Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

鼠疫桿菌:伴隨人類5000年的死神

寒波_96
・2015/12/02 ・3136字 ・閱讀時間約 6 分鐘 ・SR值 586 ・九年級

(取自wiki)
儘管外貌恐怖,不過這位不是死神,而是歐洲黑死病年代的「鳥嘴醫師」,這身行頭是他們對抗疾病的裝備。(取自wiki

大規模傳染病一直伴隨在人類左右,近幾年令大家印象深刻的就有 SARS、禽流感、狂犬病、伊波拉、MERS、登革熱等等,而衛生條件不佳的古代,致命的傳染病更是相當普遍。講到歷史上的傳染病,絕不可能忽略鼠疫桿菌(Yersinia pestis)。

超越成吉思汗的人類毀滅者

鼠疫桿菌是種細菌,它有一個460萬對鹼基長的環形染色體,以及3個質體:pCD1、pPCP1、pMT1。根據歷史記載,鼠疫桿菌肆虐已有 1500 年,確定有過 3 波疫情大爆發,每次都死掉幾千萬人。第一次的查士丁尼瘟疫(Plague of Justinian)距今約 1500 年,主要發生在歐洲,嚴重削弱了拜占庭帝國的實力。

第二次就是赫赫有名的黑死病(Black Death),600 多年前疫情高峰時,沒幾年就消滅了當時超過3分之1的歐洲人口;起源自中國南方,在 1894 年最嚴重,蔓延到全世界的第三次大爆發,距今並沒有太久,這波疫情最後導致千萬人以上死亡。

Johannes Krause 率領的團隊在 2011 年時,從倫敦的黑死病死者身上,定序出當時的鼠疫桿菌基因組,發現與現在的菌株比起來,鼠疫桿菌的 DNA 序列幾百年來幾乎沒有改變[1]。這篇論文用那時所有已知菌株,估計鼠疫桿菌共同祖先的年代,大約是在 668 到 729 年前,不比黑死病更早多少,因此懷疑 1500 年前的查士丁尼瘟疫,也許不是鼠疫桿菌造成。

-----廣告,請繼續往下閱讀-----

人究竟是誰殺的?研究古代 DNA 的技術進展,讓科學家能直接從古代樣本中尋找答案。爭議在 2014 年獲得解答,兩個團隊從西元 6 世紀的樣本中,確認鼠疫桿菌存在,證實它們確實是查士丁尼瘟疫的真兇[2][3]。

比歷史記載更古老

殺人效率不遜成吉思汗、暴坊將軍、米花死神的人類毀滅者-鼠疫桿菌,是如何起源,又怎樣演化,才成為令傑森與佛萊迪都汗顏的殺人魔王?繼黑死病與查士丁尼瘟疫的研究之後,今年Eske Willerslev領軍的論文,把目標擺在歐亞大陸的青銅時代,也就是距今 3000 到 5000 年前。

f1
從歐洲到中亞,7 個青銅時代樣本的地點、所屬文化與估計年代。(取自 ref5)

這個研究看來是 Eske Willerslev 團隊大計劃中的一部份,他們之前定序了青銅時代,位於歐洲、西亞、中亞各地 101 具人類遺骸的基因組,研究當時人類的遷徙與遺傳史[4]。新的論文則是發現這 101 個人中,有高達 7 位感染過鼠疫桿菌,意謂比歷史記載的 1500 年前更早,早在將近 5000 年前,鼠疫桿菌已經開始感染人類[5]。

鼠疫桿菌最接近的親戚是 Y. pseudotuberculosis,不過沒有 pPCP1 與 pMT1 這 2 個質體。把 Y. pseudotuberculosis 及已知所有鼠疫桿菌的菌株,包括年代在 3700 與 2700 年前,這回 7 個古代樣本中品質最好的 2 個,擺在一起分析親緣關係的結果是,全部鼠疫桿菌都被歸在同一群,2 個最古老的菌株位於這群的最根部,而所有 Y. pseudotuberculosis 都被分到外面。

