Loading [MathJax]/jax/output/HTML-CSS/config.js

1

9
6

文字

分享

1
9
6

光如何被重力彎曲,構成黑洞的獨特景象?——黑洞旅行團,出發!(上)

ntucase_96
・2021/12/18 ・2499字 ・閱讀時間約 5 分鐘

  • 撰文/劉詠鯤

本文轉載自 CASE 科學報黑洞旅行團,出發!(上)——彎曲的光與重力透鏡

在嚴峻的疫情下,雖然我們無法親自外出旅遊,但是想像力可不會被輕易束縛。今天讓我們一起前往廣袤的宇宙中,在那裡散布著無數龐大的天體,它們扭曲從旁擦身而過的光線,形成各式獨特的景象。在本篇文章中,我們將帶領各位讀者一起了解光線是如何被彎曲。

電影《星際效應》中,一幅令人印象深刻的畫面是主角們乘著太空梭在黑洞附近時,所看到的黑洞景象(如圖一)。但是以人類目前的太空實力,尚無法脫離太陽系,抵達巨型黑洞附近更是無法實現。那這幅景象只是純粹虛構的嗎?並不是,它是藉由物理理論將我們的認知延伸到遙遠的宇宙彼端,讓我們也有能力推測,遙遠的未來,黑洞旅行團會看到的景象!

圖一、《星際效應》中,「巨人」黑洞附近的景色。版權所有:華納兄弟。

黑洞附近獨特景象的原因,是因為它極為龐大的重力。因此,在討論黑洞景象之前,我們要先來認識描述重力的理論,那便是鼎鼎有名的廣義相對論。廣義相對論使得人們有能力理解宇宙中發生的各種現象,其中一個重要的洞見是:「重力的本質是時空的彎曲」。這句話看起來十分抽象,以下我們舉個例子試著讓各位讀者體會,力與時空彎曲這兩件看來毫無相關的事情是如何扯上關係的。

力與彎曲空間

假設有兩位螞蟻探險家,在他們眼中,地球是一個巨大的平面。有一天,他們相約從赤道上兩個不同的位置出發,拿著指北針,約好一起向正北方,以相同速度前進。在他們心中,地球是一個平面,因此兩人同時向北走,路徑會互相平行,應該永遠不會相遇(圖二a)。但經過了數個月,他們在北極點碰到了彼此,感到驚訝無比。為了解釋此結果,他們推斷:「由於地球是平的,我們會碰在一起,代表我們之間有某種吸引力,將我們越拉越近(圖二b)」。但是我們站在第三人稱的視角便會明白,他們倆最後會碰在一起,並非因為彼此之間有吸引力,而是他們所在的地球是個曲面而非平面。力與空間的彎曲似乎沒有我們想像的那麼毫無關係!

-----廣告,請繼續往下閱讀-----
圖二、兩位相約向正北前進的螞蟻旅行家,兩條軌跡在平面上由於互相平行,應該永遠不會相遇(a)。但在球面上兩位會在北極點相遇(b),由於他們認為自己身處在平面上,會認為相遇是因為彼此之間具有吸引力,將他們的前進軌跡彎曲。

愛因斯坦偉大的洞見,便是他了解到:我們時刻感受到的重力,其實本質上是具有質量的物體造成附近時空的彎曲;我們因為認為時空是平坦的,因此把他詮釋為一種「力」,就如同兩位螞蟻探險家。細心的讀者可能留意到,我們在此使用了「時空」,而非「空間」。相對論中,時間與空間不再互相獨立,而可以互相影響。

讀者可能會疑惑:重力是一種力或是時空的彎曲,這聽起來只是詮釋角度的不同,有實質上的差別嗎?其中一個主要的差別在於對「光」的影響。古典描述重力的理論:牛頓力學,對於光通過一個大質量天體附近時,路徑會如何改變的預測,和廣義相對論的結果並不一致。1919 年,艾丁頓爵士在日蝕發生時,向太陽的方向觀測,發現竟然能夠看到理應被太陽擋住的星光。其原因便是太陽的重力造成附近的時空彎曲,遙遠的星光在通過該區域時發生路徑的偏折,使我們有機會在地球上看到它。

