Loading [MathJax]/extensions/tex2jax.js

0

2
2

文字

分享

0
2
2

未來電腦一秒開機的黑科技就靠這個了!巨磁阻效應與電子自旋性是怎麼回事?

活躍星系核_96
・2020/03/26 ・3756字 ・閱讀時間約 7 分鐘 ・SR值 558 ・八年級

-----廣告,請繼續往下閱讀-----

  • 文/朱嘉棟、李湘、江丞澤 │ 臺灣大學物理學系學生

如果你使用手機、平板、或是電腦閱讀這篇文章,那你正在享受 2007 年諾貝爾物理獎研究成果而來的甜美果實。

巨磁阻是什麼?先從磁阻談起

2007 年的諾貝爾物理獎頒予了法國的費爾與德國的葛林柏格,為了他們發現「巨磁阻效應」(giant magnetoresistance, GMR) 及其相關研究。

在巨磁阻的相關研究發表之前,科學家已知外加磁場會小幅影響材料的電阻率,也就是一般所謂的磁阻效應:「外來磁場所引起的電阻變化」。而「巨磁阻」顧名思義,即是在特定的材料下,此一電阻變化的現象更加顯著。

要解釋磁阻效應這樣的情況,先讓我們縮小到微觀尺度進行觀察:一塊施有外加磁場的導體,在通入電流下,導體內部漂移的電子會因勞倫茲力 註1改變其運動行為。

電流改變的狀況與磁場和電流間的角度有關:當電流方向與磁場平行時,電子漂移速度會較慢,即電阻增大;反之,當電流方向與磁場垂直時,漂移速度較快,即電阻減小。一般來說,電阻率在這種模式下的增減幅度約為 5%

-----廣告,請繼續往下閱讀-----

時間到了 1988 年,艾伯特.費爾與皮特.葛林柏格博士在各自的研究中發現了一種可以讓磁性材料產生非常大磁電阻變化的方法。他們發現,把具有鐵磁性註2的鐵沒有磁性的鉻重複堆疊,組成「鐵鉻多層膜結構」,這個多層結構在外加磁場下,每一層鐵的磁矩方向會發生變化,而電流中含有兩種不同的電子自旋方向,分別感受到不同大小的電阻,因而導致非常大的磁阻效應,其電阻變化幅度高達 50%,這也就是我們所知的巨磁阻效應

巨磁阻開創的全新領域:自旋電子學!

巨磁阻效應的發現具有重大意義,除了強大的應用性,它還開創了一個全新領域:自旋電子學 (spintronics)。

簡單來說,電子具有質量、電荷、自旋等等物理量,而人們可以利用這些物理量開發出各式各樣的電子元件。例如科學家就是利用電子帶電荷的特性,開發出了電晶體、二極體、積體電路等等,大幅增加了人類生活的便利性。

LED 就是發光二極體喔!圖/DaKub@Pixabay

而現在科學家們,在巨磁阻效應的發現與成功展示後,得以藉由電子的自旋特性開發出新一批的電子元件。

-----廣告,請繼續往下閱讀-----

電子自旋性到底是什麼?跟巨磁阻有什麼關係?

電子的自旋具有兩種方向:上與下。一般來說,這些電子在通過非磁性材料時是不可分辨的,也就是找到自旋向上或向下的電子的機率是一樣的,我們稱這個特性為「自旋不可分辨性」。

但當電子通過具有鐵磁性的材料時,如果材料內部具有自發性磁矩(編按:即材料已經具備了磁性),不同自旋方向的電子與材料內部磁矩會產生交互作用,就會有不同的表現,而我們可以利用這個特性將自旋不同方向的電子區分開來。

與自發磁矩平行的電子在傳導過程中較不會被散射,但與自發磁矩反平行的電子,則很容易與自發磁矩碰撞而散射。這個效應可以用一個實例來比喻:在跨年夜時順著人流行走,與逆著人流行走,速度將有顯著的差異。對應到磁性材料中,逆向人流將產生更多的擦撞(散射),進而使整體的輸運速度降低(高電阻)。