-----廣告,請繼續往下閱讀-----
f5
鼠疫桿菌與 Y. pseudotuberculosis 各菌株的親緣關係。右邊的樹,紅色是自成一群的鼠疫桿菌,黑色箭頭指的是2700與3700年前的最古老菌株,藍色是 Y. pseudotuberculosis。左邊的樹,只有鼠疫桿菌的部分。(取自ref5)

確定大家的關係以後,就可以估計彼此分家的年代。所有鼠疫桿菌共同祖先是在 5783 年前,不比最早已知感染人類的時間點,也就是 5000 年前更早多少。鼠疫桿菌和 Y. pseudotuberculosis 是在 54735 年前分開,Y. pseudotuberculosis 主要感染對象是跳蚤,也會感染人類,但不像鼠疫桿菌一樣致人於死,這段漫長的時間裡,想必發生過某些事,才讓鼠疫桿菌從 Y. pseudotuberculosis 般的跳蚤剋星,轉型成殺人如除草的死神。

沒有坐騎的青銅時代死神

這些古早的鼠疫桿菌殺傷力如何?有 55 個重要的致病基因,7 個古代菌株已經擁有了絕大部分,因此當時的人碰上它們,多半仍是必死無疑,不過年代較早(3700年前)的 6 個樣本,倒是沒有 Yersinia murine toxinymt)這個基因。鼠疫桿菌要靠 ymt 才能把跳蚤當作載體,藉由老鼠散佈到更大的範圍,直到 3000 年前青銅時代結束時,鼠疫桿菌才獲得這張搭便車的車票。

ymt 位於鼠疫桿菌的 pMT1 質體上。比較老的 6 個樣本中,pMT1 質體都少掉包含 ymt 在內的一段序列,這段序列兩邊各有一個轉位子(transposable element),因此當初可能是靠著水平基因轉移(horizontal gene transfer)獲得。從所有鼠疫桿菌菌株都帶有 ymt 基因看來,這個能讓跳蚤成為載體的基因,對鼠疫桿菌應該甚為有利,才會在獲得 ymt 以後,沒多久就散佈到整個族群。

鼠疫桿菌要等到3000年前,才確定可以透過跳蚤傳播。(取自ref5)
鼠疫桿菌要等到 3000 年前,才確定可以透過跳蚤傳播。(取自ref5)

鼠疫桿菌致病的方式主要有 3 種,肺鼠疫(pneumonic plague)直接透過人傳人傳染,腺鼠疫(bubonic plague,黑死病主要就是它)與敗血性鼠疫(septicemic plague)則藉由跳蚤作為載體傳播。鼠疫桿菌需要一個叫作 pla 的基因,才能造成肺鼠疫和腺鼠疫。

-----廣告,請繼續往下閱讀-----

playmt一樣位於質體,不過是另一個 pPCP1 質體。pla 的蛋白質產物在 259 號位置上的氨基酸,要從 isoleucine 突變成 theronine,才能造成腺鼠疫,但至少在3個古代樣本中,都缺乏這個關鍵突變,所以這些菌株可能只能引發肺鼠疫。

從跳蚤剋星到殺人魔王

由已知資訊推論,鼠疫桿菌是在約 55000 年前,與 Y. pseudotuberculosis 分開,幾萬年中獲得了 2 個質體 pPCP1 與 pMT1,還有許多致病基因;大概在 5800 年前,誕生了所有菌株的共同祖先。從各個地點、不同年代的 7 個樣本可知,鼠疫桿菌在青銅時代的歐亞大陸各地,已經普遍存在。

由已知資訊拼湊而成的鼠疫桿菌演化史,除了ymt與pla之外,還有幾個基因突變可能也對鼠疫桿菌的傳播與感染能力有影響(取自ref 5)
由已知資訊拼湊而成的鼠疫桿菌演化史,除了 ymt 與 pla 之外,還有幾個基因突變,可能也對鼠疫桿菌的傳播與致病能力有影響。(取自ref 5)