一個物體附近時空彎曲的程度,會和其質量大小有關。因此當光線通過愈大質量的天體附近時,路徑的改變就會越大。這個效果就如同光線通過一個透鏡時會發生偏折(如圖三)。天文學中,人們會使用由透鏡、反射鏡等組成的望遠鏡來觀察遙遠的天體。那我們是否可以使用這些天體形成的「透鏡」,來觀察宇宙呢?答案是肯定的,這便是在當前天文與宇宙學領域中,一個正蓬勃發展的觀測方式:重力透鏡。

圖三、遙遠的星光經過大質量天體時,發出的光線會如同經過透鏡一樣被彎曲,使得在地球上的我們可以看到本該被擋住的星星。

重力透鏡

根據光線彎曲的程度(也代表著透鏡天體的質量大小),重力透鏡可以被分為:微重力透鏡、弱重力透鏡以及強重力透鏡。其中強重力透鏡,由於光線的彎曲程度較大,在地球上的觀察者可以看到十分有趣的圖像。例如愛因斯坦十字、愛因斯坦環。對此議題有興趣的讀者,可以參考[3],該文章有深入淺出的解釋。

-----廣告,請繼續往下閱讀-----

由於光線偏折的程度,與通過的天體質量有關。因此,如果我們對於光源的性質十分了解,重力透鏡可以反過來提供給我們透鏡天體的質量資訊。這特別適合拿來進行暗物質的分布量測。由於暗物質只透過重力和其他物質作用,它並不會放出任何的電磁波,要「看」到它,只能透過重力的效應。若是我們在宇宙中,發現某一個區域具有非常大的質量,造成通過的光軌跡有所偏移,但是我們又無法在該區域中,利用各種電磁波望遠鏡,看到可識別的天體,那很可能那裏有緻密的暗物質;再透過分析光線的彎曲情形,科學家們便可以推測出其中的暗物質質量分布。

在本篇文章中,我們向各位讀者介紹了光是如何受到重力的彎曲,以及相關的應用。這個效應在黑洞附近會更為劇烈,在下一篇文章中,我們將會介紹該如何「模擬」黑洞附近的景象。

延伸閱讀

本系列文章:
黑洞為什麼不黑?彎曲的光與重力透鏡——黑洞旅行團,出發!(上)
巨大的黑洞反而不危險?——黑洞旅行團,出發!(中)
怎麼模擬出真實的黑洞樣貌?光線追蹤技術——黑洞旅行團,出發!(下)

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
ntucase_96
30 篇文章 ・ 1529 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。

0

3
1

文字

分享

0
3
1
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

8
1

文字

分享

0
8
1
從太陽發光到生命突變,一切都歸功於量子穿隧效應?
PanSci_96
・2024/10/19 ・1962字 ・閱讀時間約 4 分鐘

在這個充滿光與生命的宇宙中,我們的存在其實與一種看不見的力量密切相關,那就是量子力學。沒有量子力學,太陽將不會發光,地球上的生命將無法誕生,甚至整個宇宙的運行規則都會截然不同。這些微觀層次的奧秘深深影響了我們日常生活的方方面面。

其中,量子穿隧效應是一個看似違背直覺但至關重要的現象,從太陽的核融合反應到基因的突變,這種效應無處不在,甚至還牽動著當今的高科技產業。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是量子穿隧效應?

我們可以將量子穿隧效應比作一個奇妙的穿牆術。想像一下,你身處一個被高牆包圍的城市,牆外是未知的世界。通常,如果你要越過這道牆,需要極大的力量來翻越它,或者用工具打破它。然而,在量子的世界裡,情況並不如此。

在微觀的量子力學世界中,粒子同時具有波的特性,這意味著它們並不完全受限於傳統物理的規則。當一個微觀粒子遇到能量障礙時,即使它沒有足夠的能量直接穿過障礙,卻仍有一定機率能出現在障礙的另一邊,這就是「量子穿隧效應」。粒子彷彿直接在牆上挖了一條隧道,然後穿越過去。

-----廣告,請繼續往下閱讀-----

這聽起來像魔法,但它背後有深刻的物理學道理。這個現象的發生取決於量子粒子的波動性質以及能量障礙的高度和寬度。如果障礙較矮且較窄,粒子穿隧的機率就較高;反之,障礙越高或越寬,穿隧的機率則會降低。

