0

0
0

文字

分享

0
0
0

科學家在三層石墨烯中偵測到不尋常的「準粒子」

only-perception
・2011/10/25 ・1539字 ・閱讀時間約 3 分鐘 ・SR值 558 ・八年級

美國能源部 Brookhaven 國家實驗室的科學家研究以特殊方式堆疊的三層石墨烯(蜂巢狀排列的碳原子薄層),發現了一種「小宇宙」,那滿佈一種新的準粒子(quasiparticles) — 如粒子般的電荷激發。與單層石墨烯中無質量的、光子般的準粒子不同,這些新準粒子有質量,那依其能量(或速度)而異,且靜止時會變成無限重(infinitely massive)。

在低能量下累積質量,意味這種三層石墨烯系統,若因將之併入一種具有磁性材料的異質結構而磁化,將有可能產生比單層石墨烯還要更加稠密的自旋極化電荷載體(spin-polarized charge carriers) — 對於不只控制電荷還控制電子自旋的裝置(通常稱為自旋電子學)來說,這使得它格外具有吸引力。

“我們的研究證明,這些非常不尋常的、經理論預測的準粒子,事實上存在於三層石墨烯中,而且它們主宰著諸如材料在磁場中如何表現這樣的特性 — 這種特性可用於控制基於石墨烯的電子裝置,” Brookhaven 物理學家 Igor Zaliznyak 表示,他領導此研究團隊。他們測量三層石墨烯特性的研究是朝設計這種裝置邁進的第一步,那發表在 2011 9/25 的 Nature Physics 線上版。

自石墨烯在 2004 年被發現以來,已成為熱門的研究主題,尤其是因為其電子不尋常的行為,那自由地在該物質平面、單層的薄層上流動。將各層堆疊會改變電子的流動:例如,堆疊二層,會在電子可佔據的能階中提供一種「可調的」斷路(break),因而賦予科學家一種將電流開啟與關閉的方法。這開啟了將這種廉價物質併入新型電子裝置的可能性。

科學家已發現疊三層時,情況變得更複雜,但也有可能更加強大。

一項重要的變數是石墨烯層被堆疊的方式:在 “ABA” 系統中,組成蜂巢環狀物的碳原子直接對齊上層與下層(A),而那些中間層(B)則位移(offset,譯註參見原站附圖);在 “ABC” 變化中,每個堆疊層中的蜂巢狀石墨烯都位移,如樓梯般層層往上堆砌。到目前為止 ABC 堆疊顯然產生更有趣的行為 — 那些是目前研究的主題。

為了這項研究,科學家在  Brookhaven Lab 的功能性奈米材料中心(CFN)創造三層石墨烯,將它自石墨(這種形態的碳可在鉛筆芯中找到)剝離。他們使用微拉曼顯微術(microRaman microscopy)來測繪樣本,並確認那些是以 ABC 的排列方式堆疊。他們接著使用 CFN 的奈米微影工具,包括離子束銑切(ion-beam milling),以特殊方法形塑樣本,使它們得以被連接到電極上供測量。

在佛州 Tallahassee 的美國國家高磁場實驗室(NHMFL)裡,科學家們接著研究此材料的電子特性 — 尤其,外部磁場對於電荷傳輸的效應是電荷載體密度、磁場強度以及溫度的一個函數。

“最後,此計畫的成功有賴我們跟著投身這些研究的有才幹年輕研究者辛苦工作以及他們罕有的實驗勇氣,尤其是 Liyuan Zhang(他現在是 Brookhaven 的研究助理)以及 Yan Zhang(Stony Brook 大學畢業生),” Igor Zaliznyak 表示。

這些量測為一種特殊準粒子類型(即表現如同某一粒子的電子激發,且身為三層石墨烯系統的電荷載體)的存在提供了第一項實驗證據。這些特殊的準粒子(那被理論性研究預測到)具有定義不清(ill-defined)的質量 — 此即,它們表現的如同它們具有一系列的質量 — 而且當能階減少且準粒子變得無限重時,這些質量發散(diverge)。

