Loading [MathJax]/extensions/tex2jax.js

0

3
1

文字

分享

0
3
1

光波操縱師─神奇的光子晶體--《科學月刊》

科學月刊_96
・2015/12/21 ・5409字 ・閱讀時間約 11 分鐘 ・SR值 611 ・十年級

-----廣告,請繼續往下閱讀-----

欒丕綱/清華大學物理博士,中央大學光電系副教授。研究專長為光子晶體,聲子晶體,以及超穎材料。

mix1
(左)孔雀羽毛(右上)變色龍的皮膚(Source: Tambako The Jaguar)(右下)蝴蝶翅膀 自然界的光子晶體

有沒有能夠抓住光,卻不消滅光子的方法?光子晶體不僅能讓光轉彎,還能讓動物展現美麗的色彩!

1980 年代時,人類對於光的認識已經很深入。那時人們已懂得使用透鏡組件,藉由改變折射率與介質表面的特定形狀以控制光線的傳播方向,如使用望遠鏡觀察宇宙,製作顯微鏡觀察微生物。

人們知道單一頻率的光通過雙狹縫會有干涉現象,而光波通過小尺度的物體會產生繞射與散射。利用光從「密介質(折射率大的介質)」傳向「疏介質(折射率小的介質)」,入射角大於「臨界角」時會發生的全反射現象,可以設計出波束分離器(beam splitter)、波導(waveguide),與光纖。利用光是電磁波的事實,可以藉著控制光的偏振與相位做出光學波片(wave plate)、濾波器,以及調制器 (modulator)。利用量子力學與半導體物理的知識,人們知道如何操控光子與原子的交互作用,製造出所需要的雷射以供進一步應用。

-----廣告,請繼續往下閱讀-----

以上這些控制手段似乎缺少了什麼?仔細觀察,會發現這些對光的控制手段可歸納為以下幾種:(一)控制光的傳播方向,(二)控制光的傳播區域/ 範圍,(三)控制光的強度,(四)控制光波的相位與偏振,(五)控制光的相位一致性以及傳播方向的準確度。以上這些控制手段的共同特色就是「不能阻止光的傳播」。雖然光子可以被原子吸收或放射出來,但若試圖阻止光的傳播,那麼光子只能藉著被材料吸收而消失,轉換為其他能量,例如熱能。

04
光子晶體模型。Source: ENERGY.GOV

光子晶體的發想

1987 年左右,雅布羅諾維奇(Eli Yablonovitch)與約翰(Sajeev John)兩位科學家不約而同地思考著阻止光傳播卻不消滅光子的可能性。

雅布羅諾維奇是一位實驗物理學家,曾任職貝爾通信研究所(Bell Communications Research)的研究員。他當時思考的問題主要是如何抑制原子的「自發輻射(spontaneous emission)」以減少能量的浪費,並增加雷射的效率。根據雅布羅諾維奇教授的回憶,當時曾有一些研究者建議將發光的原子置於「兩面金屬牆」之間;另一些研究者則建議使用「一維布拉格光柵(1D Bragg grating)」以取代金屬牆。然而,雅布羅諾維奇博士認為這兩種方法都行不通。

第一種方法只能阻擋某一種偏振的光,因此只有一半的效果。另一種方法雖然能阻擋朝著布拉格光柵週期方向傳播的光,但是對於朝著垂直於週期方向(此方向介質是均勻的)傳播的光卻沒有效果。雅布羅諾維奇於是試著在紙上畫出他認為行得通的三維週期結構,並在往後的幾年中不停試著對介電質鑽洞,以找出確實可行的週期結構。經過了好幾年的失敗,並在跟理論物理學家的合作下,在鑽了大約五十萬個洞之後,終於找出了理想可行的三維週期結構。

-----廣告,請繼續往下閱讀-----

另一位光子晶體概念的提出者約翰,則是基於完全不同的理由而提出這個概念。約翰是一位理論物理學家,那時的他是一位普林斯頓大學(Princeton University)的年輕助理教授。當時他所思考的問題是,如何讓光在介質中的傳播停下來。

故事先回到1958 年,當年服務於貝爾實驗室(Bell Labs)的凝態物理學家(condensed matter physicist) 安德森(P. W. Anderson,1977年諾貝爾物理獎得主)從理論上發現了一個很驚人的現象,後來被稱作安德森局域化(Anderson localization):在一個充滿隨機分布的雜亂位能(random potential)的材料裡,電子可以因「多重散射(multiple scattering)」而被困在其中無法移動。根據量子力學,支配電子的各種行為的是薛丁格方程式(Schrödinger equation)─ ─ 這是一個波方程式(wave equation),因此安德森局域化現象其實是一個波現象,與電子的粒子性似乎並沒有直接關係。科學家們理解到這一點後,忍不住好奇的問:這樣奇特的波現象會不會也發生在光波與聲波系統?如果有,能不能觀察到?

