩的任務是什麼呢?小孩的任務很明確,就是「長大」。一個人要有健全的童年,才能成為健全的大人,這就是小孩的任務。

不過近年來人類的大人和小孩越來越難區別了。 總覺得不像小孩的小大人一直在增加,長不大的巨嬰也很多。

——本文摘自《生物轉大人的種種不可思議:每一種生命的成長都有理由,都值得我們學習》,2023 年 8 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

1
0

文字

分享

0
1
0
人類有可能扮演上帝嗎?喬治.丘奇的基因科學之夢(上)——《未來的造物者》
臉譜出版_96
・2023/11/11 ・3188字 ・閱讀時間約 6 分鐘

上帝、教會與(有點長毛的)長毛象

幾乎所有文化在面對生命本源的問題時,都會用一些角色與故事回答問題。在希臘神話中,最初只有卡俄斯(Chaos)——虛無——的存在,接著蓋亞(Gaia)從虛無而生,然後生下天空烏拉諾斯(Uranus)。他們的後代包括泰坦(Titan)、獨眼巨人(Cyclopes)、百臂巨人(hundred-handed creatures)、諸神(赫斯提亞〔Hestia〕、狄蜜特〔Demeter〕、宙斯〔Zeus〕等),以及後來的人類。古蘇美人則相信母神納木(Nammu)生下了天與地,並且誕下動植物與人類。在拉科塔族(Lakota)傳說中,這個世界存在之前還有另一個世界,那個世界的人類罪孽深重,因此大靈(Great Spirit)用洪水淹沒大地,只有烏鴉康吉(Kangi)活了下來。大靈另外派三隻動物取了泥回來,由大靈塑造成土地與世界各地的動物,然後又用紅、白、黑、黃四色的泥塑造出男人與女人。而在基督教故事中,上帝先是創造出無形的荒蕪,接著創造光、天空、土地、動物,以及掌管所有生物、後來成為人類始祖的亞當與夏娃。

這些故事都編造於我們理解生物學、天擇與生命演化之前。《創世紀》(Genesis)記載了許多戲劇化的故事,故事中世界遭遇危難、一家人盼望生下孩子,還有人遠行尋找未來的家園,它的多位作者根本沒聽過好幾世紀後達爾文對於天擇的觀察,也沒聽過格雷高爾.孟德爾(Gregor Mendel)提出的遺傳法則。(若能研究《聖經》中幾個著名家族——例如撒拉〔Sarah〕、利百加〔Rebecca〕與拉結〔Rachel〕的家系——的基因序列,那也許可以找出她們難以懷孕或成功生育的原因。)

圖/wikimedia

蘇格蘭哲學家大衛.休謨(David Hume)曾觀察到,我們人類共同的這些創世神話之所以存在,是因為我們需要用有因果關係的故事理解周遭世界,也是因為當社會規則有前後文脈絡時,社會才能運作得更好。那麼如今,隨著合成生物學打破我們自古流傳下來的規則,迫使我們重新思考這些規則的合理性、挑戰自己原先相信的起源故事,我們又該如何是好呢?到了今天,科學家忙著在數百間實驗室裡幻想、設計與生產生命的未來——而在其中一間實驗室裡,一位備受敬慕的研究者邀我們檢視與調和自己對科學及信仰的信念。

***

-----廣告,請繼續往下閱讀-----

喬治.丘奇在生物學界絕對算得上「大」人物,他同時是麻省理工學院與哈佛大學的教授與實驗室主任。即使不穿鞋,他的身高也達六呎五吋(約一百九十五公分),校區內甚至有幾道門太矮,他必須彎腰低頭才有辦法通過。他擁有天使般大大的可愛笑容、紅潤的雙頰、一頭茂密的白髮,以及蓬鬆的長鬍子。簡而言之,他可說是聖誕老人的遺傳學家弟弟,脾氣也和聖誕老人同樣和藹可親。人們常因丘奇的研究主題而將他和查爾斯.達爾文——甚至是更偉大的人物——相提並論。在討論如何利用合成生物學設計與操控生物學未來時,喜劇演員史蒂芬.荷伯(Steven Colbert)一度打斷了丘奇,急切地問道:「我們有重新設計的必要嗎?」他接著說道:「第一次發明我們的是上帝,是創造天地的主。先生,你這是在扮演上帝嗎?你這個鬍子的確很有假扮上帝的潛力。」荷伯也許沒發現,他這句笑話其實有幾分真實,因為丘奇花費了大量心血想創造新生命,以及復活已死的生物。

患有猝睡症的科學家
合成生物學讓創造新生命及復活已死的生物變得可能。圖/giphy

丘奇在一九五四年誕生於佛羅里達州麥克迪爾空軍基地(MacDill Air Force Base),從小在鄰近坦帕灣(Tampa Bay)的中產階級社區長大,生活環境不算特殊。丘奇的父親是空軍中尉,同時也是賽車手、光腳滑水運動員,比起寧靜的家庭生活,他對刺激的活動感興趣得多。丘奇的母親則是律師、心理學者與作家,她優秀又有想法,早就受夠了丈夫的行徑。她兩度再婚,第二次對象是一位名為蓋洛.丘奇(Gaylord Church)的醫師,蓋洛正式收養了當時九歲的喬治。喬治立刻對繼父包包裡的醫療器材深感興趣,蓋洛教好奇的兒子如何消毒針頭,甚至偶爾讓喬治為他注射藥物。

這段時期,丘奇在天主教學校的老師都對他頭疼不已。丘奇雖然禮貌,卻頻頻提出修女們答不上來的問題,經常帶著老師們鑽神學的牛角尖。他高中就讀麻州名聲極佳的寄宿學校——菲利普斯學院,也就是馬文.閔斯基的母校——這所學校就比較適合他了。他在此鑽研電腦學、生物學與數學——卻也發現自己越來越無法在夜裡完全入眠,日間也難以保持清醒,即使在他深愛的數學課上也會打瞌睡。其他學生不停拿這件事笑他,代數學老師甚至叫他乾脆別來上課了:既然他這麼常在課堂上打瞌睡,那就自己想辦法學數學吧。丘奇為自己辜負師長的期許而感到羞愧,同時也恨自己無法融入群體。

後來他就讀杜克大學(Duke University),睡眠問題仍不見起色,他常在會議或研討課中不小心睡著,睡幾分鐘後聽見自己的名字,他又會像沒睡著一樣猛然驚醒、回應對方。有次在一位系主任的課堂上,系主任見學生斗膽打瞌睡,甚至氣得拿粉筆丟他。儘管如此,丘奇還是在短短兩年內拿到了化學與動物學的學士學位,接著繼續在杜克大學讀生物化學研究所。他很快便被晶體學(crystallography)吸引,這在當時是一門新學問,可用以研究轉運 RNA(tRNA)的三維結構,深入瞭解這種負責解碼 DNA、將遺傳指令運輸到細胞其他部分的 RNA。

-----廣告,請繼續往下閱讀-----
丘奇常在會議或研討課中不小心睡著,但聽見自己的名字又會像沒睡著一樣猛然驚醒、回應對方。圖/giphy

丘奇的睡眠問題並沒有好轉,大多數人都以為他不過是太無聊或在做白日夢,孰料他其實是無意間迅速進入了睡眠的快速動眼期(REM sleep)——也就是人們睡眠時做夢的階段——並且將清醒時的想法帶進了夢裡。在清醒夢狀態中,他看見了未來的各種可能性,探索了不同排列組合的科學方法——換作是清醒的人,絕不可能想到用如此古怪、瘋狂的方式應用科技。

在學生時期,丘奇老是因太過好奇與容易分心(當然還有打瞌睡)而惹上麻煩,他每週花上百小時做尖端晶體學研究,以致從不出席核心課程,最後想當然耳被當掉了。他被逐出了生物化學系,只能試圖轉系、繼續從事研究,然而他修的課程太雜、個人名聲不佳,而且研究領域又很奇怪,沒有教授想收他。此時的丘奇二十歲了,他發表過重大論文、獲得了著名的國家科學基金會(National Science Foundation)青年學者獎,卻被學術界的官僚體制拒之門外。

話雖如此,丘奇仍設法轉學到了哈佛,並下定決心讀完研究所。到了哈佛大學後的第一學期的早秋某一天,丘奇上課遲到了幾分鐘,於是他悄悄溜進教室、在最後一排找位子坐下。他取出筆記本、抬頭看向老師的投影片,赫然發現當日主題是自己的一篇論文。那堂課的教授是分子生物學界首屈一指的學者華特.吉爾伯特(Walter Gilbert),他沒發現丘奇也是這堂課的學生。(吉爾伯特在三年後因開發出 DNA 定序的早期方法之一而獲得諾貝爾獎。)

丘奇繼續做著生物化學相關的夢,提出了許多大膽的想法,其中之一是能低成本且快速解讀 DNA 的機器,還有一者是用現成分子改寫基因體、改良自然造物的方法。在他的想像中,他可以用特定的酶修改基因體當中不同的部分,還能讓神經多樣(neurodiverse)者——例如有強迫症或自閉症的人們——調控他們的特殊能力,而不是用藥物抑制這些能力。丘奇的想法被他帶進了實驗室,他致力於基因體定序與分子多工(molecular multiplexing)的研究,後者是能夠同時定序數條 DNA 的技術,不必像當時廣受使用的方法一樣,一次僅定序一條 DNA。這其實不是新技術,但大部分科學家認為這種想法太過荒謬,所以並沒有繼續順著這條路研究下去。丘奇證實了此事的可行性,一次定序多條 DNA 的方法很快便被許多人接受,大幅降低了 DNA 定序的成本。

-----廣告,請繼續往下閱讀-----

——本文摘自《未來的造物者》,2023 年 11 月,臉譜出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。