第一個確定感染的病患出現在將近 5000 年前,比歷史記載提早 3000 年以上。當時的鼠疫桿菌已經配備大部份致病基因,應該足夠致命,不過仍不能搭跳蚤便車,也無法造成腺鼠疫,所以傳染能力有限,要等到 3000 到 3700 年前間的某個時候,先獲得 ymt 基因,3000 年內再有了 pla 的關鍵突變,鼠疫桿菌才成為後來查士丁尼瘟疫與黑死病時,那副縱橫天下的樣子。

鼠疫幾千年來對人類的經濟、科技、社會、思想等方面影響非常劇烈,文學中也有不少大規模傳染病的影子。薄伽丘成書於黑死病時期的《十日談》,背景就安排在一場瘟疫蔓延時;卡繆的代表作,甚至直接就叫作《鼠疫》;蔡明亮的電影《洞》,更是透過傳染病,把人與人之間的情感,演繹的精彩無比。

-----廣告,請繼續往下閱讀-----

儘管鼠疫桿菌已經感染人類超過 5000 年,我們卻直到 100 多年前才認識它們。歷史上好幾次瘟疫,讓當時的人覺得世界末日已經降臨,生在這個時代也許有不少煩惱,不過不但不用擔心得到鼠疫死掉,還能好整以暇的逐步揭開鼠疫桿菌的奧秘,仔細想想,比起古代,現代人擁有的,恐怕不只是微小確定的幸福而已。

參考文獻:

  1. Bos, K. I., Schuenemann, V. J., Golding, G. B., Burbano, H. A., Waglechner, N., Coombes, B. K., … & Krause, J. (2011). A draft genome of Yersinia pestis from victims of the Black Death. Nature, 478(7370), 506-510.
  2. Wagner, D. M., Klunk, J., Harbeck, M., Devault, A., Waglechner, N., Sahl, J. W., … & Poinar, H. (2014). Yersinia pestis and the Plague of Justinian 541–543 AD: a genomic analysis. The Lancet Infectious Diseases, 14(4), 319-326.
  3. Harbeck, M., Seifert, L., Hänsch, S., Wagner, D. M., Birdsell, D., Parise, K. L., … & Scholz, H. C. (2013). Yersinia pestis DNA from Skeletal Remains from the 6th Century AD Reveals Insights into Justinianic Plague. PLoS Pathogens, 9(5).
  4. Allentoft, M. E., Sikora, M., Sjögren, K. G., Rasmussen, S., Rasmussen, M., Stenderup, J., … & Sablin, M. (2015). Population genomics of Bronze Age Eurasia. Nature, 522(7555), 167-172.
  5. Rasmussen, S., Allentoft, M. E., Nielsen, K., Orlando, L., Sikora, M., Sjögren, K. G., … & Willerslev, E. (2015). Early Divergent Strains of Yersinia pestis in Eurasia 5,000 Years Ago. Cell, 163(3), 571-582.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
文章難易度
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
誰在馬丘比丘終老?來自印加帝國各地,還有遙遠的亞馬遜
寒波_96
・2023/09/13 ・3774字 ・閱讀時間約 7 分鐘

馬丘比丘(Machu Picchu)可謂世界知名的遺跡,觀光客前仆後繼。後世外人神秘的想像下,這兒其實是印加帝國王室冬季渡假的離宮,平時有一批工作人員長住。公元 2023 年發表的論文,透過古代 DNA 分析,證實這群人來自南美洲各地。

馬丘比丘,鍵盤旅遊常見的俯視視角。圖/Eddie Kiszka/Pexels, CC BY-SA

印加王室專屬的服務團隊

馬丘比丘位於現今的秘魯南部,安地斯山區海拔 2450 公尺之處,距離印加帝國的首府庫斯科(Cusco)約 75 公里,只有幾天路程。此處當年是一片完整的園區,足以容納數百人,王室成員會在冬天造訪(南半球的冬天,就是台灣所屬北半球的夏季月份)。

即使是使用淡季,馬丘比丘也住著不少工作人員;從遺留至今的墓葬,可以見到他們的存在。園區由 15 世紀初開始營業,到印加帝國 16 世紀滅亡為止,此後與外界斷絕聯繫數百年,一直到 1912 年,美國調查隊再度「發現」這處世界奇觀。