約翰的博士論文所研究的就是局域化現象,因此他對於安德森局域化的理論內涵有很深的理解與掌握。對應於電子系統的隨機位能,在光學系統內所要準備的是具有隨機分布的凌亂折射率的透明介質。然而,研究者發現,理論上要達到把光完全困住的結果,所需要的介質樣品必須非常大,而且在實驗上很不容易把這個現象,與光在傳播過程中介質對光能量的逐步吸收效應區分出來。約翰於是建議先做出週期性的介質,再將介質的週期稍微弄亂一些,如此在某些頻段就可以用較小的介質樣品將光完全困住。

雅布羅諾維奇與約翰目前分別是加州大學柏克萊分校(University of California, Berkeley)與加拿大多倫多大學(University of Toronto)的教授。根據雅布羅諾維奇的說法,當年他們在學術界頂級的物理期刊《物理評論通訊》(Physical Review Letters)各自發表了他們的第一篇光子晶體研究論文,兩篇論文的刊登日期相隔不到一個月。當他們聽說了彼此獨立提出了相似的研究概念後,就相約吃午飯,並一起為這個概念取名為光子晶體(Photonic Crystals)。

-----廣告,請繼續往下閱讀-----

現今看來,這個既含有「光子」又含有「晶體」的名字取得十分誘人。這個說法從每年有眾多光子晶體相關的研究論文被發表就可以看得出來。另一個觀察指標則可以簡單地經由Google搜尋查到,這兩位先驅的第一篇光子晶體論文目前分別累積了13725次與9582次引用次數。不過,在論文發表後,他們的論文並未立刻引起其他研究者注意。事實上,雅布羅諾維奇此論文發表後的頭三年,完全沒有其他人引用,前五年也只被引用兩次,而且這兩次還都是雅布羅諾維奇教授自己引用的。然而,進入90年代後,半導體製程技術的進步使得人們很容易製作尺寸從數百奈米至數微米的週期結構,而電腦運算資源的大幅成長,也讓人們很容易從理論上去計算出所設計的光子晶體的光學特性。這兩方面的重要發展促使了光子晶體的研究無論在數量與速度上,都以指數函數的方式隨時間成長。

光子晶體基本性質

講了那麼多故事後,那麼到底光子晶體的定義是什麼呢?背後的物理原理為何?所謂的光子晶體,其實就是「介電質的週期結構(periodic structure of dielectrics)」。

所謂介電質(dielectrics),即非金屬的材料;而所謂週期結構,就是在空間上無窮次重複的圖樣(repeat patterns)。化學課本告訴我們:「完美的固態晶體具有週期性的原子排列」。光子晶體的週期結構就像那樣,只不過光子晶體是將晶體中的原子以介電質的「人工原子」取代,尺寸也較真實晶體放大了數十倍甚至是數百倍。另外,在普通的半導體晶體物質中,導電須依靠電子通過週期性的位能;而在光子晶體中,光傳播是靠光波通過具有週期性變化的介電常數/折射率的介電質材料。

在半導體的研究中,人們很早就知道,週期位能對電子傳播的影響就是產生了能帶結構(energy band structure)與能隙(energy band gaps),後者又稱禁制帶(forbidden bands)。也就是說,可以在半導體中傳導的電子,它們的能量分布是一段一段的,而這每一段被稱為一個能帶。與此類似,在光子晶體中可傳播的光,其頻率的分布也是一段一段的,每一段稱為一個「頻帶(frequency band)」。夾在相鄰的兩個頻帶之間的則是頻隙(frequency band gaps) 或帶隙。根據量子力學,光子的能量與它的振動頻率成正比,比例常數是普朗克常數h,因此我們也稱光子頻隙為光子能隙。

-----廣告,請繼續往下閱讀-----
05
典型的週期介電質結構 (左)一維多層膜(中)介電層上之二維空氣柱(右)三維介電質「材堆」(woodpile)結構。

光子頻隙

為何會出現頻隙? 這不是個容易回答的問題。此處提供一個比較直覺的看法。當光波在週期結構中傳播時,會經歷多重散射,散射後的各分波與入射波一起疊加成總波場。這些分波疊加後在空間中形成建設性干涉與破壞性干涉的許多區域。在二維與三維的世界裡,破壞性干涉的區域若是形成各自分離的「孤島」,波能量仍可藉由連通的建設性干涉區,繞過這些孤島而傳播。反之,當建設性干涉的區域彼此互不相連,它們自己形成孤島時,波能量將無法傳遞。若在一整段頻率範圍內波能量都無法傳遞,則這一段頻率範圍就形成頻隙。

以上雖然說明了頻隙是波的一種破壞性干涉的效應,但很難從直覺上看出這個結果。頻隙可以很容易藉著不算太複雜的數值方法以電腦程式計算出來,但是幾乎不可能僅僅藉著用筆就推導出它在頻率軸上的正確位置與寬度。

光子晶體的應用

設計出這種有頻隙的光波介質,除了能將光波擋住,讓它傳播不了以外,有什麼積極性的應用嗎?答案是:有的。

通常用來製造光子晶體的方法,就是在一塊完整的介電質上周期性的打洞,或是用許多介電質小球或介電質柱子排成週期結構。利用光子晶體的頻隙特性,只要選擇將週期性做局部的破壞,就可以製造出許多有用的奈米光學元件。例如在介電質中製造「點缺陷(point defect,基本方法是在某一個該打洞的位置不打洞)」或「線缺陷(line defect,少打一整排洞)」,就可以將光波侷限在該缺陷附近以形成「共振腔(resonant cavity)」或是「光子晶體波導」。