若把這個原理套用到 1988 年費爾與葛林柏格博士所提出的鐵鉻多層膜結構時,就可以解釋巨磁阻效應是怎麼發生的:每一層鐵的磁矩全部平行時,只有自旋方向與磁距相反的電子會被散射,而自旋方向相同的電子則容易通過。反之,當每一層鐵呈現交互反平行時,無論自旋向上或向下的電子都會被散射。

-----廣告,請繼續往下閱讀-----

這個結果反映在鐵鉻多層膜電阻的量測上,就會呈現極大的電阻變化率,這種模型稱為「電流雙通道模型」。

電流雙通道模型。FM(藍色)表示磁性材料,NM(橘色)表示非磁性材料,磁性材料中的箭頭表示磁化方向;Spin的箭頭表示通過電子的自旋方向;R(綠色)表示電阻值,綠色較小表示電阻值小,綠色較大表示電阻值大。圖片改作自 wiki commons Guillom。 CC BY-SA 3.0, 連結

如上圖所示,我們將一束電流拆成自旋向上與向下的電子,他們在通過磁化方向與自身相同的鐵性層時將體驗到小電阻 (r),反之通過相反磁化方向的磁性層時將體驗到大電阻 (R)。從巨觀的角度這裡的電阻有兩個並聯,而圖右的 Rr – rR 並聯相較於圖左的 rr – RR 並聯大得多,也就是右圖的磁化方向交叉出現,就會出現巨磁阻效應。

而時隔 30 年,美國華盛頓大學與香港的研究團隊發現了一種新穎的複合性材料,使巨磁阻效應能被更顯著放大。

他們改良 1988 年費爾等人的鐵鉻多層膜結構,藉由先進的奈米技術在兩層石墨烯中間插入一至多層的三碘化鉻薄膜,形成另一種多層膜材料。而由於 CrI3 分子內含較「鐵鉻多層膜結構」中的鉻層更大的磁矩,因此更容易操縱電子在其中的移動速率。

-----廣告,請繼續往下閱讀-----
新研究中將兩層石墨烯中間插入三碘化鉻薄膜,形成電阻變化率更大的多層膜材料。圖/Song et al, 2018

此一複合系統只需施加微量的磁場改變其中 CrI3 的磁化方向,便可出現出高達 19000% 的電阻變化率,與最初費爾等人的 50% 相比,提高了近 400 倍。

而此一大躍進,不僅使物理界為之振奮,也為科技界注入一劑強心針。

巨磁阻:我們生活中的科技應用

事實上,日常生活中所見的磁碟即是受惠於巨磁阻效應。

我們日常生活使用的磁碟儲存資料的方式,是所謂的「磁記錄」。即是利用磁場感應的方式,探測或改變部分鐵磁性材料區域的磁矩方向,以達成記錄目的。

磁性材料中磁矩的分布通常是一區一區的,稱為「磁域」。在同一磁域中磁矩的排列方向都相同,但不同磁域的磁化方向可以不同,磁域的排列方向便可做為 1 或 0 的數位訊號。因此磁域密度大小,與讀寫入磁域方向的方法,將是決定磁儲存技術品質的關鍵。

-----廣告,請繼續往下閱讀-----
The inside of a computer hard drive
我們日常生活使用的磁碟儲存資料的方式,即是所謂的「磁記錄」。圖片來源

巨磁阻效應最大的應用在於製作硬碟機的讀取頭。當讀取頭經過不同磁矩方向的磁區時,其內多層薄膜的磁性層會與磁區發生交互作用,進而影響讀取頭內多層膜中的磁性層,呈現平行或反平行狀態,因而使得整個薄膜系統的電阻產生極大變化、影響通過電流的大小,由此讀取待測磁區的相關資訊。

巨磁阻讀取頭是利用磁區之間的磁場大小,來決定多層膜中的磁性層是否反轉;相較於原本依靠磁通量變化使讀取頭內線圈產生感應電流來判讀的方式,更能減少因電流雜訊所造成的誤判。除了更加準確,同時也更薄更省電。薄膜奈米級的厚度,以及讀取的精準度,大幅縮小了硬碟的體積,使新一代硬碟的容量得以大幅增加。

巨磁阻薄膜奈米級的厚度使新一代硬碟的容量大幅增加。

有了 MRAM,未來電腦手機開機只需一秒?

除了硬碟讀取頭的應用之外,巨磁阻效應在記憶體的進步也占有一席之地。

目前常用的記憶體 (RAM) 可分為兩類,一是揮發性記憶體,如動態隨機存取記憶體 (DRAM) 或靜態隨機存取記憶體 (SRAM);另一類則是非揮發性記憶體,如快閃記憶體。

-----廣告,請繼續往下閱讀-----

「揮發性」或「非揮發性」的區別,是指當某個元件儲存資料後,若外部電源關閉,在電源重新啟動時先前儲存的資料尚能保留住,則稱為非揮發性,若否,則稱為揮發性。

DRAM 與 SRAM 是電腦中最重要的兩種記憶體,它們的特性各異。DRAM 耗電量大且資料處理速度慢,優點是容量較大;而 SRAM 處理速度非常快,記憶密度卻小了很多。由於 DRAM 與 SRAM 都是揮發性記憶體,每當電腦啟動時,都須重新執行作業系統的載入動作,耗時甚多。若能使用非揮發性記憶體取代它們,便可實現隨開即用的便利。

但現有的非揮發性記憶體因處理速度緩慢,而且讀寫數次後便會失效,因此尚無法取代 DRAM 與 SRAM。

但若能應用巨磁電阻效應開發出磁阻式隨機存取記憶體 (MRAM),除了兼具非揮發性、省電、處理速度快,以及高度可重複讀寫特性之外,記憶密度也非常高。前面提及研究中,所發表的新穎材料亦讓人們看到 MRAM 愈趨耀眼的前途。

-----廣告,請繼續往下閱讀-----

如新材料能成功進入應用階段,將可望在不久之後取代現有的記憶體元件,成為新世代的記憶體。如台積電近年來即開始研發整合自家低漏電的電晶體與 MRAM,打造出利於物聯網的硬體環境。

未來技術成熟時,若能以 MRAM 成功取代目前電腦手機上的記憶體,不僅將大幅降低功耗,開機時間也將縮短至一秒以內,更多應用也會隨之而生。

未來技術成熟時,MRAM 甚至能開機時間縮短至一秒以內。圖/Pixabay@Pexels

總而言之,巨磁阻效應的重要性,會在未來的科技產品中慢慢浮現,而此次華盛頓大學與香港團隊對於巨磁阻薄膜的突破性發現,也在相關的科學與科技領域中,立下一新的里程碑。

致謝

本文源自於臺灣大學物理學系電子學的課程報告,感謝朱士維教授與程暐瀅助教的協助。

註解:

  1. 勞侖茲力 (Lorentz force):運動於電磁場的帶電粒子所感受到的作用力。
  2. 鐵磁性 (Ferromagnetism):又稱作強磁性,指的是材料在磁化後,仍能維持磁性的特性。常見如鐵在磁場中放置一段時間後,即使磁場消失仍能維持一定之磁性。
  1. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures
    Science 360 (6394), 1214-1218. DOI: 10.1126/science.aar4851 May 3, 2018
  2. 新一代記憶體發威 MRAM 開啟下一波儲存浪潮
  3. Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications. MDPI Sensors 2016, 16, 904 17 June 2016

(編按:增補作者與致謝資訊。2020/7/20)

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
缺席的普拉修,2008 年諾貝爾化學獎第 4 位得主 (3)
顯微觀點_96
・2025/03/13 ・3195字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖/顯微觀點