原本,像這樣的粒子由於會與虛粒子–洞對(類似具有相反電荷的虛擬電子/正電子(電洞)對,當它們交互作用時會湮滅)產生交互作用而變得不穩定且無法存在。但準粒子有種特性稱為手性(chirality,對掌性),那與石墨烯系統中特殊的自旋「味(flavor)」相關,使得準粒子不會被這些交互作用摧毀。故這些特異的無限重粒子得以存在。

“這些結果為最近針對石墨烯的理論性研究提供了實驗驗證,並且為那些「以利用這些準粒子奇異特性為目標」的未來研究,揭開新的、令人振奮的可能性,” Zaliznyak 說。

例如,將三層石墨烯與磁性材料結合,可調整(align)電荷載體準粒子的自旋。”我們認為,這種具有自旋極化電荷載體的石墨烯–磁鐵異質結構,將導致自旋電子學中真正的突破,” Zaliznyak 說。

資料來源:PHYSORG:Scientists detect unusual ‘quasiparticles’ in tri-layer graphene[October 19, 2011]

轉載自only-perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

4
0

文字

分享

0
4
0
物聯網世代資安保護的熱門選擇——新型「加密金鑰」PUF 技術
科技大觀園_96
・2022/02/06 ・1831字 ・閱讀時間約 3 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

隨著萬物聯網時代到來,越來越多數據以數位化方式儲存共享,架構安全性也越來越受到重視。就在今年 5 月,美國賓州大學研究團隊開發出一種基於石墨烯的 PUF(Physically Unclonable Function),能夠有效防範利用 AI 模型的新型攻擊,使加密金鑰更難以被破解。

石墨烯是一種由碳原子以 sp2 混成軌域組成六角型呈蜂巢晶格的平面薄膜,只有一個碳原子厚度的二維材料。圖/pixabay

什麼是 PUF?

要解釋什麼是 PUF,就得先理解物聯網(Internet of Things , IoT)的概念。簡單來說,物聯網就是讓設備裝上感測器、軟體及技術來相互連接傳輸資料所形成的網路,是很多產業智慧化的基礎,然而很容易就可以想像這種便利性同時也帶來更高的資安風險,由於物聯網設備涵蓋的領域相當廣泛,駭客從許多層面都可以發動攻擊。

物聯網是讓設備相互連接傳輸資料所形成的網路。圖/pixabay

過去談到物聯網的資訊安全,許多人都會先想到軟體及網路加密連線,但其實除了網路層面的安全防護,實體設備同樣存在著威脅。一旦出現仿冒晶片或其他問題,駭客就可能透過網路遠端控制設備獲得金鑰和其他敏感資訊,進而造成企業損失。以軟體為主的資安設計已不再足以提供全面保障,這也是為什麼基於硬體的安全技術開始逐年受到青睞。

全名為「物理不可仿製功能」 的 PUF 就是這樣一種硬體安全技術。透過半導體製程中引入的隨機變數,讓晶片在微觀結構上產生些許差異,在變數無法預測及控制的情況下,複製該晶片成為幾乎不可能的事,減少遭人逆向工程或操作的擔憂。這樣的隨機性、唯一性及不可複製性,讓 PUF 彷彿成為一種「晶片指紋」的存在,因此自然也變成新世代資安「零信任」(Zero Trust)架構下的熱門選擇。

不同於傳統資訊加密技術將密鑰儲存在設備的方式,PUF 技術主要使用一個客製應用積體電路(Application Specific Integrated Circuit , ASIC)或現場可程式閘陣列(Field Programmable Gate Array , FPGA)就可以完成,透過製造時挑戰/反應數據庫(Challenge/Response)的建立,便能在無須加密認證演算法的情況下對設備進行驗證,防止身分被竊取、竄改的同時,也免除了將私鑰儲存在設備的額外成本以及金鑰遺失的風險。

自 2013 年開始,PUF 已經開始逐漸受到重視,只是就像所有的密碼學應用一樣,儘管 PUF 技術存在著這些驚人特性,駭客攻擊手法也仍在持續演化中。國外一些研究已經證明,透過機器學習,AI 技術還是可能預測出密鑰並獲取數據,因此針對 PUF 技術的改良研發也仍在持續進步中。

以賓州大學團隊 5 月公布在《 Nature Electronics 》的最新研究為例,工程科學與力學助理教授 Saptarshi Das 就進一步結合了石墨烯(Graphene)的諸多特性,開發出一種新型低功耗、可擴展及可重構的 PUF,在面對 AI 攻擊時也能保持顯著彈性不易被入侵。

據研究人員表示,透過石墨烯獨特的物理和電學性質,新型 PUF 更加節能、可延展,即使受到 AI 攻擊試圖預測金鑰,受損的系統也可以在不需要額外硬體或更換元件的情況下重新配置過程並生成新密鑰,藉此有效抵抗對傳統矽製 PUF 構成威脅的 AI 攻擊。

隨著物聯網走入各大產業、設備數量大規模增長,可想見更嚴峻的資安挑戰也即將到來。目前國內廠商及研究團隊許多針對 PUF 的努力正在進行,除了矽智財知名大廠力旺開發的 NeoPUF 技術,成功大學電機系張順志教授進行的研究也是其中之一。

在「具高安全性且低耗能之物聯網晶片電路及系統之分析、設計及實作」整合型計劃中,張教授希望透過超低功耗之類比數位轉換器設計技術及內建物理密鑰技術、 AI 輔助訊號轉換電路設計技術的研發,來提升物聯網晶片的安全性與穩定性。據了解,該項目已經進入後期階段,將基於先前的經驗嘗試完成整個物聯網系統的實體整合與量測驗證。

資料來源

  1. 初探物聯網安全趨勢下PUF晶片安全發展機會|跨域資安強化產業推動計畫網站 ACW
  2. 具高安全性且低耗能之物聯網晶片電路及系統之分析、設計及實作-子計畫三:應用於高安全性且低耗能物聯網系統的類比至數位轉換器之研製( I )
  3. Stabilization in Physically Unclonable Constants
  4. Graphene key for novel hardware security | Penn State University

科技大觀園_96
82 篇文章 ・ 1103 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

2

6
0

文字

分享

2
6
0
跳脫百年框架引領量子黑科技──台灣研究團隊雕塑石墨烯嶄新電子結構
活躍星系核_96
・2021/03/31 ・1511字 ・閱讀時間約 3 分鐘 ・SR值 623 ・十年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

人類能否藉由人造方式調整物質材料的原子間距離與排列,並進而賦予它全新的物理特性呢?在科技部計畫的長期支持下,成功大學物理系暨前沿量子科技研究中心張景皓助理教授及陳則銘教授組成的研究團隊,成功開發出利用半導體產業常用的蝕刻技術來調控原子排列,將原本單純的石墨烯轉變為擁有奇異量子特性的嶄新電子元件,不僅有助於探索量子傳輸的基礎物理科學問題,未來將有機會應用在量子科技之中。卓越的研究成果於今 (2021) 年 2 月刊登於國際頂尖學術期刊《自然電子》(Nature Electronics)。

原子級莫爾紋:魔角石墨烯

近年來科學家透過類似積木的概念,將石墨烯以錯位扭角方式堆疊起來,藉此將石墨烯從零能隙半導體轉變成超導體、絕緣體,或將其變成像磁鐵般具有鐵磁性。這方法看似簡單,但因需將薄到僅有單原子層厚度的二維材料在特定精確角度扭角堆疊,其實際操作及未來產業應用都有著不小的難度與挑戰。

將石墨烯以錯位扭角方式堆疊起來,藉此將石墨烯從零能隙半導體轉變成超導體、絕緣體,或將其變成像磁鐵般具有鐵磁性。

研究團隊何昇晉博士(論文第一作者)與陳則銘教授試著另闢蹊徑,構想出利用半導體蝕刻技術來雕塑氮化硼基板表面,進行具有三維結構變化的堆疊,並與謝予強等團隊成員開發出能進行原子級尺度雕刻的新穎技術。有別於以往只是單純將二維材料一層一層疊上去。這個新技術能將二維材料的晶格結構(原子排列)依照被雕刻氮化硼人造超晶格基板的結構進行拉伸或扭曲變形,以此操控其對稱性破壞及電子運動等基本物理機制,進而改變物質材料之物理特性。