太陽發光:核融合與量子穿隧效應的結合

量子穿隧效應的存在,讓我們能夠理解恆星如何持續發光。以太陽為例,太陽內部的高溫環境為核融合反應提供了所需的能量。在這個過程中,氫原子核(質子)需要克服極大的電磁排斥力,才能彼此靠近,進而融合成為氦原子核。

然而,單靠溫度提供的能量並不足以讓所有質子進行核融合。根據科學家的計算,只有約10的 434 次方個質子中,才有一對具備足夠的能量進行核融合。這是一個極小的機率。如果沒有量子穿隧效應,這種反應幾乎不可能發生。

幸好,量子穿隧效應在這裡發揮了關鍵作用。由於量子粒子具有波動性,即便質子沒有足夠的能量直接跨越能量障礙,它們仍然能透過穿隧效應,以一定機率克服電磁排斥力,完成核融合反應。這就是為什麼太陽內部的核融合能夠源源不斷地發生,並且持續產生光與熱,讓地球成為適合生命生存的家園。

-----廣告,請繼續往下閱讀-----

量子穿隧效應與生命的演化

除了恆星的發光之外,量子穿隧效應還對生命的誕生和演化起到了關鍵作用。地球上物種的多樣性,很大一部分源於基因突變,而量子穿隧效應則幫助了這一過程。

DNA 分子是攜帶遺傳訊息的載體,但它的結構並不穩定,容易在外界因素影響下發生變異。然而,即使沒有外界因素的干擾,科學家發現 DNA 仍會自發性地發生「點突變」,這是一種單一核苷酸替換另一種核苷酸的突變形式。

量子穿隧效應讓氫原子隨時可能在 DNA 結構中進行位置轉換,從而導致鹼基對的錯位,這在 DNA 複製過程中,可能會引發突變。這些突變若保留下來,就會傳遞給下一代,最終豐富了基因與物種的多樣性。

量子穿隧幫助促進 DNA 突變,協助生命的演化與物種多樣性。圖/envato

半導體技術中的量子穿隧效應

除了在宇宙和生命中發揮作用,量子穿隧效應還影響著我們的日常生活,尤其在現代科技中。隨著半導體技術的發展,電子設備的體積不斷縮小,這也讓電子元件的性能面臨更大的挑戰。

-----廣告,請繼續往下閱讀-----

在微小的電子元件中,量子穿隧效應會導致電子穿過元件中的障礙,產生不必要的漏電流。這種現象對電晶體的性能帶來了負面影響,因此設計師們需要找到方法來減少穿隧效應的發生,以確保元件的穩定性。

雖然這是我們不希望見到的量子效應,但它再次證明了量子力學在我們生活中的深遠影響。設計更有效的半導體元件,必須考慮到量子穿隧效應,這讓科學家與工程師們需要不斷創新。

量子力學是我們宇宙的隱藏力量

量子穿隧效應看似深奧難懂,但它對宇宙的運作和生命的誕生至關重要。從太陽的核融合反應到基因突變,甚至現代科技中的半導體設計,量子力學影響著我們生活的方方面面。

在這個充滿未知的微觀世界裡,量子現象帶來的影響是我們難以想像的。正是這些看似不可思議的現象,塑造了我們的宇宙,讓生命得以誕生,科技得以發展。當我們仰望星空時,別忘了,那閃耀的光芒,背後藏著的是量子力學的奇妙力量。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2495 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
愛因斯坦的光速魔術
賴昭正_96
・2024/10/05 ・7055字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正 前清大化學系教授、系主任、所長;合創科學月刊

起初神創造了天地。大地空虛混沌; 深淵的表面一片黑暗;神的靈運行在水面上。神說,「讓它有光」,於是就有了光。 神看見光是好的;神將光明與黑暗分開。 -創世紀 1:3

1905 年愛因斯坦在題為「關於運動物體的電動力學」(On the Electrodynamics of Moving Bodies)的論文引言裡謂:

我們建議將「相對性原理」這個猜想(conjecture)提升到一個公設(postulate)的地位,並引入另一個表面上與它不調和(irreconcilable)的公設,即光在真空中的傳播速率為一與發射體運動狀態無關的定值 c。這兩個假設足以(讓我們)透過適用於靜止物體(狀態)之馬克斯威(James Maxwell)理論,導出一個簡單且不矛盾(consistent)的電動力學理論。

愛因斯坦真大膽:一個可以用實驗來確定的光速,怎麼可以定為「公設」呢?光速與發射體運動狀態無關不是完全違反了我們日常生活的經驗(如聲速)嗎?