科學:一場每天進行的淘汰賽

在以錦標賽理論(tournament theory)運作的專門領域中,贏家獲得的獎勵將遠超出輸家,即使兩者的實際表現、累積貢獻僅有毫釐之差。就像奧運百米賽跑,0.005 秒決定了金牌與銀牌,只慢了 0.01 秒的第四名沒有資格出現在頒獎台。

諾貝爾獎、終身職制度、學術獎金、研究計畫的經費審核,也依照近乎贏者全拿的錦標賽理論運作。錦標賽制度在運動賽事中可以促進選手與隊伍不斷提高表現水準,但在科學領域呢?

諾貝爾獎作為額外的最高榮譽,嚴格維持其傳統限制(獎項最多由 3 人共享、僅頒發給在世者),許多傑出科學家成為遺珠,但這不阻礙他們在專業領域得到足以安心的資源,作出重要貢獻。

-----廣告,請繼續往下閱讀-----
2008nobel Prize Group Photo 2
2008 年,諾貝爾獎得主合照。左一為錢永健,左二為下村脩,左四為查菲。普拉修曾想像自己置身其中,並得到更光明的學術前途。Courtesy of Nobel Prize website.

但是,目標包含鼓勵尖端學術研究、探索重要問題的學術終身職制度與計畫審查系統,它們的錦標賽特質卻在普拉修身上呈現負面效果。

若說錦標賽模式的獎勵機制可以鼓勵科學家投入潛力豐厚的研究題材,以及努力實踐靈感的能力。那麼普拉修和查菲一樣,及早意識到能夠獨立發光的 GFP 是生物學研究的金礦,可以用來追蹤活體細胞中的基因與蛋白質表現。而且普拉修更早著手研究,優先踏上 GFP 基因轉殖的跑道。

「要是我們在普拉修完成 GFP 序列後馬上展開合作,他應該不需要離開伍茲霍爾。」
說起自己與普拉修在 1989 年到 1992 年之間的失聯,查菲如此猜測

查菲和錢永健之所以能夠找到普拉修,搶先實現 GFP 應用(當時有其他競爭團隊在研發細胞內的螢光標記),是因為當時網路快速發展,使美國國家醫學圖書館(NLM)的線上文獻查詢系統 Medline 在 1992 年進入大學圖書資訊系統,他們才能起身實踐靈感,唾手找到普拉修的最新研究。

就普拉修的運氣來說,網路卻發展得不夠快。在 1990 年代中期開始流行的電子郵件若早個幾年普及化,普拉修更可能維繫與查菲的合作,及時得到經費與GFP轉殖成果,並晉升終身職。

-----廣告,請繼續往下閱讀-----

當年普拉修的電話留言渺無回音,他以為查菲退出學術圈(查菲年輕時確實曾刻意遠離科學)。而查菲則猜測普拉修挫敗於GFP基因選殖,連個通知都沒有。在網路、電子郵件還不普及的 1990 年,要維持與合作者的聯繫需要付出更多心力與時間。通訊的困難與少許不足的人際積極性,導致兩年的延遲發表,讓普拉修耗盡研究經費與終身職的機會。

查菲的gfp線索筆記
查菲的 GFP 線索筆記,普拉修出現在右下區,線索的末端。他的前雇主科米爾、GFP 純化者下村脩(Shimomura)也出現在上方。查菲在回憶錄中說,這些線索引導他實現後來的成就。Courtesy of M. Chalfie

查菲團隊實現 GFP 基因轉殖的時候,實驗室裡甚至連一台螢光顯微鏡都還沒添購,他們必須和其他學者借用、排隊等候系所共用的共軛焦顯微鏡,才能觀察大腸桿菌與線蟲體內新生的螢光。後來,查菲多次要求顯微鏡供應商帶螢光顯微鏡來提供「試用」,團隊才得以更便利地檢驗轉殖成果。

GFP 的應用需求,大力刺激光學顯微技術的進展。它最早期的轉殖實驗成果,竟是由免費試用的螢光顯微鏡呈現。這聽起來是令人莞爾的科學史軼聞,但能夠靈活周轉的人脈、儀器,也是孤立的普拉修和著名大學教授查菲的學術資本落差之一。

透過改變訓練技巧與累積訓練量、最大化優勢、競賽當下的意志與觀察力,運動員偶有逆轉資本落差的機會,以黑馬之姿獲勝。但是在學術領域,研究題材的重要性與個人的才華、執行能力卻不像跑道上的衝刺秒數一樣清晰。

-----廣告,請繼續往下閱讀-----

「他們大可以把我從諾貝爾獎名單去掉,換上普拉修。」
查菲總是對媒體表示,普拉修的貢獻不可忽視

在科學這個由同儕評價定勝負的錦標賽中,多數科學家難以逆轉經費、人脈等資本差距,也很難讓不同領域的專家了解自己的研究重要性,只能努力支撐、累積資本,期待自己贏得經費與知名度的時刻。等待運氣與環境好轉的餘裕,得以截長補短的經濟與社會資本,卻正是學術領域錦標賽中多數年輕科學家所缺乏的。

落敗的運動員至少獲得在競賽中表現的機會,以及某個程度的肯定。論文發表日期稍微落後競爭對手的科學家,則連努力被看見的機會都非常稀少。

普拉修與諾貝爾化學獎失之交臂、鬱鬱不得志的職涯是段引人喟嘆的個人史,並非科學體系的挫敗。他只是科學錦標賽持續依照慣例淘汰的諸多優秀人才中,有幸被贏家們提及的一位。

比普拉修年輕一歲,學術晉升之路卻順暢許多的錢永健曾說,「下村脩和普拉修對 GFP 研究的貢獻是無可取代的。」而且在普拉修 1992 年發表 GFP 基因的純化與定序,並且樂意對任何人分享之後,

-----廣告,請繼續往下閱讀-----

「後面那些以研發 GFP 獲得榮譽的人,與其他人的不同可能只有些微的進度落差。」

錢永健在 2004 年至 2008 年之間,積極地建議諾貝爾獎委員會頒獎給下村脩與普拉修,但結果並非如此。

生命中的萬花筒 陳樂融
源自錢永健開發的多種螢光蛋白,形成 brainbow 技術。作品名:生命中的萬花筒,作者:陳樂融 Courtesy of Taiwan顯微攝影競賽

後續發展

普拉修從斯德哥爾摩回到亨茨維之後,受到包括國家公共廣播電台(National Public Radio)、《科學》期刊、亨茨維時報等美國媒體關注。但在訪談與報導的熱潮過後,普拉修依然坐困時薪 8.5 美元的豐田接駁車裏頭。

從諾貝爾頒獎典禮的輝煌榮譽,回到乏味、有時不受尊重的駕駛座上,失落的普拉修不敢相信自己依然找不到科學研發相關的工作。他喪氣地想,「經歷了這一切,我竟然還是沒有辦法回到科學領域。這中間一定出了什麼錯。」

在最憂鬱的那天,普拉修一度把接駁車停在路邊,撥號向亨茨維自殺防治熱線求助。過不多時,他在 2010 年找到科技研發的職位,2012 年他接受錢永健的提議,進入他的實驗團隊擔任研究員。重新在一個充滿支持與資源的環境投入科學研究,讓普拉修再度感到生活的動力與快樂。

-----廣告,請繼續往下閱讀-----

2016 年錢永健逝世,實驗團隊解散,而普拉修在前一年就已離開 UCSD,從此沒有留下任何公開痕跡。曾被自殺防治熱線的機械式留言激怒到啞然失笑,決定繼續活下去的普拉修今年已經 73 歲,科學錦標賽的勝負再也不能困擾他,但科學思考帶給他的樂趣或許能夠不斷更新。

Prasher In Ucsd
普拉修在錢永健實驗室的照片。讓他對人生更加滿意的不是體面的加州大學聖地牙哥分校制服,而是可以實現對科學的好奇與想像,並得到周遭的支持。Courtesy of San Diego Union Tribune

延伸閱讀:

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
缺席的普拉修,2008 年諾貝爾化學獎第 4 位得主 (2)
顯微觀點_96
・2025/03/06 ・2645字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖/顯微觀點

科學遠見的現實基礎

儘管 GFP 基因定序研究在 1992 年受到查菲和錢永健重視,普拉修卻已經決定轉換跑道,停止在伍茲霍爾海洋研究所的苦悶掙扎。他向所內評審委員會提出中止審核,放棄晉升,並將在一年內離職。

延伸閱讀:缺席的普拉修,2008年諾貝爾化學獎第4位得主(1)

當普拉修把查菲和錢永健要求的 GFP 基因樣本送到,他一面感到終結的哀傷,一面認知到「不問報酬地把 GFP 基因交棒給其他人,是當下最合理的選擇。」尤其是像自己這樣使用公共經費進行研究的學者。

除了對社會的責任感,普拉修也意識到學術現實面,研究資源充沛的成功學者,更有機會實現GFP的潛力。在知名大學任教的查菲和錢永健已在各自領域中奠定名聲,更容易申請經費。而且他們可以用既有經費支應 GFP 轉殖實驗的開銷,不需要特意申請高門檻的 GFP 獨立經費,更不會落到像普拉修一樣,經費耗盡還慘澹經營 GFP 基因選殖一整年。

-----廣告,請繼續往下閱讀-----

此外,查菲和錢永健還有研究生和博士後研究員的充沛學術勞動力,而普拉修則總是獨力進行所有研究勞動。孤立、勞累而缺乏成就感,普拉修沒能成功以綠色螢光照亮細胞生理,也無法驅散他自己周遭的職業陰霾。

查菲能在 1992 年重新連繫上普拉修,是因為查菲向研究生尤斯克亨(Ghia Euskirchen)感嘆,普拉修從未回報 GFP 的基因選殖成果,或許是個難以成功的任務。

查菲與完成第一個線蟲螢光基因轉殖的四人團隊 1
查菲回憶錄中列出為 GFP 基因轉殖技術做出巨大貢獻的四人團隊,左上為普拉修,右上為尤斯克亨,下方兩位是接替尤斯克亨進行 GFP 轉殖實驗的技術人員。Courtesy of M. Chalfie

尤斯克亨當下便和查菲一起打開實驗室電腦,用剛安裝的線上論文資料庫 Medline 搜尋相關文獻。他們不可置信地在搜尋結果第一位看見普拉修的 GFP 基因選殖論文,接著飛奔到圖書館尋找實體期刊,在上面找到普拉修的電話,重新建立聯繫。

在查菲的指導下,尤斯克亨只花一個月就完成了大腸桿菌的 GFP 轉殖,成為第一個螢光轉殖生物的拍攝者。接著,查菲團隊順利地讓線蟲的神經細胞表現綠色螢光,證明 GFP 可以在不同生物體內獨立發光,無須其他來自水母的分子。微觀生物學的未來一片光明。

-----廣告,請繼續往下閱讀-----
199210.14 第一張螢光大腸桿菌照片
1992 年 10 月 14 日,尤斯克亨拍下第一張螢光大腸桿菌照片。當時查菲還沒準備好觀察成功轉殖的螢光樣本,尤斯克亨只好到以前待過的實驗室借用螢光顯微鏡。Courtesy of M. Chalfie

錢永健則是透過與同儕的討論,知道生命科學仍然缺乏合適的螢光標記蛋白,進而在 UCSD(加州大學聖地牙哥分校)新安裝的 Medline 資料庫上搜尋「綠色螢光蛋白」,驚訝地發現普拉修的論文摘要。和查菲一樣,錢永健衝進圖書館影印實體論文,並馬上連繫普拉修,比查菲更早確保 GFP 基因序列的樣本。

查菲團隊轉殖 GFP 的同時,錢永健團隊建構出多種 GFP 變異體,人類開始以不同螢光蛋白觀察細胞內部運作。兩個團隊的成果啟動了學術界和生技產業洪流般的關注與需求,錢永健團隊甚至設立了自動化的樣本供應網頁,只要填寫線上申請書,錢永健實驗室就會無償將螢光蛋白基因載體寄送到府。

值得一份晚餐,或是更多

接下來的十多年,GFP 相關蛋白照亮細胞內的奧秘,成為「生化研究的領航星」,並帶領研發者邁向諾貝爾化學獎。而捨棄 GFP 研究的普拉修,則像是失去指引一般,不僅沒能獲獎,更經歷了顛簸困頓的人生苦旅。

離開伍茲霍爾海洋研究所,普拉修在美國農業部轄下獲得分子生物學技師職位。在政府機構經歷職場摩擦、調職搬遷,使緊繃難熬的氣氛瀰漫普拉修全家之後,他前往亨茨維應徵 NASA 承包商的工程師職缺。在火箭城研發太空診斷器是讓普拉修覺得相對有趣的任務,經費短缺卻再次扼殺了他的期待。

-----廣告,請繼續往下閱讀-----

NASA 在 2006 年裁減生命科學研究經費,普拉修因此被裁員,轉而成為接駁車司機。他在駕駛座上友善健談,意外發現自己其實喜歡工作中和陌生人互動的部分。但是 8.5 美元的時薪讓他入不敷出,連他和查菲共享的 GFP 專利金都在幾年內消耗殆盡。

1994 F Science Gfpcover
1994 年 2 月 11 日發行的《科學》採用查菲團隊的 GFP 線蟲做為期刊封面,象徵螢光蛋白普照分子生物學的光明時代開端。此圖片也收錄在查菲的 GFP 回憶錄《點亮生命》(Lightung Up Life)中。相反的是,普拉修的生涯似乎始終不被綠色螢光照耀。Courtesy of M. Chalfie

儘管事業成果的對比相當符合美國媒體對「不公平」題材的嗜好,普拉修不曾在訪談間表現對查菲和錢永健的嫉妒。

2008 年 10 月 8 號早餐之前,普拉修聽到三位科學家因為 GFP 獲得諾貝爾化學獎,他若無其事地換上灰色制服前往公司開車。不過,上班前他打了通電話到當地電台,糾正他們對錢永健姓氏的發音。

查菲和錢永健在諾貝爾獎致詞與回憶錄中,不約而同地感謝普拉修的研究貢獻,錢永健更經常提供普拉修回到學術領域的工作機會。不願接受研究職位作為恩惠、從斯德哥爾摩回到亨茨維開接駁車的普拉修則笑說「如果他們來到亨茨維,該請我吃頓晚餐。」

-----廣告,請繼續往下閱讀-----

「他們總是有提到我的功勞,而且他們有傑出的科學事業,完成重大貢獻之後,繼續發展他們傑出的科學事業。」普拉修一向對媒體表示,查菲和錢永健是更值得諾貝爾獎的人選,而非中輟離開科學領域的自己。

Imagej=1.53t
發源於 GFP,透過多種螢光蛋白混雜表現而成的 brainbow 技術,是研究生物修復傷口、更新組織時的重要工具。作者: Marco de Leon from Taiwan 顯微攝影競賽

但是,普拉修並非真正「離開」科學領域。他結束 GFP 研究後,不論在政府機構或私人企業,依然從事超過十年的科學相關工作,並作出實際貢獻。相對於逃離科學,他其實是被不理解 GFP 潛力的終身職審查委員會給排除,被迫離開「高賭注的尖端學術領域」(high-stakes academic science)。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。