-----廣告,請繼續往下閱讀-----
(左)點缺陷應用於共振腔(中)線缺陷應用於波導(右)光波能量在直角轉彎的光子晶體波導中的分佈情形。
(左)點缺陷應用於共振腔(中)線缺陷應用於波導(右)光波能量在直角轉彎的光子晶體波導中的分佈情形。

傳統波導是利用全反射將光侷限在波導中,若是波導的轉彎角度過大,全反射條件就會被破壞,導致漏光。然而,光子晶體波導藉由頻隙效應將光鎖在波導內,工作原理與全反射無關,因此可以大幅度改善傳統波導大角度轉彎的光能損耗問題,實現光迴路的微小化。這使得在小尺度製造出「積體光路」以取代傳統「積體電路」變得可行,換句話說,使用光子取代電子作為資訊傳輸與處理媒介的可能性將大幅提高。基於這種可能性,雅布羅諾維奇甚至在一篇介紹光子晶體的科普文章中,稱光子晶體為「光的半導體」。利用同樣的原理,也可以製造出橫截面是含有點缺陷與週期結構的光子晶體光纖,用以輔助或取代部分傳統光纖。

負折射應用

除了頻隙效應,光子晶體的傳導頻帶其實也有妙用。透過光子晶體頻帶所提供的特殊色散關係(dispersion relation),光波在某些頻率範圍內表現出不尋常的傳播行為。而其中最有趣的就是負折射。當光由真空進入介質中, 若折射波折向法線的同一邊, 則根據司乃爾定律(Snell’s law) 可定義此介質具有負的折射率。

目前至少有兩種方式可實現負折射。第一種是利用光子晶體在「頻帶邊緣」(band edge)的特殊色散關係製造出「負群指數」(negative group index),其類比於半導體能帶理論中電子的「負等效質量」(negative effective mass)。第二種方式是製造一種在每一個晶胞(unit cell)中包含有共振器(resonators)的金屬性光子晶體。適當選取頻率範圍,可使此介質的等效介電常數、磁導率以及折射率皆為負值。

07
光子晶體的負折射現象。(這不是反射,藍色的線條為法線。)

2000年10月,倫敦帝國理工學院(Imperial College, London)的彭德里(J. B. Pendry)教授在《物理評論通訊》上發表一篇著名的文章,證明一塊折射率為-1的負折射介質板是一個「完美透鏡」,具有放大「消逝波(evanescent wave)」的神奇能力,可將波源「完美成像」而超越繞射極限。此文發表後,立即在學術界掀起了負折射研究的熱潮。在研究者的持續努力下,負折射的現象已證明確實存在,且Science 期刊基於其應用潛力(例如新式的讀寫頭等),將相關研究選為2003 年的十大科技成果之一。更有甚者,這方面的研究後來重新取了一個名字,現在被稱「超材料」或「超穎材料」,是當前最熱門的研究領域之一。超材料研究目前最受矚目的研究方向是可超越繞射極限的超級透鏡,以及可以將物體隱藏起來的隱形斗篷。這兩方面的報導常可在新聞中看到。具體的細節可以參考筆者從前寫的一篇文章。

-----廣告,請繼續往下閱讀-----

上述各種研究所談的都是光波或電磁波,但其實聲波或彈性波的特性與電磁波非常類似,可使用同樣的手法處理。藉著製造週期性的彈性材料,例如週期性的混搭兩種彈性係數與質量密度不同的材料,也可以製造出「聲子晶體(phononic crystals,或稱 sonic crystals)」,像控制光波一樣地控制聲波與彈性波(例如使用頻隙效應做防震)。此外,若是把「聲波共振器」做週期性的排列,人們也可以做出聲波版本的超材料,可用以設計聲波版的超級透鏡或聲波斗篷。

上述的介紹或許會讓讀者以為這些能控制光的週期結構都是人造的,這個觀念其實錯了。現在科學家們已在許多生物的身上發現了光子晶體。簡單舉幾個常見的例子:孔雀的羽毛、蝴蝶的翅膀,以及變色龍的皮膚,都被發現隱藏著特定的週期結構。換句話說,光子晶體就是牠們得以美麗以及迅速變化偽裝的秘密。

光子晶體以及相關的聲子晶體以及超材料研究,在當前依然非常火熱。許多概念已經釐清,某些夢想已經實現,還有一些設計的元件已經有小幅度的商業化。本文只對光子晶體概念做了最粗淺的介紹,有許多近年來的重要發展,例如光子晶體在太陽能電池研究中的應用,都沒有辦法仔細介紹。有興趣的讀者可以試著從參考資料以及相關的網路資料中去進一步的尋找想知道與想學習的材料。

參考資料

-----廣告,請繼續往下閱讀-----
  1. Yablonovitch, E., Photonic crystals: semiconductors of light, Sci Am., Vol. 285(6):47-51, 54-5., 2001.
  2. 欒丕綱,〈現代光學隱形術—從隱形斗篷到變換光學〉,《科學月刊》,508期,277 頁,2012年
  3. Teyssier, J. et al., Photonic crystals cause active colour change in chameleons, Nature Communications, Vol. 6: 6368, 2015.