霍爾效應的新發現

研究團隊另一項重要發現,在於確立了兩種新型態霍爾效應的發現。過去一百多年來,科學界普遍認為磁場是霍爾效應生成的必要條件,研究團隊在具有人造晶格結構的石墨烯量子元件上,跳脫原有框架、推翻了此一論點,結合實驗及理論證實新的霍爾效應其存在完全不需任何磁場。其中帶領團隊進行理論模型建構及數值模擬的,是另一名論文第一作者同時亦是玉山青年學者的張景皓助理教授。此突破除了理解量子傳輸的基礎科學問題外,對日後應用於量子電子元件及晶片也有著莫大的幫助。

霍爾效應在 1879 年由霍爾博士發現:磁場會改變電場內的電荷運動及分布造成電位差,好比電子均勻在電路上往前移動,但路邊有人叫賣(磁場),電子會被吸引到靠邊,電子不均勻分布就產生電壓差。此效應已應用於許多 IC 及感應電路上。

科技部持續積極耕耘基礎科學研究,以作為台灣科技創新與發展的強力後盾。未來在量子科學技術研發上也投入資源規劃整合,秉持著世界頂尖的科技研發能力與人才培養,對於台灣量子科技發展建立良好的競爭力,並與全球科技研發完美接軌。

合影左起為國立成功大學物理學系謝予強同學、國立陽明交通大學電子物理系羅舜聰助理教授、國立成功大學物理學系陳則銘教授、科技部自然司羅夢凡司長、國立成功大學物理學系張景皓助理教授、國立成功大學物理學系黃柏慈博士
所有討論 2
活躍星系核_96
752 篇文章 ・ 96 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
2

文字

分享

0
1
2
未來電腦一秒開機的黑科技就靠這個了!巨磁阻效應與電子自旋性是怎麼回事?
活躍星系核_96
・2020/03/26 ・3756字 ・閱讀時間約 7 分鐘 ・SR值 558 ・八年級

  • 文/朱嘉棟、李湘、江丞澤 │ 臺灣大學物理學系學生

如果你使用手機、平板、或是電腦閱讀這篇文章,那你正在享受 2007 年諾貝爾物理獎研究成果而來的甜美果實。

巨磁阻是什麼?先從磁阻談起

2007 年的諾貝爾物理獎頒予了法國的費爾與德國的葛林柏格,為了他們發現「巨磁阻效應」(giant magnetoresistance, GMR) 及其相關研究。

在巨磁阻的相關研究發表之前,科學家已知外加磁場會小幅影響材料的電阻率,也就是一般所謂的磁阻效應:「外來磁場所引起的電阻變化」。而「巨磁阻」顧名思義,即是在特定的材料下,此一電阻變化的現象更加顯著。

要解釋磁阻效應這樣的情況,先讓我們縮小到微觀尺度進行觀察:一塊施有外加磁場的導體,在通入電流下,導體內部漂移的電子會因勞倫茲力 註1改變其運動行為。

電流改變的狀況與磁場和電流間的角度有關:當電流方向與磁場平行時,電子漂移速度會較慢,即電阻增大;反之,當電流方向與磁場垂直時,漂移速度較快,即電阻減小。一般來說,電阻率在這種模式下的增減幅度約為 5%

時間到了 1988 年,艾伯特.費爾與皮特.葛林柏格博士在各自的研究中發現了一種可以讓磁性材料產生非常大磁電阻變化的方法。他們發現,把具有鐵磁性註2的鐵沒有磁性的鉻重複堆疊,組成「鐵鉻多層膜結構」,這個多層結構在外加磁場下,每一層鐵的磁矩方向會發生變化,而電流中含有兩種不同的電子自旋方向,分別感受到不同大小的電阻,因而導致非常大的磁阻效應,其電阻變化幅度高達 50%,這也就是我們所知的巨磁阻效應

巨磁阻開創的全新領域:自旋電子學!

巨磁阻效應的發現具有重大意義,除了強大的應用性,它還開創了一個全新領域:自旋電子學 (spintronics)。

簡單來說,電子具有質量、電荷、自旋等等物理量,而人們可以利用這些物理量開發出各式各樣的電子元件。例如科學家就是利用電子帶電荷的特性,開發出了電晶體、二極體、積體電路等等,大幅增加了人類生活的便利性。

LED 就是發光二極體喔!圖/DaKub@Pixabay

而現在科學家們,在巨磁阻效應的發現與成功展示後,得以藉由電子的自旋特性開發出新一批的電子元件。

電子自旋性到底是什麼?跟巨磁阻有什麼關係?