馬丘比丘總共留下 107 座墓葬,174 位長眠者。這群人顯然不是印加王室,應該是歷代的服務團隊。以前有許多證據,根據不同手法與思維,支持馬丘比丘的工作員來歷很廣。例如這兒的陶器,各地風格都有。

-----廣告,請繼續往下閱讀-----

誰在馬丘比丘工作呢?發跡於庫斯科的印加帝國,後來成為廣大疆域的征服者,有一套「米塔(Mita)」制度調用各地的資源與人力。這套韭菜輪替,後來被西班牙殖民者沿用加改造,成為恐怖的剝削機器,也算是南美洲國家現今社會問題的一個根源。

然而,馬丘比丘的工作人員應該不是米塔制度的服役者,而是「亞納柯納(yanacona)」。他們是王室專屬的服務人員,來自帝國各地,小時候就離開家鄉,接受培育以服務王室。

印加帝國的地理格局。圖/參考資料1

來自印加各地,還有帝國以外的亞馬遜

這項研究由馬丘比丘的墓葬取得 34 個古代基因組,以及附近烏魯班巴谷(Urubamba Valley)的 34 位古代居民樣本,他們代表當地原本的鄉民。

分析發現,印加帝國能接觸到的地區,當地特色的血緣都能在馬丘比丘見到。唯一例外是帝國最南端,現今智利中部、阿根廷西部那一帶。這使得馬丘比丘,成為印加帝國 DNA 多樣性最高的地點。

-----廣告,請繼續往下閱讀-----

但是我不覺得,這等於馬丘比丘存在多樣性很高的「遺傳族群」。分析對象中只有一對母女,其他人都沒有血緣關係。這群人的 DNA 差異大,是因為持續有一位又一位孤立的人,從不同地方被帶進來,整群人只能算特殊個體的集合。

不過遠離家鄉,服務終生的亞納柯納們,彼此間還是可以結婚生小孩的。

性別方面有細微的差異。整體而言,男生具備較多安地斯高地的血緣,女生則配備更多高地以外族群的血緣。一個因素是,有些女生來自更遠的地方,例如文化有別的亞馬遜地區。

印加帝國對亞馬遜的政治勢力不是征服關係,似乎大致上對等。有些亞馬遜的女生大概出於交流目的,來到印加帝國。至少長眠於馬丘比丘的這幾位,生前受到的待遇看來不錯。

-----廣告,請繼續往下閱讀-----
馬丘比丘長眠者的年代與血緣組成。圖/參考資料1

山區到更高山區的情慾交流

對於更在地的族群調查,發現一件有趣的事。庫斯科附近的人群,以「秘魯南部高地」血緣為主,可以視為長居本地的血緣。一部分人卻也能偵測到,與更高山上之「的的喀喀湖(Titicaca)」的居民共享血緣。

庫斯科與的的喀喀湖,兩個地區有點距離,考古學證據指出,早於 2500 年前兩地間就存在交流。而遺傳學分析則支持,兩地存在情慾流動;可惜現有樣本,不太能精確判斷交流發生的年代。

來自亞馬遜的媽媽,女兒,爸爸

這批調查對象中,我覺得長眠於馬丘比丘的那對母女最有意思,值得特別思考。這對母女都是百分之百的亞馬遜西北部血緣,長眠於同一墓穴,兩者的關係在當時有被強調。

「亞馬遜」的面積妖獸大,印加帝國最有機會接觸的,應該是距離安地斯東方不遠的區域,也就是亞馬遜的西部和西北部。不論如何,亞馬遜有自己的一套,印加帝國與其有所交流,不過始終無法將其納入統治。

-----廣告,請繼續往下閱讀-----

征服到山與海的盡頭!以及雨林的邊緣……

馬丘比丘長眠者的鍶穩定同位素比值。圖/參考資料1

根據牙齒中鍶的穩定同位素,可以判斷一個人小時候在哪兒長大。媽媽 MP4b 成長於亞馬遜地區,表示她在長出恆齒後才抵達安地斯。

她的女兒 MP4f 則無法判斷具體地點,不過應該位於安地斯山區。兩人後來都在馬丘比丘服務,去世後長眠於此。

女兒沒有其餘地區血緣的特色,意謂女兒的爸,也配備百分之百的亞馬遜西北部 DNA,只是在馬丘比丘墓葬中看不到他。

-----廣告,請繼續往下閱讀-----

印加帝國興起,亞馬遜扮演什麼角色?