更令人難以相信的是:當時的物理與天文學家因為馬克斯威方程式(Maxwell Equation)的成功,都認為空間充滿了絕對靜止的「以太」,「光速為定值」僅是相對於這一固定的「以太」而言;而愛因斯坦竟初生之犢不畏虎,開宗明義地謂不要爭辯了,我們將光在真空中的速度「公訂」為與發射體運動狀態無關的定值 c!幸運地,在「立即引起了我的熱烈關注」下,當時歐洲受人尊敬的理論物理學大師普朗克(Max Planck)立即在柏林大學開始講授相對論,並公開為愛因斯坦的抽象概念理論辯護!由於普朗克的影響,這篇愛因斯坦根本沒想到是「革命性的」、完全改變牛頓之時空觀念的論文終於與量子力學一起開創了近代物理學。

當然,我們現在知道實驗上已經證明了這一「公設」的正確性;愛因斯坦怎麼那麼「神」呢?

-----廣告,請繼續往下閱讀-----
愛因斯坦以大膽創新思維,突破常規,開創物理學新紀元。 圖/wikimedia

「光」逐流

第二次世界大戰結束後不久,愛因斯坦受邀在「在世哲學家圖書館」(Library of Living Philosophers)撰寫一篇知識分子自傳(註一)。在該《自傳筆記》(Autobiographical Notes)裡,愛因斯坦開張寫道:「我坐在這裡是為了在 67 歲時寫一些類似於我自己之訃文的東西」,然後以無與倫比的溫暖和清晰解釋了他的思想路徑:從年輕時對幾何的興趣,轉向馬克斯威、馬赫(Ernst Mach)、和波爾(Niels Bohr)等哲學、科學家對他自己之理論發展的影響。此書是愛因斯坦留給我們的唯一個人自傳筆記,為科學史上的一部經典著作。

在講述導致狹義相對論的發展時,愛因斯坦在《自傳筆記》中回憶道:

…..我在十六歲時就已經遇到了一個悖論:如果我以速度c(真空中的光速)追逐上一束光,我應該觀察到其電磁場將是靜止不前進,只是在空間上振盪而已。然而,無論是根據經驗,還是根據馬克斯威方程組,這現象似乎不存在。(因此)從一開始,我就直覺地清楚看到,從這樣一個觀察者的角度來看,一切都必須按照與相對於地球靜止的觀察者相同的定律發生。第一個觀察者如何知道或能夠確定他處於一快速、等速的運動狀態?從這個悖論中可以看出,狹義相對論的種子已經包含在內。

愛因斯坦如何解決這悖論呢?

一場風暴

愛因斯坦在瑞士專利局任職時,經常與「奧林匹亞學院」(Olympia Academy)的成員討論光速之謎。1905 年 5 月中旬,他突然想到光速之謎的答案就隱藏在用於測量時間的程序中,他回憶說:「我的腦海中掀起了一場風暴」。隔天一大早碰到一位工程師同事就迫不及待地告訴說:「我已經徹底解決了這個問題。對時間概念的分析是我的解決方案:時間不能是絕對的,時間和訊號速度之間存在著密不可分的關係。」

-----廣告,請繼續往下閱讀-----

在風暴中,愛因斯坦匆匆忙忙地在數週內完成了那革命性的狹義相對論論文。在此讓我們看看為什麼他認為「時間和訊號速度之間存在著密不可分的關係」。

愛因斯坦同步程序

要測量光速,必須讓光訊號在已知距離內從一個位置跑到另一個位置,然後透過起點和終點的時鐘讀數之差異來確定傳播時間。因此用於測量傳播時間的時鐘必須同步,否則它們之讀數差異將毫無意義。可是我們卻需要利用光速來同步化兩個不同地方之時鐘,這顯然是「雞生蛋、蛋生雞」的循環邏輯問題。

愛因斯坦的風暴就是他終於想出了可以避免循環邏輯的同步化假想實驗:在 tA 時從 A 發出一道光線,當它在 tB 到達 B 時立刻讓它反射回去,於 t’A 時到達 A;如果