電子的自旋具有兩種方向:上與下。一般來說,這些電子在通過非磁性材料時是不可分辨的,也就是找到自旋向上或向下的電子的機率是一樣的,我們稱這個特性為「自旋不可分辨性」。

但當電子通過具有鐵磁性的材料時,如果材料內部具有自發性磁矩(編按:即材料已經具備了磁性),不同自旋方向的電子與材料內部磁矩會產生交互作用,就會有不同的表現,而我們可以利用這個特性將自旋不同方向的電子區分開來。

與自發磁矩平行的電子在傳導過程中較不會被散射,但與自發磁矩反平行的電子,則很容易與自發磁矩碰撞而散射。這個效應可以用一個實例來比喻:在跨年夜時順著人流行走,與逆著人流行走,速度將有顯著的差異。對應到磁性材料中,逆向人流將產生更多的擦撞(散射),進而使整體的輸運速度降低(高電阻)。

若把這個原理套用到 1988 年費爾與葛林柏格博士所提出的鐵鉻多層膜結構時,就可以解釋巨磁阻效應是怎麼發生的:每一層鐵的磁矩全部平行時,只有自旋方向與磁距相反的電子會被散射,而自旋方向相同的電子則容易通過。反之,當每一層鐵呈現交互反平行時,無論自旋向上或向下的電子都會被散射。

這個結果反映在鐵鉻多層膜電阻的量測上,就會呈現極大的電阻變化率,這種模型稱為「電流雙通道模型」。

電流雙通道模型。FM(藍色)表示磁性材料,NM(橘色)表示非磁性材料,磁性材料中的箭頭表示磁化方向;Spin的箭頭表示通過電子的自旋方向;R(綠色)表示電阻值,綠色較小表示電阻值小,綠色較大表示電阻值大。圖片改作自 wiki commons Guillom。 CC BY-SA 3.0, 連結

如上圖所示,我們將一束電流拆成自旋向上與向下的電子,他們在通過磁化方向與自身相同的鐵性層時將體驗到小電阻 (r),反之通過相反磁化方向的磁性層時將體驗到大電阻 (R)。從巨觀的角度這裡的電阻有兩個並聯,而圖右的 Rr – rR 並聯相較於圖左的 rr – RR 並聯大得多,也就是右圖的磁化方向交叉出現,就會出現巨磁阻效應。

而時隔 30 年,美國華盛頓大學與香港的研究團隊發現了一種新穎的複合性材料,使巨磁阻效應能被更顯著放大。

他們改良 1988 年費爾等人的鐵鉻多層膜結構,藉由先進的奈米技術在兩層石墨烯中間插入一至多層的三碘化鉻薄膜,形成另一種多層膜材料。而由於 CrI3 分子內含較「鐵鉻多層膜結構」中的鉻層更大的磁矩,因此更容易操縱電子在其中的移動速率。

新研究中將兩層石墨烯中間插入三碘化鉻薄膜,形成電阻變化率更大的多層膜材料。圖/Song et al, 2018

此一複合系統只需施加微量的磁場改變其中 CrI3 的磁化方向,便可出現出高達 19000% 的電阻變化率,與最初費爾等人的 50% 相比,提高了近 400 倍。

而此一大躍進,不僅使物理界為之振奮,也為科技界注入一劑強心針。

巨磁阻:我們生活中的科技應用

事實上,日常生活中所見的磁碟即是受惠於巨磁阻效應。

我們日常生活使用的磁碟儲存資料的方式,是所謂的「磁記錄」。即是利用磁場感應的方式,探測或改變部分鐵磁性材料區域的磁矩方向,以達成記錄目的。

磁性材料中磁矩的分布通常是一區一區的,稱為「磁域」。在同一磁域中磁矩的排列方向都相同,但不同磁域的磁化方向可以不同,磁域的排列方向便可做為 1 或 0 的數位訊號。因此磁域密度大小,與讀寫入磁域方向的方法,將是決定磁儲存技術品質的關鍵。