年代方面,媽媽算是長眠於馬丘比丘最早的一批人,處於印加建國的初期,甚至有可能早於開國之日。

依照歷史敘事,印加帝國始於「印加太祖」帕查庫特克(Pachacuti)擊敗昌卡人(Chanka)。印加勢力征服烏魯班巴谷以後,才有機會建設其上方的馬丘比丘。而印加太祖登基的年份為 1438 年。

然而,針對馬丘比丘遺骸的放射性碳同位素定年(碳14),指出兩人的年代或許早於 1420 年。考古學家因此懷疑,印加帝國建國的實際年代比 1438 年更早,也許早在 1420 年已經完成建國大業。

馬丘比丘最早長眠者的年代,似乎比歷史敘事中,印加帝國建國的 1438 年更早。圖/參考資料4

亞馬遜西北部長大的媽媽 MP4b 之年代,剛好介於這段時期。不論如何,這都是明確的證據,支持印加帝國建國之初,和亞馬遜之間有一定程度的正面交流。而女兒的爸,身份也引人好奇。

-----廣告,請繼續往下閱讀-----

他是當時亞馬遜政權派往印加的政治代表,或是軍事團助拳人嗎?還是替印加王室服務的商人,或是作戰的傭兵?他是在哪個地方,什麼情境下,與來自家鄉的女性生下女兒?最後,他本人最終的命運如何?

馬丘比丘在這對母女以後,至少還有四位純亞馬遜西北部血緣的女性長眠,延續到印加帝國的最後時期,當中至少兩位是在安地斯山區長大,和前輩女兒 MP4f 一樣。印加王室與亞馬遜的人口交流,貫串整段帝國時光。

古代 DNA 的分析,有相當客觀的套路,但是從中能牽引出的主觀議題千變萬化,非常有意思。

延伸閱讀

參考資料

  1. Salazar, L., Burger, R., Forst, J., Barquera, R., Nesbitt, J., Calero, J., … & Fehren-Schmitz, L. (2023). Insights into the genetic histories and lifeways of Machu Picchu’s occupants. Science Advances, 9(30), eadg3377.
  2. Who lived at Machu Picchu? DNA analysis shows surprising diversity at the ancient Inca palace
  3. Ancient DNA reveals diverse community in ‘Lost City of the Incas’
  4. Burger, R. L., Salazar, L. C., Nesbitt, J., Washburn, E., & Fehren-Schmitz, L. (2021). New AMS dates for Machu Picchu: results and implications. Antiquity, 95(383), 1265-1279.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

1
0

文字

分享

0
1
0
匈奴西側邊疆,女主與她們的手下?
寒波_96
・2023/07/05 ・5509字 ・閱讀時間約 11 分鐘

匈奴帝國是歐亞草原的第一個帝國,主要疆域位於蒙古,世界史上有一席之地。匈奴人缺乏自身的文字記載,後人只能參考旁觀者,主要是漢朝人的歷史紀錄。所幸近來考古學、遺傳學的進展,大幅增進我們對匈奴的認識,也帶來新的啟示。

由遺骸直接取得古代 DNA 分析遺傳訊息,此前得知「匈奴人」的血脈源流相當多元,2023 年問世的一篇論文,調查匈奴帝國西部邊疆的墓葬,發現當地地位最高的都是女生,血緣絕大部分算是「東方」;而地位較低的男生們,遺傳上更加多元。

匈奴帝國全盛時期的疆域。雖然古早遊牧帝國的領土範圍,僅供參考。圖/wiki 百科

匈奴帝國的西部邊疆

匈奴帝國沒有明確的國界,不過當然有個勢力範圍。這項研究調查的地點位於現今的蒙古國西部,地理上算是阿爾泰山的南部,新疆的準噶爾盆地的東北方。這兒在匈奴時期,可謂匈奴勢力的最西端。

兩處大墓葬群距離約 50 公里,各有很多個墓。一些墓中有不少高貴的陪葬品,推測長眠者的地位較高;還有更多墓的派頭普通,墓主生前地位似乎較低。

-----廣告,請繼續往下閱讀-----

一處墓葬群 Takhiltyn Khotgor,簡稱 TAK,年代介於公元前 40 年到公元 50 年。有兩小群 THL-82 和 THL-64 被完整挖掘,都以一位女性的華麗墓葬為主,周圍環繞幾個衛星墓葬。另外 THL-25 目前只有挖掘衛星墓葬。這兒以前報告過 1 個,加上這回 7 個,總共 8 個古代基因組。

另一處墓葬群 Shombuuzyn Belchir,簡稱 SBB,年代介於公元前 50 年到公元 210 年,這回貢獻 10 個古代基因組。

遺址地點,這項研究關注的 TAK、SBB 遺址位於匈奴勢力範圍的最西端。圖/參考資料1

身份高貴的女士們

匈奴帝國的年代約為公元前 200 年到公元 100 年,因此這回調查的樣本包括中期到後期,是匈奴已經興起一段時間後的狀況。研究對象們都只有代號,讀者假如有興趣,也能試著替他們取名字,比較有親切感。

完整挖掘的 THL-82 墓群的成年女生「TAK001」,陪葬在該區域最豐富。她長眠於裝飾精美的木製棺材,旁邊擺著六匹馬、中國風格的青銅馬戰車配件、一個青銅壺等陪葬品。

-----廣告,請繼續往下閱讀-----

THL-64 墓群另一位狀況類似的女生「TAK002」長眠於木製棺材,旁邊擺著一匹馬、四隻羊,以及代表太陽及月亮的金盤。日、月是匈奴的象徵之一, 匈奴價值充斥。

澎湃的陪葬品以外,考古學家認為,我們想來平凡的木頭棺材,其實最能彰顯她們匈奴精英之尊貴地位。因為附近地區缺乏樹木,墓葬一般採用石材;木製棺材必需長途進口木柴方能製作,或許有數百公里之遙。更不用說,弓箭是匈奴人的命脈,而木頭是生產弓箭的寶貴原料。

由墓葬況狀判斷,這兩位女生當年是該地區身份很高的人,而周圍的附屬墓葬可能是她們的手下。有意思的是,與她們埋在一起的其他人,大家都沒有血親關係。

由於缺乏匈奴女主形象,請來滿都海鎮場面。成吉思汗以後,滿都海是蒙古影響力最大的統治者之一。圖/IMDB《Mandoukhai the Wise 智者滿都海》劇照

寫到這兒不能逃避,有必要解釋一下何謂匈奴的「血緣」,古遺傳學家講的「多元」或東方、西方是什麼意思?

-----廣告,請繼續往下閱讀-----

多元血緣之匈奴帝國,哪些DNA融入蒙古?

至今已經累積超過一萬個古代基因組,大部分位於歐洲、中東,不過歐亞大陸北部、中部也有一批,交叉對照可以判斷,歷代蒙古居民的遺傳組成與變化。

匈奴帝國在兩千多年前誕生,比這更早以前,蒙古地區的人口十分有限,可以粗略劃分出三大遺傳族群。

偏東邊的 Slab Grave,以蒙古鐵器時代早期的樣本為代表(也類似所謂的 Ancient Northeast Asian,簡稱 ANA 祖源)。北邊的 Khövsgöl,以貝加爾湖附近青銅時代晚期的樣本為代表。拆解更細的話,Khövsgöl 其實也有源於草原西部的小部分血緣,不過兩者在這項研究都被視為「東方」。

靠西邊的阿爾泰地區,以青銅時代中期、晚期的樣本為代表,這支血脈大部分能追溯到草原西部較早的移民,算是匈奴較早的「西方」成分。這些祖源應該是匈奴帝國興起前,蒙古地區的人群基礎。

-----廣告,請繼續往下閱讀-----
蒙古地區,早於匈奴、匈奴帝國形成後的血脈流動狀況。極為簡化,不過能展示大概的架構。圖/參考資料4

匈奴時期,又有更多方向的血脈加入草原大聯盟。東南方向的漢朝人,用此前發表的「Han_2000BP」為代表,無疑算作「東方」。

「西方」有多個源頭。西北方向的 Sagly/Uyuk,以阿爾泰山鐵器時代的 Chandman 樣本為代表(和東方的斯基泰人,例如「巴澤雷克文化」類似,還具備小部分 BMAC 血緣),不過地理上其實沒有太西。

還有西南方向的綠洲地帶「巴克特里亞-馬爾吉阿納(Bactria–Margiana Archaeological Complex,簡稱 BMAC)」,以及再度由草原西部遠道而來,血緣類似薩馬提亞人(Sarmatians)的新移民。

匈奴作為歐亞大陸中心的大帝國,融入各地血脈並不意外。奇妙的是,這項研究只探索一處很小的地區,同屬一個社群的幾個墓葬,竟然涵蓋大部分的血緣變化。

-----廣告,請繼續往下閱讀-----

少少幾人,大家血緣都不一樣

陪葬品最華麗的 TAK001 有馬有車,姑且稱呼她為「馬車女士」。她配備約 9.3% 的少量西方血緣,大部分則是 Khövsgöl 東方血緣。葬在她附近的兩位男生「TAK008」和「TAK009」約 86.8% 西方血緣,三人間都沒有血緣關係。

充斥匈奴精神的 TAK002 姑且稱為「日月女士」。她幾乎完全配備東方血緣,卻與馬車女士不同。日月女士有一半為 Slab Grave,另一半則是漢朝血緣。她附近兩位男生「TAK003」的西方成分很高,「TAK004」則是 Slab Grave 東方血緣,三人間都沒有血緣關係。

另一處目前只挖掘衛星墓葬的 THL-25,分析兩人。男生「TAK006」完全為東方血緣,和日月女士一樣是 Slab Grave 加漢朝組合,不過比例不同。

「TAK005」是蘿莉,她是這群墓葬中唯一陪葬寒酸的女性,或許是年紀太小。她完全為 Sagly/Uyuk 西方血緣,另一位成年男生 TAK003 也有 70%。再度提醒讀者,盡管視作西方,此一追溯到阿爾泰地區的血脈,實際上並沒有多西邊,距離這回調查的遺址也不太遠。

-----廣告,請繼續往下閱讀-----

總之,TAK 墓葬中人,每個人的血緣組成都不太一樣。男生們的血緣可謂變化多端,什麼都有。地位最高的馬車女士、日月女士皆以東方血緣為主,雖然兩位的「東方」完全不一樣。

TAK 遺址的古代基因組樣本之遺傳組成。Gonur1_BA 出土於中亞,現今的土庫曼 Gonur Tepe 遺址, 作為 BMAC 血緣的代表。圖/參考資料1

高貴女士的姻親網絡

50 公里遠處的 SBB 墓葬群,遺傳主要有 Slab Grave 東方、Sagly/Uyuk 西方兩款祖源,不同人的比例不同。看起來地位最高的墓葬 SBB002、SBB003、SBB007、SBB008 四位都是女生。

男生「SBB010」的陪葬品有鐵製的縫衣針。可見在匈奴文化中,縫衣針並非專屬於女生的陪葬品。

成年女生「SBB007」陪葬算這兒最豪華的,長眠於裝飾精美的木製棺材,擺著騎馬用的裝備、鍍金鐵帶扣、漢朝的彩繪漆杯。顯然匈奴女生不只社會地位高,也會騎馬(她以前因此被判斷為男生)。

-----廣告,請繼續往下閱讀-----

為表示尊崇,姑且稱她為「騎馬女士」。她擁有大量 Slab Grave,少量漢朝和 Sagly/Uyuk 血緣。

個人層次上,「SBB005」最有意思。她是一位蘿莉,父母為遺傳上的近親,大概是表兄弟姐妹等級的二度血緣關係(不過取樣分析中沒有直接見到她的父母),也是這回分析中唯一的近親繁殖寶寶。

這位蘿莉和騎馬女士是二度親戚關係,遺傳組成也類似騎馬女士。蘿莉也與「SBB001」是二度親戚關係,但是 SBB001 和騎馬女士兩位並非血緣上的親戚,所以他們可謂騎馬女士為首的同一社群中,埋葬在一塊的姻親。

SBB 遺址的古代基因組樣本之遺傳組成。Gonur1_BA 出土於中亞,現今的土庫曼 Gonur Tepe 遺址, 作為 BMAC 血緣的代表。圖/參考資料1

匈奴大聯盟,眾多女主經營的統治網絡?

這回的分析對象僅管沒幾個人,眾人的血緣卻千變萬化,乍看有些雜亂。從中能得知哪些啟發?論文強調的觀點是:匈奴西部的邊疆地帶,東方血緣的女性扮演重要角色。

匈奴人的血緣非常多元,可謂歐亞大陸的熔爐,沒有所謂的匈奴 DNA;可是掌握權力與資源的,似乎更集中在特定族群。然而,Khövsgöl(匈奴北部)、Slab Grave(匈奴東部)、漢朝(匈奴外頭的東南部)血緣僅管都可以歸類為「東方」,淵源卻明顯有別。

從已知極為有限的樣本看來,配備這些血脈的女生,都有機會在匈奴社會中身居高位。加上其他匈奴邊疆的考古調查,此狀況似乎更為常見。也許這是匈奴的統治集團,在各地建構權力網絡的方式:源自東方的貴族女生,各自經營各地的群體。

由漢朝人的記錄看來,匈奴好像是鬆散的部落聯盟,但是匈奴帝國具體如何運作,我們幾乎沒有概念。這將是有意思的探索方向,也令人興起一些大膽的猜想。

如果對蒙古帝國的女性參政有興趣,傑克.魏澤福的《成吉思汗的女兒們》值得一讀。有些人看到匈奴女主的研究,就想起這本書。

與日月同在的文明帝國

換個角度思考也很有意思。依照漢文記載,匈奴人在荒郊野外居無定所,文化低落,生活原始又暴力;漢朝人假如被野蠻人擄掠,或是隨著和親進入匈奴,簡直就是從天堂淪落到地獄!

可是如今知道,歷來應該也有些漢朝人口用腳投票,自願投奔匈奴,想來匈奴生活並沒有那麼慘。至少我們能肯定, 被編戶齊民鎖在土地上,當韭菜索求無度的那些漢朝人,日子超級淒慘。

這回取樣的地點位於匈奴西部的邊疆,距離漢朝本土頗有距離。不過分析的 18 人中,五位或多或少具有漢朝血緣,三位還是地位崇高的成年女性。

倘若再考慮性別與政治,或許會有更不一樣的想像。住在漢朝的女性出生再好、個人資質再優秀,一輩子都沒機會擔任行政工作職位,但是如果活在匈奴……

有一半漢朝血緣的日月女士(粒線體單倍型為 A11。不確定她是第一代移民的女兒,或父母搭配剛好提供一半),生前是一方疆土的管理者,死後高規格的墓葬,見證她畢生的功績受到認可。伴她長眠,象徵匈奴精神的日、月金盤,對她有什麼特殊意義嗎?

有一位漢朝官員陳湯曾言:「明犯強漢者,雖遠必誅」,可謂反辱華的先驅。但是如今我們也知道這個世界上,不只一種「文明」。

延伸閱讀

參考資料

  1. Lee, J., Miller, B. K., Bayarsaikhan, J., Johannesson, E., Ventresca Miller, A., Warinner, C., & Jeong, C. (2023). Genetic population structure of the Xiongnu Empire at imperial and local scales. Science Advances, 9(15)
  2. Ancient DNA reveals the multiethnic structure of Mongolia’s first nomadic empire
  3. Politically savvy princesses wove together a vast ancient empire
  4. Jeong, C., Wang, K., Wilkin, S., Taylor, W. T. T., Miller, B. K., Bemmann, J. H., … & Warinner, C. (2020). A dynamic 6,000-year genetic history of Eurasia’s Eastern Steppe. Cell, 183(4), 890-904.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。