則我們稱 A、B 兩地的時鐘精確地同步化了。例如 A 在 1:00 發出光信號,1:10 收到反射回來的光信號,如果 B 收到光信號的時刻是 1:05(或者將它調到 1:05),那麼 A、B 兩地的時鐘便是同步。今天的物理學家將此方法稱為「愛因斯坦同步程序」( Einstein Synchronization Procedure )。

-----廣告,請繼續往下閱讀-----

光速定值的「公

愛因斯坦接著說:「另外,根據經驗,我們進一步要求

為普適常數(真空中的光速)。」這是根據經驗計算光在兩點間之平均速度的方法,毫不起眼,但卻隱藏著一個非常不尋常的「陰謀」?

邏輯告訴我們:如果我們用另一毫不起眼的 tB 定義去測單方向的光速(A 到 B或 B 到 A),其值一定是 c ( 註二 )!因此愛因斯坦說:「…我們根據定義確定,光從 A 傳播到 B 所需的時間等於光從 B 傳播到 A 所需的時間。」也就是說愛因斯坦在這裡從「平均速度」及「愛因斯坦同步程序」的定義,魔術般地導入了他的公設:光在任何方向的速度都是一樣的 c 值!

為什麼這是個「陰謀」呢?在愛因斯坦的假想實驗中,我們既然不需要知道光的速度,為什麼不用聲音呢?答案很簡單:因為我們知道聲速會受到 A、B 兩點與空氣之相對速度的影響;如果風從 A 吹到 B,那麼 B 收到聲音的時間將比愛因斯坦之 tB 早! 可是那時候幾乎所有的物理學家都相信光是在「乙太」中傳播的(見後),愛因斯坦怎麼知道光速不會受到 A、B 兩點與「乙太」之相對速度的影響?

-----廣告,請繼續往下閱讀-----
愛因斯坦透過同步程序巧妙定義光速,避開了「乙太」的影響。圖/wikimedia

歷史上最「失敗」的實驗

在「近代物理的先驅:馬克斯威」裡,筆者提到曾被評選為有史以來第三大物理學家馬克斯威用簡潔數學方程式━「馬克斯威方程式」━闡釋了當時已知的電磁現象。1865 年,馬克斯威透過其方程式導出電磁波的存在,並證明光事實上就是一種電磁波!光既然是一種波動,那像水波及聲波一樣應該有傳播的媒體(介質),物理學家開始尋找這一稱為「乙太」的媒體,並測試地球在這一媒體中的運動狀態。

這些實驗中最有名的是後來被稱為歷史上最「失敗」的實驗:1887 年,邁克爾森(Albert Michelson)與莫利(Edward Morley)用光干涉儀測量地球與乙太的相對運動速率。邁克爾遜和莫利預計會發現:分道揚鑣的兩道光束在不同時間回到探測器,從而可以計算出地球在乙太中的運動速度。但他們非常失望地發現:無論光向哪個方向傳播,它總是以相同的速度移動,因此下結論説:如果乙太存在,地球與乙太的相對運動速率為零!他們認為這有兩種可能的解釋:(1) 在地球表面之乙太被地球拖著走;或 (2) 根本沒有乙太(參見「乙太存在與否的爭辯」)。但更簡單的解釋應該就是愛因斯坦的不要爭辯「公設」;可是誰敢提出這種違反常識的論調呢?或許只有當時還是默默無聞的瑞士專利局小職員吧?

可是愛因斯坦回憶說:「在我自己的發展中,邁克爾遜的結果並沒有(對我)產生很大的影響。我甚至不記得當我寫第一篇關於這個主題的論文時(1905 年),我是否知道它。」然而愛因斯坦也在許多場合中曾經反覆使用「可忽略不計」、「間接」、「非決定性」等詞彙來形容邁克爾遜實驗對他思想的影響…。看來「愛因斯坦當時是否知道邁克爾遜實驗結果」這個問題將永遠是個懸案。但可以肯定的似乎是:即使愛因斯坦知道邁克爾遜的結果,它對愛因斯坦理論的起源貢獻應該是非常小和間接的,絕對不是他發現相對論的主要推動因素。

事實上前面提到:愛因斯坦根本可以不需要知道,因為在他的時鐘同步程序下,光速一定是定值,與實驗結果或「乙太」是否存在無關。相反地,如果愛因斯坦清楚不用時鐘同步化的邁克爾遜-莫利實驗,那風暴可能就不會產生了!