The inside of a computer hard drive
我們日常生活使用的磁碟儲存資料的方式,即是所謂的「磁記錄」。圖片來源

巨磁阻效應最大的應用在於製作硬碟機的讀取頭。當讀取頭經過不同磁矩方向的磁區時,其內多層薄膜的磁性層會與磁區發生交互作用,進而影響讀取頭內多層膜中的磁性層,呈現平行或反平行狀態,因而使得整個薄膜系統的電阻產生極大變化、影響通過電流的大小,由此讀取待測磁區的相關資訊。

巨磁阻讀取頭是利用磁區之間的磁場大小,來決定多層膜中的磁性層是否反轉;相較於原本依靠磁通量變化使讀取頭內線圈產生感應電流來判讀的方式,更能減少因電流雜訊所造成的誤判。除了更加準確,同時也更薄更省電。薄膜奈米級的厚度,以及讀取的精準度,大幅縮小了硬碟的體積,使新一代硬碟的容量得以大幅增加。

巨磁阻薄膜奈米級的厚度使新一代硬碟的容量大幅增加。

有了 MRAM,未來電腦手機開機只需一秒?

除了硬碟讀取頭的應用之外,巨磁阻效應在記憶體的進步也占有一席之地。

目前常用的記憶體 (RAM) 可分為兩類,一是揮發性記憶體,如動態隨機存取記憶體 (DRAM) 或靜態隨機存取記憶體 (SRAM);另一類則是非揮發性記憶體,如快閃記憶體。

「揮發性」或「非揮發性」的區別,是指當某個元件儲存資料後,若外部電源關閉,在電源重新啟動時先前儲存的資料尚能保留住,則稱為非揮發性,若否,則稱為揮發性。

DRAM 與 SRAM 是電腦中最重要的兩種記憶體,它們的特性各異。DRAM 耗電量大且資料處理速度慢,優點是容量較大;而 SRAM 處理速度非常快,記憶密度卻小了很多。由於 DRAM 與 SRAM 都是揮發性記憶體,每當電腦啟動時,都須重新執行作業系統的載入動作,耗時甚多。若能使用非揮發性記憶體取代它們,便可實現隨開即用的便利。

但現有的非揮發性記憶體因處理速度緩慢,而且讀寫數次後便會失效,因此尚無法取代 DRAM 與 SRAM。

但若能應用巨磁電阻效應開發出磁阻式隨機存取記憶體 (MRAM),除了兼具非揮發性、省電、處理速度快,以及高度可重複讀寫特性之外,記憶密度也非常高。前面提及研究中,所發表的新穎材料亦讓人們看到 MRAM 愈趨耀眼的前途。

如新材料能成功進入應用階段,將可望在不久之後取代現有的記憶體元件,成為新世代的記憶體。如台積電近年來即開始研發整合自家低漏電的電晶體與 MRAM,打造出利於物聯網的硬體環境。

未來技術成熟時,若能以 MRAM 成功取代目前電腦手機上的記憶體,不僅將大幅降低功耗,開機時間也將縮短至一秒以內,更多應用也會隨之而生。

未來技術成熟時,MRAM 甚至能開機時間縮短至一秒以內。圖/Pixabay@Pexels

總而言之,巨磁阻效應的重要性,會在未來的科技產品中慢慢浮現,而此次華盛頓大學與香港團隊對於巨磁阻薄膜的突破性發現,也在相關的科學與科技領域中,立下一新的里程碑。

致謝

本文源自於臺灣大學物理學系電子學的課程報告,感謝朱士維教授與程暐瀅助教的協助。

註解:

  1. 勞侖茲力 (Lorentz force):運動於電磁場的帶電粒子所感受到的作用力。
  2. 鐵磁性 (Ferromagnetism):又稱作強磁性,指的是材料在磁化後,仍能維持磁性的特性。常見如鐵在磁場中放置一段時間後,即使磁場消失仍能維持一定之磁性。

參考資料

  1. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures
    Science 360 (6394), 1214-1218. DOI: 10.1126/science.aar4851 May 3, 2018
  2. 新一代記憶體發威 MRAM 開啟下一波儲存浪潮
  3. Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications. MDPI Sensors 2016, 16, 904 17 June 2016

(編按:增補作者與致謝資訊。2020/7/20)

活躍星系核_96
752 篇文章 ・ 96 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia