0

5
1

文字

分享

0
5
1

從「自動化」進化成「智動化」——智慧製造是半導體產業的未來趨勢

鳥苷三磷酸 (PanSci Promo)_96
・2022/08/15 ・3611字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/曾繁安

台灣擁有傲視全球、成熟完整的半導體產業聚落,在世界科技領域中扮演舉足輕重的角色。這個國家的經濟命脈,經過全自動化的時代後,即將迎來另一次生產技術的大變革——智慧製造。

當訂單越來越多,人力卻不夠,半導體業者該怎麽辦?

半導體產業包含了矽晶圓[註]、相關化學品與氣體及導線架等封裝材料,其中又以晶圓厰為大宗,例如台積電便是全球規模最大的晶圓代工厰。素有「現代科技應用的大腦與心臟」之稱的半導體,是現代多數電子產品的核心單元,因為各項產品正是利用半導體電導率變化的特性來處理資訊。然而,目前半導體製造業卻面臨人力資源跟不上產量需求提高的挑戰。

晶圓是積體電路製程中的載體基片。圖/wikimedia

一般半導體廠場域面積大,人力短缺使企業面臨管理人手吃緊,再加上人員進出無塵室的過程繁瑣耗時,也是另一大負擔。與此同時,在廠內儀器參數比對和規劃生產計劃上,傳統人力也可能有出現誤差的風險。疫情時代也促成在宅經濟和 5G 應用的高速發展,各領域對晶片的需求大增,造成半導體產業出現產量需求高,但人力短缺的現象。

因此對不少業者而言,可有效緩解人力不足、大幅提升作業效率的數位轉型(Digital Transformation),可謂勢在必行。

-----廣告,請繼續往下閱讀-----

從「自動化」升級到「智動化」的智慧製造

那半導體產業的數位轉型,該怎麽做?所謂數位轉型,不僅僅只是將資料或作業數位化,還包括導入人工智慧(Artificial Intelligence,簡稱 AI)與數位科技,來改變企業的整個營運生產模式。AI 指的是電腦程式可模擬人類思維過程的能力,而在 AI 概念下的機器學習(Machine Learning,簡稱 ML),即為機器可以根據已收集的大量數據,經由建立模型對新數據進行推測,學習找出最佳解、改善效能

結合 ML 的製造執行系統,需搭配裝置在工廠各處的多個傳感器(Sensor),來收集與回傳各樣的生產數據。它們與工廠設備的相互連接,即是運用了物聯網(Internet of Things)的技術。有賴於 5G 科技的發展,數據可以達成高速率傳輸與低延遲,使得機器與機器之間可以達成溝通,在整合分析各方數據資訊後,有效率地完成各種指令操作,可以比自動化製造系統,更進一步為人類代勞工廠運作的大小事務。

舉例來説,當工廠的生產過程出現問題,自動化系統只會跳出異常通知,還是需要仰賴人員來進行手動排除;但換作應用 ML 系統的話,便可透過自我學習,來自動調整製作流程以解除異常狀況,無需人力介入便可自主解決,提升良率,達成「智動化」智慧製造(Smart Manufacturing)的最終目的。

機器可以根據已收集的大量數據,經由建立模型對新數據進行推測,學習找出最佳解、改善效能。 圖/elements

懂得精益求精、提高品質產量的智慧工廠

一座運用智慧製造的半導體工厰,不但能自主克服製程中的疑難雜症,更能幫助提高晶圓的產量品質。在研發方面,AI 可以協助理解高複雜、高維度的製程開發挑戰,也可與 ML 軟體分析感測資料和檢測影響,進行品質管理與缺陷檢查。

-----廣告,請繼續往下閱讀-----

此外,數據治理和數位分身,也是智慧製造的關鍵策略。對企業整體的數據進行管理和控制以提高數據的價值將因為數據產生的成本風險降到最低,是數據治理(Data Governance)的核心精神。

在兼顧資訊安全下,數據治理的體系能使跨部門間的數據共享更為方便暢通。輔以 AI 及 ML 的運算,便可以使業務部門的客戶需求、供應鏈管理等資料,與工廠生產部門的設備控制與品管等流程,有更迅速緊密的配合,規劃好合適的未來生產計劃,指導人員進行相關作業。

如同我們可以在電玩游戲或社交媒體上,按照自己的個人形象,來打造自己的虛擬化身,工厰也能藉助現今的科技,來為產品的物理實體,在資訊化平臺或系統的虛擬空間中,打造一個類比實物數位分身(Digital Twin)

數位分身模型之概念圖。圖/wikimedia

數位分身也是物聯網的應用之一,半導體廠中,由傳感器所收集到的晶圓製造數據,在 AI、ML 和軟體分析的協助下被整合,對映成數位空間中「雙胞胎」的存在。這位孿生兄弟不僅能夠隨物理實體的變化而即時做出相應變化,還可以提供無法在實體產品上測試計算的數據。

-----廣告,請繼續往下閱讀-----

理想情況下,數位分身可以經由機器學習,分析過去的歷史資料或多重來源的數據,來推估實體的未來情境。因此在危機或異常事件發生前,業者便可預先進行預測性的設備維護與產品的良率分析,比起傳統人力的判斷更加精確,降低技術風險,大大提高生產效率。

工業 4.0 浪潮來襲,智慧製造是產業未來趨勢

運用通訊科技、資料庫和電腦系統達成全自動化生產,已不是新鮮事,如今人類社會正迎來第四次工業革命的新一波浪潮。主打網絡與機械相互連接的核心精神,導入人工智慧、機器學習、物聯網感測與大數據分析等人機協作的智慧製造,是因應多變市場需求的時下趨勢。

在半導體領域中,企業龍頭台積電可説是數位轉型的成功案例,從二十年前的全自動化製造系統,如今致力於打造組織內部友善 AI 的工作環境,努力向智慧製造全面轉型。數位轉型的技術支援不能沒有半導體產業製造的晶片,而如今數位轉型也有望帶領半導體產業突破產能吃緊、人才短缺的困境,走向智慧製造的新紀元。

以台灣在地企業的智慧製造覆蓋率而言,就已在短短 6 年內成長 50%。舉全台最大的國際半導體展 SEMICON Taiwan 為例,智慧製造相關的展商在近六年內的成長幅度也同樣攀升了 50%。

-----廣告,請繼續往下閱讀-----

今年高科技智慧製造特展將以歷年最大規模之姿登場,與全台最大半導體盛宴 SEMICON Taiwan 2022 國際半導體展同期同地舉辦,匯集橫跨高科技製造業智慧製造解決方案業者、系統整合、軟硬體商及智慧製造需求端業者,如盟立自動化、倍福自動化、家登精密、攝揚企業、日商 JEL 等不容錯過。

今年高科技智慧製造特展將以歷年最大規模之姿登場,與全台最大半導體盛宴 SEMICON Taiwan 2022 國際半導體展同期同地舉辦。圖/SEMI

因應疫情下數位轉型成為全球企業的重要任務,今屆展覽中的「高科技智慧製造論壇」將由美光科技、 Lam Research、 Rockwell Automation、Siemens 等知名企業專家以人工智慧工廠為主軸,探討 GEC 技術藍圖,內容包含五個部分包含數據管理、智能分析、數位分身預測等重點實務經驗分享,從晶圓厰到設備製造商和解決方案提供者的角度,讓參與者得以探究 AI 智能工廠的前景和挑戰,跟上數位轉型的步伐。

除了智慧製造議題,展覽期間共有超過 20 場重磅級的國際趨勢論壇,豐富主題涵蓋先進製程、異質整合、化合物半導體、車用晶片、永續製造、半導體資安及人才。論壇將在今年 9 月 13 日率先開幕,展覽則於 9 月 14 日至 16 日於臺北南港展覽館一館盛大開場,規模創歷年新高,届時將有 700 間國內外指標性大廠共襄盛舉,現場將有 2,450 個攤位展出,完整串聯全球半導體供應鏈,目前展會參觀與論壇皆已開放報名,參與席次有限,有興趣者趕快手刀至官網報名起來!

註:晶圓(Wafer)是半導體晶體圓形的簡稱,是從半導體材料如最常見的矽,經過拉製、提煉等一系列處理過程,製成的圓柱狀半導體晶體經過切片、抛光而來。這些圓形薄切片被用於積體電路製程中的載體基片,也可用來製作太陽能電池。

參考資料

  1. 半導體是什麼?晶片產業一次看懂
  2. About SEMI Smart Manufacturing initiative
  3. 【獨家披露】台積電數位轉型的下一步,靠AI推動全面轉型(上
  4. 【獨家披露】台積電數位轉型的下一步,靠AI推動全面轉型(下)
  5. 泛科學:每分鐘 15 次的駭客攻擊,5G 世代的臺灣資安挑戰——資安所王仁甫策略總監專訪
  6. Data Governance – 臺灣人工智慧行動網
  7. 「數據治理」:人工智慧企業的基本功
  8. 科技大觀園:從全自動化製造邁向智慧製造
  9. 聯剛科技股份有限公司
  10. 【新興領域:9月焦點8】數位分身(Digital Twin)技術發展趨勢與不同層次應用模式
  11. 半導體資安的新挑戰!後疫情時代,如何全面打造半導體供應鏈數位韌性
  12. 工業4.0大全,從淺到深一篇搞懂它!
-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
E10 低碳汽油:台灣減碳新契機,為何我們應該接受?
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/17 ・3468字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與美國穀物協會合作,泛科學企劃執行。

台灣將在 2040 年禁售燃油車。但別急,現在路上開的舊有車款不會馬上報廢消失,因為舊有的車輛會繼續開到年限結束。根據計算,當禁售燃油車的那一天來臨時,還有大約 60% 的車輛是燃油車。這時,在多數交通工具還是燃油的情況下,美國、歐盟等國已經開始使用酒精燃料來減少碳排放,那麼,台灣也能做到嗎?

你聽過 E3、E10 汽油嗎?

這是指在汽油中加入酒精,E3 代表有 3% 的汽油被酒精取代,而 E10 則是 10% 的汽油換成酒精。酒精是一種抗爆震性能更好的燃料,且比化石燃料更環保,因為它可以來自生質燃料,碳排放也較低。即便算上運輸和加工的碳足跡,用玉米製造的乙醇仍比傳統汽油的碳排放低了 43%。其實,在美國、歐洲、澳洲等地,E10 或更高比例的酒精汽油早已廣泛使用,這在我們之前的影片中也有提過。

現在,台灣有 14 間加油站可以加到 E3 汽油,而中油也正積極促使相關部門開放 E10 汽油的銷售。

-----廣告,請繼續往下閱讀-----

不過,在推動這項改變之前,仍有許多民眾對酒精汽油有疑慮。大家最關心的問題是,把不是汽油的燃料放到引擎中,到底會不會對車輛引擎造成不良影響?例如會不會影響引擎運行,甚至影響里程數?
其實,換燃料確實會對引擎有影響,因為不同燃料燃燒後所產生的能量與副產物都不一樣。但別擔心,根據我們之前的討論,2011 年以後生產的所有汽車,還有大部分 1990 年代後期生產的汽機車,都能直接相容 E10 汽油。換句話說,除了少數舊車或特殊車型,約 95% 的汽機車都不需要擔心這個相容性問題。

2011 年以後生產的所有汽車,還有大部分 1990 年代後期生產的汽機車,都能直接相容 E10 汽油。圖 / 美國穀物協會提供

E10 汽油在效能上的表現,會不會受到影響?

學過化學的人都知道,燃燒其實是一種氧化反應,可以用化學式表達。也就是只要汽缸的大小是固定的,就能算出空氣中能參與氧化反應的氧氣分子有多少,進而推算出每次汽缸燃燒時,應該搭配多少的燃料。

當引擎運作時,汽缸內的氧氣分子會與燃料反應,產生動力。為了最佳化效能,引擎的噴油嘴會精準控制每次的進油量,確保空氣和燃料的比例,稱為「空燃比」。接著調整噴油嘴的設定,讓出油量符合我們的需求。

每當空氣成分改變,燃料量或燃料的種類更換時,空燃比就會產生變化。在燃料相對空氣來說比較多時,我們通常稱為「富油」;相反的,如果燃料相比空氣來的少,就稱為「貧油」。如果我們把汽油換成百分之百的酒精,因為酒精每單位體積所需要的氧氣比較少,而且熱值比較低,因此會產生貧油現象,推力感受起來自然也會比較低。

要解決這個問題,方法其實不難,只要增加燃料量即可。而巴西早已證明,使用 E100 汽油是可行的。巴西近 50 年來推動 E85、E100 燃料車輛,並展示了彈性燃料引擎的優勢。

而巴西早已證明,使用 E100 汽油是可行的。巴西近 50 年來推動 E85、E100 燃料車輛,並展示了彈性燃料引擎的優勢。圖/美國穀物協會

這類交通工具被稱為彈性燃料引擎,顧名思義,能很彈性的使用汽油、E100 酒精汽油、或是任何比例的甲醇、乙醇、汽油的混合物。彈性燃料引擎跟一般引擎最大的差別,就是內建了「燃料成分感測器」。能透過判斷燃料的種類與比例,調整噴油嘴的出油量設定以及點火正時,讓引擎的輸出動力維持在最佳狀態,確保引擎效能不受影響。

-----廣告,請繼續往下閱讀-----

所謂的點火正時,指的是火星塞點火的時機。不同的燃料,化學反應的速度與膨脹的體積不同,當然會對應不同的點火時機。

但是 E100 其實也不是純酒精?

大家都知道,蒸餾酒需要經過多次反覆蒸餾,為什麼不能只蒸餾一次就好呢?原因在於,酒精與水的沸點雖然不同,但它們不完全互斥,會產生交互作用。在蒸餾過程中,即使酒精的沸點較低,水仍然會在加熱的過程中,隨著酒精部分蒸發進入容器中。

事實上,當酒精濃度達到 95.63% 時,不論再怎麼蒸餾,濃度也不會再上升。這是因為當酒精濃度接近這個比例時,酒精與水的沸點非常接近,這種現象稱為「共沸」,意思是酒精和水的混合物會一起沸騰,無法再進一步蒸餾分離。

共沸現象的結果,就是為什麼市面上銷售的藥用酒精,濃度最高都是 95%,而非 100%。因為更高濃度就必須使用脫水劑等方式處理,成本會提高,或是因為有添加物而不符合藥用標準。所以當然,E100 汽油裡面,實際上使用的也是濃度 95% 的酒精,而不是 100%。

-----廣告,請繼續往下閱讀-----
E100 汽油裡面,實際上使用的也是濃度 95% 的酒精,而不是 100%。 圖 / 美國穀物協會提供

解決迷思:酒精汽油是否容易因吸收水分,而產生油水分離?

事實上,酒精和水是高度互溶的,這使得高比例的酒精在汽油中有更高的水分耐受性。簡單來說,進入油箱的水氣,會溶在酒精汽油中而不會產生油水分離。

根據美國國家可再生能源實驗室的研究,即使在高溫高濕的極端環境下,E10 酒精汽油也需要經過三個月才會出現明顯的油水分離。而三個月也是一般汽油建議最長的保存時間,因為汽油放太久就會氧化。

也就是說,酒精與水混和物的特性,不是把酒精和水的相加除以二那麼簡單,它們的交互作用更加複雜。

一篇刊登在《國際能源研究期刊》的研究指出,在可變壓縮比引擎中的實驗結果,加入酒精後,引擎的功率會逐漸升高,在 E10 酒精時為最佳比例效果。

-----廣告,請繼續往下閱讀-----

當然,實際情況和實驗室當然不能直接類比。大多數汽車和機車並未專門為酒精汽油做調整,那這樣會有多大影響呢?根據英國政府的官方結論,直接使用 E10 汽油與一般汽油相比,每公升的里程數大約會降低 1%,但在日常駕駛中,這個差異幾乎不會被察覺。實際上,載貨量和駕駛習慣對油耗的影響,遠遠大於是否使用 E10 汽油的影響。

更好的一點是,酒精其實是一種常見的工業用品,以每美國為例,在過去一年中,酒精的離岸價格實際上都比汽油還低,因此不用擔心酒精會讓油價變貴。

此外,經過調校的引擎也不必擔心推力問題。事實上,F1 賽車從 2022 年開始使用 E10 作為燃料,納斯卡賽車更早在 2011 年就採用了 E15 燃料,運行上沒有太大問題。

F1 賽車從 2022 年開始使用 E10 作為燃料,納斯卡賽車更早在 2011 年就採用了 E15 燃料,運行上沒有太大問題。圖/unsplash

最重要的是,使用 E10 燃料的好處明顯更多。由於酒精和烷類燃料的分子式不一樣,酒精分子式中多了一個氧原子,這使得燃燒過程中反應會更完全,能夠產生更多二氧化碳而非有毒的一氧化碳,同時降低一氧化氮和二氧化氮等氮氧化物的產生。

-----廣告,請繼續往下閱讀-----

最關鍵的一點,酒精與化石燃料相比,能夠更快速地幫助減碳。只要確保使用永續農法、不與糧食競爭土地的前提下,所製造的玉米乙醇,碳排量就是比化石燃料還要低。

E10 低碳汽油是填補減碳缺口的最快方案,挑戰只在接受度

英國引入 E10 後,每年減碳 75 萬噸,相當於減少 35 萬輛汽車的碳排量。而台灣呢?目前根據政策規劃,台灣 2040 年起將新售的汽機車全面電動化。依照這個目標進程,在 2025 年將達成減碳 288.6 萬噸的目標。然而,這距離運輸部門須減少 487 萬噸碳排量目標,還差 198 萬噸。

如果燃油車全面改用 E10 低碳汽油,則能減碳 202 萬噸,幾乎能完全彌補缺口。這項方案的優勢在於,E10 與一般汽油性質相近,不需更換新的引擎設計或架設特規加油站,執行門檻低。

實際上,目前推動低碳汽油最大的瓶頸,大概就是民眾對於這個新燃料的接受度了吧!如果接受度提升,購買量上升,成本也有機會進一步再下降。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
解密離岸風電政策環評:從審查標準到執行成效,一次看懂
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/21 ・3546字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 環境部 委託,泛科學企劃執行。 

政策環評是什麼,跟一般環評差在哪?

隨著公共建設的規模越來越大,傳統的環境影響評估(EIA),難以應對當今層層疊疊的環境議題。當我們評估一項重大政策時,只看「單一開發案」已經不夠,就像評估一棵樹,卻忽略了整片森林。因此,政策環境影響評估(SEA)應運而生,它看樹,也看森林,從政策的角度進行更全面的考量與評估。

與只專注於「單一開發案」的個案環評不同,政策環評更像是一場全面性的檢視,強調兩個核心重點:「整合評估」與「儘早評估」。簡單來說,這不再是逐案評估的模式,而是要求政府在制定政策時,就先全面分析可能帶來的影響,從單一行為的侷限中跳脫,轉而聚焦在整體影響的視角。無論是環境的整體變化,還是多項行為累計起來的長期影響,政策環評的目的就是讓這些潛在問題能儘早浮現、儘早解決。