-----廣告,請繼續往下閱讀-----

時鐘同步化與光速無關

測量單方向光速實際上並不需要同步化的兩個時鐘(即沒有循環論證的問題)。例如 A、B 兩地皆在赤道上,A 在 1:00 發出光信號,B 在收到光信號後等 12 小時再發射回去,如果 A 在收到 B 光信號的時間是 13:04,那麼因為地球 24 小時自轉一次的關係,AB 距離除以 0.02 便是光單方向(相對於宇宙)的速度。在這一個實驗中,A、B 兩地的時鐘根本不必要同步化,只要它們的精確度是一樣就可以了。

人類早在 18 世紀初就已經知道如何製造相當精確及穩定的時鐘:哈里森(John Harrison)是英國的一名木匠,自學了鐘錶製作;在 1720 年代中期,他設計了一系列卓越的精密長殼時鐘,其精確度已經高達一個月僅差一秒(註三)。我們可以將兩個 Harrison-IV 時鐘在 A 處校正,然後慢慢(原則上無限地慢)將其中一個移到它處,不但可以用它來同步化這些地點的時鐘,還可以用來直接測量單方向的光速。

還有,首次確鑿證明地球在動的布拉德利(James Bradley)早在 1729 年就已經透過「星光像差」(stellar aberration)測得高達 0.4% 精確度的光速;而發明「傅科擺」(Foucault pendulum)來證明地球在自轉的傅科(Léon Foucault)則在1862年透過旋轉鏡與單鐘測得 0.6% 精確度的光速。

馬克斯威方程式也告訴我們,不需要使用任何時鐘,透過測量自由空間的磁導率和介電常數即可間接計算光速,完全避開愛因斯坦的循環論證邏輯。事實上馬克斯威 1865 年就是用這兩個實驗數據計算出電磁波的傳播速度為每秒鐘 310740000 公尺,接近當時光速的(傅科)實驗值。馬克斯威認為這不會是巧合,謂:「我們幾乎無法避免這樣的結論:光存在於同一介質的橫向波動中,這是電和磁現象的原因」,因此他預測光是一種電磁波。

-----廣告,請繼續往下閱讀-----

上面這些說明了 20 世紀黎明前,科學家就已經知道了:時間(校時)和訊號速度之間並不存在著密不可分的關係。事實上愛因斯坦更應該知道,因為當他被問到是否站在牛頓的肩膀上時,他回答說:「不,是站在馬克斯威的肩膀上!」所以不知道愛因斯坦是否故意沒想到這些,以便透過陰謀來創造相對論?在今天,愛因斯坦那篇沒有任何參考資料的相對論論文是不可能被接受發表的!

愛因斯坦的規定

在愛因斯坦同步程序下,無論光的實際速度是多少,光速測量起來總是定值 c。難道愛因斯坦不知道這「魔術」充滿了漏洞嗎?一個可能的解釋是 19 世紀末電報線和鐵路將整個歐洲連接成一個巨大的網絡,為了以確保訊息、乘客、和貨物的順利流動,同步時鐘是非常實際的考慮;愛因斯坦是專利局電訊操作設備的技術專家,負責審查時鐘同步的網路電磁設備之專利申請,因此他一定在思考時鐘同步問題,加上經年累月地為光速所困,似乎很自然地便往這牛角尖裡鑽。

愛因斯坦或許因長期研究時鐘同步問題,導致忽視光速測量的漏洞。圖/wikimedia

我們知道魔術是騙人耳目與大腦的,不能用在科學上。光速是可以量的,怎麼可以根據定義確定(光從 A 傳播到 B 所需的時間等於光從 B 傳播到 A 所需的時間)?因此在其 1916 年之科普《相對論:狹義理論與廣義理論》一書中,愛因斯坦辯說:「(假設 M 在 A、B 兩處之正中間)實際上光需要相同的時間穿過路徑 AM 和穿過路徑 BM,這既不是關於光之物理性質的假設(supposition)、也不是假說(hypothesis,註四),而是我可以根據自己的自由意志做出的規定(stipulation),以便得出同時性的定義(註五)」。換句話說,愛因斯坦認為光速恆定是一種「規定」,與物理無關,無需解釋其真偽(註六)。且聽「創相對論紀 1:3」道來:

19 世紀中旬馬克斯威創造了馬克斯威方程式。大地充滿了乙太;深淵的裡面測不出地球的運動;愛因斯坦的靈運行在其中。愛因斯坦說,「讓光速為定值」,於是光就依定值傳播。愛因斯坦看見定速是好的;愛因斯坦將定速與乙太分開。

圖/作者提供

結論

從上面的分析看來,愛因斯坦這「光速為定值的規定」似乎是建基於錯誤的認知上,所以顯然愛因斯坦其實沒有那麼神

-----廣告,請繼續往下閱讀-----

開玩笑的,事實上愛因斯坦是筆者佩服的極少數科學家之一!在「思考別人沒有想到的東西──誰發現量子力學?」一文裡,筆者指出:當普朗克還一直在努力地想讓他的量子解釋能容於古典力學時,愛因斯坦已認識到量子不連續性是普朗克黑體輻射理論的重要組成部分!也只有愛因斯坦能看出波思(Satyendra Bose)一篇被英國名物理雜誌退稿、題為「普朗克定律及光量子的假設」的重要性,開創了量子統計力學!更奇怪的是:他被證明是錯的「EPR 悖論(EPR Paradox)」竟推動了許多如量子密碼學、量子計算機、量子資訊理論、量子遠程傳送等的研究;而他自認是一生中最大錯誤的「宇宙論常數」則成為研究近代宇宙的主要工具。……因此筆者總覺得愛因斯坦雖然像常人一樣犯錯,但對物理卻具有一般人所沒有的第六感!或許愛因斯坦心裡早就預感光速應該是定值(註七),其同步程序只是設計出來「證明」光速恆定的妙計?

雖然以卓越教學而備受讚賞的慕尼黑大學理論物理學教授薩默費爾德 ( Arnold Summerfeld ) 曾於 1907 年對愛因斯坦的公設提出「微辭」,但現在物理學家從未公開批評該相對論公設,只是默默地屏棄此一公設,改採將光速恆定作為可以實驗驗證的物理定律(經驗基礎):光速恆定不是規定,而是根基於實驗的自然界基本定律。

如果光相對於愛因斯坦的速度永遠為c, 那麼他將永遠無法隨「光」逐流看到光駐波,愛因斯坦不但終於解決了他16歲時所迷惑的悖論,還開創了相對論!

註釋

(註一)《世哲學家圖書館》系列的第七卷(Paul Arthur Schilpp編輯,美國紐約市 MJF Books 出版,2001 年元月一日重印版)。單行本:《阿爾伯特·愛因斯坦:哲學家-科學家》(Albert Einstein: Philosopher-Scientist;Open Court,3rd edition,December 30, 1998)。

(註二)筆者讀過多次愛因斯坦同步程序,從沒想到被騙;視而不思,真是書呆子一個!

(註三)2023 年初可攜帶型的商業原子鐘精確度高達 10-11%。

(註四)大英百科全書:科學假設是對自然界中觀察到的現像或一組狹窄現象提出初步解釋的想法。

(註五)參見『不用數學就可以解釋──相對論的著名想像實驗「雙胞胎悖論」』。

(註六)這種不顧物理的隨心所欲「規定」使筆者想到了波爾於 1913 年提出的:「電子雖然如行星繞日,但它的軌道卻不能隨便,而必須適合一個新的條件,即量子條件(quantum condition)。在這種軌道條件下的電子是穩定的,它可不服從電磁理論,因此也就不須放射出電磁波。」波爾輕而易舉地用「規定」的方法解決了拉塞福 ( Rutherford ) 原子模型與電磁理論的衝突(參見「原子的構造」)。當然,波爾原子模型的成就不只解決這衝突而已,它事實上解釋了當時存在的部份光譜問題,推動了新力學的迅速發展。同樣地,愛因斯坦的規定不只提出了「同時」是相對的觀念,還開創出一個新的力學。

(註七)用兩個簡單的公設就可推導出當時已知的洛倫茲轉換方程式(Lorentz transformation)、時間膨脹(time dilation)、洛倫茲—傅玆久拉空間收縮(Lorentz-FitzGerald contraction )等公式,這絕對不可能是一個巧合。

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
48 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲它轉載我的科學月刊上的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」。