FORNT本文選自《科學月刊》2015年5月號

延伸閱讀:
同步輻射光源解密
超短脈衝雷射改變世界

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3735 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
一顆科技巨星的隕落(下)—英特爾的沒落
賴昭正_96
・2025/03/20 ・4190字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

商業上的成功蘊含著自身毀滅的種子:成功會滋生自滿,自滿會導致失敗。只有偏執狂才能生存。
-Andrew Grove(英特爾首席執行官)

話說英特爾於 1986 年冒著丟掉大客戶百年 IBM 的危險,轉向成立僅 3 年多的小電腦公司推銷其最新微處理器的賭博,得到了回報:康柏電腦公司一炮而紅的成功加速客戶對新 80386 晶片的要求。90 年代中後期英特爾更大力投資新的微處理器設計,促進了個人電腦產業的快速成長,成為市場佔有率高達 90% 的微處理器主要供應商,使其自 1992 年以來一直保持半導體銷售額排名第一的地位,於 1999 年將英特爾推上代表美國 30 主要工業的道瓊指數之一成員。

但到了 2000 年代,特別是 2010 年代末期,英特爾面臨日益激烈的競爭,導致其在 PC 市場的主導地位和市場佔有率下降。儘管如此,截至 2024 年第三季度,英特爾仍以 62% 的市佔率遙遙領先 x86 市場、更是筆記型電腦的明顯贏家(72%)。可是為什麼今天英特爾股價竟然倒退了 28 年,回到 1996 年底的價位呢(註一)?為什麼它已經不能再代表美國主要工業,於 2024 年 11 月 8 日被踢出道瓊工業指數,為英偉達(Nvidia,臺灣與香港譯為「輝達」)取代呢?

是什麼原因讓英特爾失去產業龍頭的位置? 圖/pixabay

英特爾的失足

在回答此問題之前,筆者得先指出:個人電腦到了 2000 年初已不再是一高利潤的高科技,而是一種日用商品。當初將英特爾培養壯大的 IBM 於 2004 年年底完全退出了個人電腦的市場;而避免侵權透過逆向工程、製造出第一台 IBM 個人電腦相容機的康柏公司,也在個人電腦市場的價格競爭日益激烈、及想打入主機電腦市場的錯誤政策下,於 2002 年被惠普 ( Hewlett-Packard ) 收購「消失」了。

冰凍三尺,非一日之寒。Google 的人工智慧謂:「英特爾在晶片產業落後的主要原因是多種因素」,包括:
(1)未能洞悉智慧型手機的崛起,在行動晶片市場明顯落後,錯失創新機會給高通(Qualcomm Inc.)等競爭對手;
(2)依賴過時的製造流程,未能像台積電、AMD、和英偉達(註二)一樣採用更靈活晶片設計和外包製造,來應付快速不斷變化的市場需求,導致失去了高效能運算和人工智慧等關鍵領域的市場;
(3)一些分析師認為英特爾在個人電腦市場長期佔據主導地位可能導致高階主管自滿,不願適應不斷變化的產業動態。

-----廣告,請繼續往下閱讀-----

筆者認為前述的(1)及(2)都是果,真正的原因只有(3)一個。80 年代,當英特爾的晶片和微軟的軟體成為快速發展之個人電腦行業的雙引擎時,公司充滿活力,專注於其在個人電腦和資料中心伺服器的特殊領域。英特爾高層曾半開玩笑地將公司描述為「地球上最大的單細胞有機體」:一個孤立的、獨立的世界。像 IBM 一樣,數十年的成功和高利潤也催生了英特爾目中無人及自大之企業文化!這種開會又開會、討論又討論、開不完的會、討不完的論正是公司成熟的標註。

英特爾企業文化

想當初英特爾剛成立時,諾伊斯只聽了幾秒鐘霍夫有關微處理器的激進想法後,就立即說:「做吧」!真是不可同日而語。又如到了 1983 年,其主要記憶體晶片業務受到日本半導體製造商加劇競爭而大大降低獲利能力時,格羅夫立即迅速地不怕「…微處理器是個非常大的麻煩」,脫胎換骨成為微處理器主要供應商━又豈是 90 年代不遺餘力地捍衛其微處理器市場地位而與 AMD 鬥爭的英特爾所能比?

事實上英特爾也曾多次嘗試成為人工智慧晶片領域的領導者,但都以失敗告終(註三):專案被創建、持續多年,然後要麼是因為英特爾領導層失去耐心,要麼是技術不足而突然被關閉。為了保護和擴大公司的賺錢支柱(x86 的數代晶片),英特爾對新型晶片設計的投資總是退居二線。史丹佛大學電機工程教授、英特爾前董事普盧默 ( James Plummer ) 曾謂:「這項技術是英特爾皇冠上的寶石——專有且利潤豐厚——他們會盡一切努力來維持這一點的」。英特爾的領導者有時也承認這個問題,例如英特爾前執行長巴雷特 ( Craig Barrett ) 就曾將 x86 晶片業務比作一種毒害周圍競爭植物的雜酚油灌木叢。

微軟 Copilot AI

英特爾能再放光芒嗎?

在一連串的機會錯失,決策錯誤及執行不力下,英特爾於 2021 年任命曾經主導其發展人工智慧晶片、2009 年離職去擔任 EMC 總裁的基辛格(Patrick Gelsinger)回來當執行長,積極嘗試透過其所謂的「五年、四個節點」進程追趕台積電。這位浪子回頭,被請回來拯救公司的基辛格於去年 4 月 25 日宣稱:即將推出的英特爾 3 奈米製程伺服器晶片的需求很高,可以贏得那些轉找競爭對手的客戶,謂『我們正在重建客戶信任。他們現在看著我們說:「哦,英特爾回來了。」』…但半年後,董事會對他的扭虧為盈計畫完全失去了信心,給了他辭職或被解僱的選擇。基辛格於 12 月 1 日辭職,現由領導英特爾全球財務部門和投資者關係的津斯納 ( David Zinsner ) 擔任臨時聯合執行長,正在務色下一任執行長。

-----廣告,請繼續往下閱讀-----

英特爾現在的處境事實上很像 1993 年的 IBM:在官僚體制、大型電腦利潤下滑,及失去個人電腦的主導權後,其股票從 1987 年 7 月的最高點倒退了 26 年!當總裁兼執行長阿克斯(John Ackers ) 於當年元月宣布首次下調股息 55% 及離職後,遴選委員會竟然找不到任何人願意來收拾這個爛攤子━曾幾何時 IBM 執行長還是眾人夢寐以求的職位呀!最後選委會只好推薦自告奮勇、完全外行(註四)、銷售菸草和食品的 RJR Nabisco 公司的首席執行官郭士納(Louis Gerstner Jr.)!郭士納在自傳中回憶說:重振 IBM 所面臨的最嚴峻挑戰是改變其企業文化。現 IBM 雖然不再像以前在科技界一言九鼎,但其股票已「趕上時代」屢創歷史新高,為道瓊工業指數中歷史最悠久的高科技成員(1979 年起);郭士納也被視為美國商界的偶像,IBM 轉型和重拾技術領導地位的救星。

IBM 和英特爾的股價走勢圖。圖/作者提供

股票名嘴克萊默(Jim Cramer)在年初謂:「我們需要將英特爾視為資產負債表非常糟糕的國寶」,因此有必要幫助英特爾公司渡過難關。美國政府顯然也同意,商務部根據 CHIPS 激勵計劃的商業製造設施資助機會,已經給英特爾公司提供高達 78.65 億美元的直接資助。但如前面所提到的 IBM 如何啟動發展個人電腦,錢真的是萬能嗎?英特爾能重新燃燒發光嗎?

英特爾不像 1993 年的 IBM 具有百年的歷史,各方面人才濟濟:多項技術創新和最多的專利,包括自動櫃員機、動態隨機存取記憶體 、軟碟、硬碟、磁條卡、關聯式資料庫、Fortran 和 SQL 程式語言、UPC 條碼、以及本文所提到之個人電腦等;其研究部是世界上最大的工業研究機構,員工因科學研究和發明而獲得了各種認可,包括六項諾貝爾獎和六項圖靈獎(Turing Award,註五)。因此筆者懷疑英特爾能夠重新奪回業界領先地位;CFRA Research 技術分析師齊諾 ( Angelo Zino ) 表示:「目前來看,它們重返輝煌的可能性非常渺茫。」

以目前來看,英特爾技術劣勢難以逆轉,重返業界領導地位機會渺茫。圖/unsplash

結論

這顆科技巨星真的要隕落了嗎?真的是「一失足成千古恨,再回頭已百年身」嗎?英特爾第三任首席執行官(1987-1998)格羅夫真的不幸言中了嗎:「商業上的成功蘊含著自身毀滅的種子」?當然,像英特爾這麼有成就的公司要徹底消失是不太可能,因此最可能的命運應該是分割拍賣或像仙童半導體公司一樣被其它公司收購(註六)。事實上去年高通公司就曾與英特爾洽談收購事宜,但最終放棄了這個想法。

-----廣告,請繼續往下閱讀-----

最後讓我們在這裡以同時被 IBM 培養狀大、在個人電腦上一起嘯吒風雲的微軟公司,其創辦人蓋茨(Bill Gates)元月 8 日的美聯社訪談來結束本文吧。蓋茨聲稱:如果英特爾沒有在 70 年代初期取得技術突破,創造出能夠驅動個人電腦的微型晶片,他的職業道路可能會有所不同。他接著表示:微軟也像英特爾一樣,在 18 年前錯過了從個人電腦到智慧型手機的轉變,但微軟已經恢復元氣,而英特爾的困境卻惡化到需要尋找新執行長的地步(註七),他說:

他們錯過了人工智慧晶片革命,(因為晶片設計和製造方面落後)其製造能力達不到英偉達和高通等公司認為是簡單的標準。我認為基辛格非常勇敢,他敢說:「不,我要解決設計方面的問題,我要解決晶圓廠方面的問題。」我(曾)希望為了他自己、為了國家,他能夠成功。我希望英特爾能夠復甦,但目前看來它們的處境相當艱難。

今天微軟公司已是全美市值最大的前三名公司之一,而英特爾卻淪落至此,能不讓人感嘆造化弄人嗎?

(2025 年 2 月 3 日補註)本文完稿於元月 15 日;英特爾元月 30 日第四季業績報告謂:營收連續三季下滑,較去年同期下降 7%;本季淨虧損總計 1.26 億美元(即每股 3 美分),而去年同期的淨收入為 26.7 億美元(即每股 63 美分)。今年第一季的業績指引令分析師失望!

備註

  • (註一)同一期間道瓊股指上升了 7 倍多。
  • (註二)這三家公司現在全是中國人在主導。在英特爾全盛時期,這三家全是在後者的陰影下求生存;而現今這三家的市值均遠遠超過英特爾!
  • (註三)2005 年,當英特爾的晶片在大多數個人電腦中充當了大腦時,執行長歐德寧( Paul Otellini)就已經意識到了圖形晶片最終可能會在資料中心承擔重要的工作,向董事會提出了一個令人震驚的想法:以高達 200 億美元收購電腦圖形晶片的矽谷新貴英偉達(英偉達的市值現已超過 3 兆美元)。但因英特爾在吸收公司方面的記錄不佳,董事會拒絕了這個提議,歐德寧退縮了!反觀 AMD 於 2006 年收購英偉達對手 Array Technology Inc. 後,現正挑戰英偉達的圖形晶片市場。
  • (註四)在 1993 年三月宣布將擔任執行長的記者招待會上,被問及用什麼牌子的計算機時,新執行長說他有一台筆記本電腦,但不記得是什麼牌子。
  • (註五)公認為計算機科學領域的最高榮譽,被稱為「計算機界的諾貝爾獎」。
  • (註六)仙童半導體公司於 2016 年 9 月被安森美(ON)半導體收購,品牌已不存在。
  • (註七)英特爾於 2025 年 3 月任命陳立武出任新執行長。

延伸閱讀:圖形處理單元與人工智能

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
46 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
晶片生病要手術 該選哪種開刀方式來做切片?
宜特科技_96
・2025/01/11 ・3131字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

晶片結構內部有問題,想要進行切片觀察,但方式有好幾種,該如何針對樣品的屬性,選擇正確分析手法呢?

本文轉載自宜特小學堂〈 哪種 IC 切片手法 最適合我的樣品〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

點擊圖片收看影片版

IC 設計後,在進行後續的產品功能性測試、可靠度測試(Reliability Test)或故障分析除錯(Failure Analysis & Debug)前,必須對待測試的樣品先做樣品製備(Sample preparation),透過 IC 切片方式,進行斷面/橫截面觀察(Cross-section)。此步驟在確認晶片內的金屬接線、晶片各層之間結構(Structure)、錫球接合(Solder Joint)、封裝打線(Wire Bonding)和元件(Device)異常等各種可疑缺陷(Defect),扮演相當關鍵性重要角色。

然而觀察截面的方式有好多種,有傳統機械研磨(Grinding)方式,透過機械手法拋光(Polish)至所需觀察的該層位置;或是透過離子束(Ion Beam)方式來進行切削(Milling);那麼,每一種分析手法到底有那些優勢呢?又該如何選擇哪一種切片手法,才能符合工程師想要觀察的樣品型態呢?本文將帶來四大分析手法,從針對尺寸極小的目標觀測區(如奈米等級的先進製程缺陷),或是大面積結構觀察(如微米等級的矽穿孔 TSV),幫大家快速找到適合的分析手法,進行斷面/橫截面觀察更得心應手!

傳統機械研磨(Grinding):樣品製備時間長,觀測範圍可達 15cm

 傳統機械研磨最大優勢,是可以達到大面積的觀察範圍(<15cm 皆可),跨越整顆晶粒(Die),甚至是封裝品(Package),當需要檢視全面性結構的堆疊或是尺寸量測等等,就適合使用 Grinding 手法(如下圖)。這個手法可透過機械切割、冷埋、研磨、拋光四步驟置備樣品到所需觀察的位置。

-----廣告,請繼續往下閱讀-----
(左):晶粒(Die)剖面研磨;(中)&(右)銅製程剖面研磨。圖/宜特科技

不過傳統研磨也有兩項弱點,除了有機械應力容易產生結構損壞,如變形、刮痕外,此項操作也非常需要依靠操作人員的執行經驗,經驗不足者,恐導致研磨過頭而誤傷到目標觀測區,影響後續分析。

傳統研磨相當依靠操作人員的執行經驗。圖/宜特科技

離子束 Cross-section Polisher(CP):除了截面分析,需要微蝕刻也可靠它

相較於傳統機械研磨(Grinding),Cross-section Polisher(簡稱 CP)的優點在於,是利用離子束做最後的精細切削(Fine milling),可以減低多餘的人為損傷,避免傳統研磨機械應力產生的結構損壞。除了切片外,CP 還有另一延伸應用,就是針對樣品進行表面微蝕刻,能夠解決研磨後造成的金屬延展或變形問題。因此,若是想觀察金屬堆疊型之結構、介金屬化合物 Intermetallic Compound(IMC),CP 是非常適合的分析手法。

CP 的手法,是先利用研磨(Grinding)將樣品磨至目標區前,再使用氬離子 Ar+,切削至目標觀測區,此做法不僅能有效縮短分析時間,後續再搭配掃描式電子顯微鏡(Scanning Electron Microscope,簡稱 SEM)進行拍攝,將能夠呈現較為清晰的層次邊界。

上圖是兩張 SEM 影像。左圖為研磨後的 IC 結構,層次邊界並不清晰;右圖則為 CP 切削後的 IC 結構,層與層之間界線清晰可見,同時也少了許多研磨後的顆粒與髒汙。圖/宜特科技

案例一CP Cross Section 能力,快又有效率!

案例一的待測樣品為 BGA 封裝形式,目標是針對特定的錫球(Solder bump)進行分析。透過 CP,可在 1 小時內完成 1mm 範圍的面積切片。後續搭配 SEM 分析,即可清楚呈現錫球表面材料的分布情況。

-----廣告,請繼續往下閱讀-----

下圖是案例中的 SEM 影像,圖(a)是 CP 後的樣品截面,可將整顆 bump 完整呈現。圖(b)是用傳統機械研磨(Grinding)完成之 BGA,雖然可以看到 bump 的介金屬化合物(IMC),但因研磨延展無法完整呈現。而圖(c)是用 CP 完成之 BGA,bump 下方的IMC對比清晰,可清楚看到材料對比的差異。

圖/宜特科技

案例二:透過 CP milling 解決銅延展變形的狀況

常見的 PCB 板疊孔結構中,若盲孔(Blind Via Hole,簡稱 BVH)與銅層(Cu layer)之間的結合力較弱時,在製程後期的熱處理過程中,容易導致盲孔與銅層拉扯出裂縫(Crack),造成阻值不穩定等異常情形。一般常見是透過傳統機械研磨(Grinding)來檢測此類問題,但這種處理方式往往會造成銅延展變形而影響判斷。我們可以使用 CP 針對 BVH 結構進行 CP milling,有效解決問題,並且處理範圍可達 10mm 以上之寬度。

左圖為傳統機械研磨(Grinding)後之 PCB via,無法看到裂縫(Crack);右圖為 CP milling 後之 PCB via,清楚呈現裂縫(Crack)。圖/宜特科技

Plasma FIB(簡稱PFIB):不想整顆樣品破壞,就選擇它來做局部分析

在 3D-IC 半導體製程技術中,如果擔心研磨(Grinding)在去層(Delayer or Deprocess)過程傷到目標區,或是擔心樣品研磨時均勻性不佳,會影響到觀察重點,這時就可考慮用電漿聚焦離子束顯微鏡(Plasma FIB,簡稱 PFIB)分析手法!

PFIB 結合了電漿離子蝕刻加工與 SEM 觀察功能,適用於分析範圍在 50-500 µm 的距離內,可進行截面分析與去層觀察,並針對特定區域能邊切邊觀察,有效避免因盲目切削而誤傷到目標區的狀況,確保異常結構或特定觀察結構的完整性。(閱讀更多:先進製程晶片局部去層找 Defect 可用何種工具

-----廣告,請繼續往下閱讀-----
PFIB 切削後之 TSV (Through Silicon Via)結構,除了可以清楚量測金屬鍍層厚度外,因為沒有研磨的應力影響,可明確定義 TSV 蝕刻的 CD(Critical Dimension)。圖/宜特科技

Dual Beam FIB(簡稱DB-FIB):適用數奈米小範圍且局部的切片分析

結合鎵離子束與 SEM 的雙束聚焦離子顯微鏡(Dual Beam FIB,簡稱 DB-FIB),可針對樣品中的微細結構進行奈米尺度的定位及觀察,適用於分析範圍在 50µm 以下的結構或異常區域。同時,DB-FIB 還能進行能量散佈 X-ray 能譜儀(Energy Dispersive X-ray Spectroscopy,簡稱 EDX)分析及電子背向散射(Electron Backscatter Diffraction,簡稱 EBSD),以獲得目標區域的成分與晶體結構相關資訊。

此外,當觀察的異常區域或結構過於微小,用 SEM 無法得到足夠資訊時,DB-FIB 也可以執行穿透式電子顯微鏡(Transmission Electron Microscope,簡稱 TEM)的試片製備,後續可供 TEM 進行更高解析度的分析。

DB-FIB 搭配 SEM 與鎵離子槍,可針對異常及微區結構進行定位與分析。圖/宜特科技

若想更認識各種工具的應用,歡迎來信索取宜特精心製作的四大切片分析工具圖表marketing_tw@istgroup.com,希望透過本文能幫助讀者,對IC截面分析手法有更多了解,例如 CP 設備新增了 Milling 功能,使其用途更加多元;而 PFIB 增加了去層功能,為先進製程的異常分析開啟了全新的可能性!

本文出自 www.istgroup.com

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

宜特科技_96
12 篇文章 ・ 4 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

4
0

文字

分享

0
4
0
從半導體到量子晶片:台灣成為全球量子科技的核心力量!
PanSci_96
・2024/10/14 ・2212字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

台灣首台量子電腦誕生:量子時代的到來

2024 年 1 月,台灣自主研發的第一台量子電腦正式於中央研究院誕生,儘管僅具備5個量子位元(qubits),卻為台灣在全球量子電腦競技場上佔據一席之地揭開了序幕。這一具有歷史性意義的事件不僅代表台灣科技能力的進步,也喚醒了人們對量子電腦的未來潛力的無限期待。

量子電腦,不再僅是科幻小說中的幻想,而是實實在在的科技新星,逐漸改變人類面對複雜問題的解決方式。台灣,身為全球半導體製造的重要支柱,正在迎接量子電腦進入量產的時代,而這將與材料學、晶片製程技術緊密相關。當量子技術進一步發展,台灣的製程技術無疑能為這場科技革命提供關鍵助力。

但在我們深入了解量子電腦的潛力之前,必須先理解它的基本運作原理。畢竟,要瞭解該投資哪些量子概念股,或者選擇哪些科系來掌握未來的科技趨勢,我們首先需要清楚量子電腦究竟是如何運作的。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是量子電腦?從電晶體到量子位元

2019 年,Google 推出了 53 量子位元的量子電腦「梧桐」(Sycamore),並宣告達成「量子霸權」,即其量子電腦在短短 200 秒內完成了傳統超級電腦需要 1 萬年才能處理的計算任務。這標誌著量子計算能力的突破,為計算科學開啟了全新的紀元。

-----廣告,請繼續往下閱讀-----

量子電腦之所以強大,是因為它利用了量子力學的「疊加」與「糾纏」現象。傳統電腦使用二進制的「0」和「1」來進行計算,而量子位元可以同時處於「0」和「1」的狀態,這使得量子電腦能在同一時間進行更多複雜的計算,大大提高了運算效率。

這樣的技術突破意味著,我們不再只依賴電子流過電晶體來實現運算,而是可以直接操控單一電子或其他粒子,讓它們同時攜帶 0 與 1 的信息,從而極大地提升了計算能力。

掌握電子的挑戰:從不確定性到操控技術

量子力學的另一個特性——不確定性原理——使得控制電子變得非常困難。電子極其微小,甚至無法用肉眼觀察。當我們試圖「觀察」一顆電子時,光子的介入會改變電子的狀態,這種不確定性使得同時測量電子的位置和動量幾乎不可能。

這種量子現象的捉摸不定,給科學家們帶來了巨大的挑戰。然而,正是這些現象,讓科學家們探索出了全新的計算方式——量子計算。在這一領域,超導體成為了實現量子位元的關鍵技術。

-----廣告,請繼續往下閱讀-----

超導體與量子電腦的結合:解鎖未來的關鍵

2023 年 7 月,韓國科學家宣布發現了一種名為 LK-99 的高溫超導體,這一發現引起了全球的轟動,因為超導體具備零電阻和磁浮現象,與量子力學有著密切的聯繫。超導體是未來量子電腦的潛在材料,它能夠在極低溫下讓電子以「庫柏對」的形式運動,這些電子對能夠在原子之間暢通無阻,產生零電阻效應。

通過利用「約瑟夫森效應」,兩個超導體之間夾入絕緣體,可以讓電子對穿越絕緣體,形成「超導電流」。這種穿隧效應是量子電腦中量子位元的重要基礎,讓我們能夠構建出穩定且有效的量子系統。

然而,現有的超導量子電腦仍面臨兩個主要挑戰。首先,超導現象只能在接近絕對零度的極低溫環境下出現,這意味著要在家庭或企業中大規模應用量子電腦,仍需克服極端溫控的技術難題。其次,超導量子位元非常容易受到外界干擾而失去量子狀態,這使得量子計算的穩定性成為一個尚未解決的問題。

由美國國家標準技術研究所研發的約瑟夫森接面陣列晶片。圖/wikimedia

量子電腦的多元發展:超導不是唯一的答案

儘管超導體被廣泛應用於當前的量子電腦技術中,但它並不是唯一的發展途徑。其他量子計算技術也在不斷進步,包括基於離子阱技術、光子學量子電腦等。

-----廣告,請繼續往下閱讀-----

離子阱技術利用激光操控單一原子來進行計算,這種技術具有極高的精度和穩定性,但也面臨著技術複雜性和成本的問題。而光子學量子電腦則利用光子來承載和傳輸信息,具有快速且易於擴展的潛力,然而,目前的光子學技術還存在一定的技術障礙,尤其是在量子糾纏狀態的穩定性上。

因此,量子計算的未來發展並不會只依賴一種技術,而是可能出現多元化的方案,根據不同的應用場景,選擇最合適的技術路徑。

台灣的量子未來:機遇與挑戰並存

隨著全球對量子技術的關注不斷提升,台灣有望在這一領域佔據重要地位。台灣的半導體技術、材料科學研究和製造實力,無疑為量子電腦的發展提供了堅實的基礎。從傳統的半導體製程轉換到量子晶片製造,台灣擁有豐富的技術積累與創新潛力。

然而,量子電腦技術的發展速度迅猛,台灣必須在全球競爭中不斷推動自主研發能力。未來,量子電腦的應用範圍將涵蓋人工智能、金融運算、材料科學、新藥開發等領域,這將進一步改變現有的產業結構和科技生態。

-----廣告,請繼續往下閱讀-----

對於投資者和學生來說,理解量子電腦的運作原理與未來趨勢,將是未來掌握科技變革的關鍵。而量子電腦的崛起,也標誌著下一場技術革命的序幕已經開啟。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。