除此之外,政策環評還像是一個大型的協商平台,以永續發展為最高指導原則,公開整合來自不同利益團體、民眾與各機關的意見。這裡,決策單位不再只是單純的「評分者」,而是轉為「協調者」或「仲裁者」,協調各方的意見看法在這裡得到整合,讓過程更具包容性。

-----廣告,請繼續往下閱讀-----

政策環評並沒有所謂的「否決權」,而是側重意見的蒐集與整合,讓行政機關在政策推動時,能更全面地掌握各方意見。政策環評旨在建立系統化、彈性的決策評估程序(包含量化、特徵化等評估方式),也廣納社會面或民眾滿意度等影響因子,把正式與非正式的作法一併考量進去。再來,決策程序中能層層檢討、隨時修正,也建立了追蹤機制和成效評估標準(如環境殘餘效應、累積效應等),透過學習來強化決策品質與嚴謹度。就像一場球賽,隨時根據變化、調整策略。

這樣的制度設計,就非常適合離岸風電這類規模大、跨區域、影響層面廣泛的能源政策評估,讓我們可以在政策推動初期就想到整個工程對環境、產業發展與社會的諸多影響,也為後續政策執行奠定更穩固的基礎。

政策環評並沒有否決權,而是重在整合各方意見、量化影響以及建立追蹤與修正機制,這樣的制度設計便適用於離岸風電等大型政策評估。圖/envato

離岸風電為何需要的是政策環評?

離岸風電是能源轉型的重要策略之一,但這不是只在某塊空地上架幾個風車,而是要在廣闊的大海中進行大規模建設,牽涉的不僅是發電,還涉及海洋保育、航空交通、水下文化資產等議題,更與當地漁民的權益息息相關。

這樣的大型離岸風電工程,因海洋環境的風險和不確定性極高,很容易讓人擔心生態影響。如何在海洋生態保護和綠能發展之間找到平衡點?這就需要政策環評的把關,從多方檢視這些複雜的挑戰,確保政策推行既能穩妥,又能達成發電目標。

-----廣告,請繼續往下閱讀-----

2016 年 3 月,經濟部自願提出「離岸風電區塊開發政策評估說明書」,是臺灣首次針對再生能源政策所進行的政策環評。根據這份評估說明書,政府將採分期公告、逐年檢討的方式,每三年開放 0.5~1 百萬瓩(GW)的電量額度鼓勵業者投入開發。當時環保署(現為環境部)歷經九個月召開 2 次意見徵詢會議,蒐集環評委員、專家學者、相關機關、民眾等意見,最終於同年 12 月的環評委員會作出徵詢意見。這些協商和檢討的過程,讓政策「名正言順」,得以充分顧及各方利益與生態平衡。

共通性環境議題與因應對策

在「離岸風電區塊開發政策評估說明書」中,環評會議盤點了開發過程中共通的環境議題。

首先,對於海洋生態保育的重點,特別是對中華白海豚的保護。環評會要求風機基座必須距離白海豚棲地1公里以上,以減少對其生態的干擾。實際上,這項規範在後續的實務執行中更為嚴格,例如,福海二期示範風場已退縮到 2.5 公里外,臺電二期風場甚至退到 4.2 公里外,顯示政策環評確實發揮了實質作用。此外,針對施工期間的聲音干擾,要求施工需有 30 分鐘以上的打樁緩啟動時間,並限制聲量不得超過 180 分貝等。

針對鳥類保育,政策環評也訂立了具體規範。其中,包括風機之間必須留設 500 公尺以上的鳥類穿行廊道,並在施工期間避開每年 11 月至隔年 3 月的候鳥過境期。同時,為確保這些措施確實生效,工程方也被要求設置「鳥類活動監測系統」,持續追蹤、評估風場對鳥類的影響。

-----廣告,請繼續往下閱讀-----

此外,環評會也確立了「先遠後近」的開發原則,要求優先開發較單純的航道外側區塊,待累積足夠經驗及相關資料後,再進行近岸區域的開發。這項原則考量了近海生態系的複雜性,也顧到養殖漁業的漁民權益,展現出政策環評在平衡發展需求與環境保護上的價值。

新一代的審查機制:達成能源轉型及環境保護雙贏

為提升環評效率並確保審查品質,環境部參考過去離岸風電審查經驗,制定「風力發電離岸系統開發行為環境影響評估初審作業要點」,建立了全新的二階段審查機制。

環境部推動二階段審查機制,提升離岸風電環評效率與審查品質。圖/envato

這套新機制分為兩個階段。第一階段,就像「初步檢查」,由環境部依照檢核表進行初審,並由環評審查委員會執行秘書邀集 2-5 位環評委員進行初審,通過第一階段初審之業者,可取得經濟部遴選資格,其初審結果有效期為兩年,必要時可申請展延一年。接著進入「第二階段」,開發單位檢附目的事業主管機關核配的容量證明文件等資料,提供更詳細的環境影響說明書以進行實質審查。

檢核表明確規範了 15 大項審查事項、112 項檢核項目,涵蓋開發案的全生命週期。

-----廣告,請繼續往下閱讀-----

工程面,包含風機及海上變電站基礎設置、海域電纜路線規劃、陸域設施工程等硬體設施的規範。其中,風機基礎設置必須避開海岸保護區、河口、潮間帶等環境敏感區域,且須進行地震危害度分析。海域電纜部分,除特殊情形外,埋設深度至少須達 1.5 公尺,且不得跨越中華電信海底電纜 1 公里的範圍。

環境保護上,檢核表則對施工噪音管制訂立了明確標準。舉例來說,打樁期間警戒區 750 公尺範圍內的水下噪音不得超過 160 分貝,且必須全程採用最佳噪音防制工法。同時,每個開發案或聯席審查的風場,同一時間內只能進行一支基樁施作,而日落前一小時到日出前也不得啟動新的打樁作業。

環境監測計畫更是檢核表中的重點,分為「施工前、施工期間、營運期間」三階段,每個階段都規定了詳細的監測要求(包括海域底質監測、水下噪音監測、鯨豚目視監測等)。以鯨豚監測為例,每年需執行20趟次,四季中每季至少執行 2 趟次。此外,所有監測數據都必須上傳至環境部「環保專案成果倉儲系統」(https://epaw.moenv.gov.tw/)供各界查閱。

這套標準化的審查機制不僅解決了「同一風場可能有多家廠商重複調查或審查」的資源浪費,也透過明確的檢核項目,讓開發單位在規劃階段就能掌握更具體的環境保護要求。不僅如此,該機制亦確保了環境保護標準前後一致,避免不同案件之間標準不一。

-----廣告,請繼續往下閱讀-----

結語

透過新的審查機制,環境部正積極推動再生能源開發案的環評審查作業,在提升行政效率之餘,也確保環境影響評估的品質,支持臺灣的離岸風電開發及國家能源轉型政策,也做好把關。藉由標準化檢核表和二階段審查制度,期待能在推動能源轉型的同時落實環境保護。

為確保制度能持續精進,環境部每半年至一年會進行制度檢討,並持續公開所有環評書件於「環評書件查詢系統」(https://eiadoc.moenv.gov.tw/eiaweb/)。此外,環評會議召開前一週,也必須在指定網站公布開會訊息,讓民眾能申請列席旁聽或發表意見。透明化措施一方面展現了政府推動永續發展的決心,另一方面也確保全民能共同參與監督離岸風電的發展過程。未來,這套制度將在各界的檢視與建議中持續完善,為臺灣的永續發展貢獻心力,發揮環評作業的最大效益。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia