0

2
2

文字

分享

0
2
2

未來電腦一秒開機的黑科技就靠這個了!巨磁阻效應與電子自旋性是怎麼回事?

活躍星系核_96
・2020/03/26 ・3756字 ・閱讀時間約 7 分鐘 ・SR值 558 ・八年級

-----廣告,請繼續往下閱讀-----

  • 文/朱嘉棟、李湘、江丞澤 │ 臺灣大學物理學系學生

如果你使用手機、平板、或是電腦閱讀這篇文章,那你正在享受 2007 年諾貝爾物理獎研究成果而來的甜美果實。

巨磁阻是什麼?先從磁阻談起

2007 年的諾貝爾物理獎頒予了法國的費爾與德國的葛林柏格,為了他們發現「巨磁阻效應」(giant magnetoresistance, GMR) 及其相關研究。

在巨磁阻的相關研究發表之前,科學家已知外加磁場會小幅影響材料的電阻率,也就是一般所謂的磁阻效應:「外來磁場所引起的電阻變化」。而「巨磁阻」顧名思義,即是在特定的材料下,此一電阻變化的現象更加顯著。

要解釋磁阻效應這樣的情況,先讓我們縮小到微觀尺度進行觀察:一塊施有外加磁場的導體,在通入電流下,導體內部漂移的電子會因勞倫茲力 註1改變其運動行為。

電流改變的狀況與磁場和電流間的角度有關:當電流方向與磁場平行時,電子漂移速度會較慢,即電阻增大;反之,當電流方向與磁場垂直時,漂移速度較快,即電阻減小。一般來說,電阻率在這種模式下的增減幅度約為 5%

-----廣告,請繼續往下閱讀-----

時間到了 1988 年,艾伯特.費爾與皮特.葛林柏格博士在各自的研究中發現了一種可以讓磁性材料產生非常大磁電阻變化的方法。他們發現,把具有鐵磁性註2的鐵沒有磁性的鉻重複堆疊,組成「鐵鉻多層膜結構」,這個多層結構在外加磁場下,每一層鐵的磁矩方向會發生變化,而電流中含有兩種不同的電子自旋方向,分別感受到不同大小的電阻,因而導致非常大的磁阻效應,其電阻變化幅度高達 50%,這也就是我們所知的巨磁阻效應

巨磁阻開創的全新領域:自旋電子學!

巨磁阻效應的發現具有重大意義,除了強大的應用性,它還開創了一個全新領域:自旋電子學 (spintronics)。

簡單來說,電子具有質量、電荷、自旋等等物理量,而人們可以利用這些物理量開發出各式各樣的電子元件。例如科學家就是利用電子帶電荷的特性,開發出了電晶體、二極體、積體電路等等,大幅增加了人類生活的便利性。

LED 就是發光二極體喔!圖/DaKub@Pixabay

而現在科學家們,在巨磁阻效應的發現與成功展示後,得以藉由電子的自旋特性開發出新一批的電子元件。

-----廣告,請繼續往下閱讀-----

電子自旋性到底是什麼?跟巨磁阻有什麼關係?

電子的自旋具有兩種方向:上與下。一般來說,這些電子在通過非磁性材料時是不可分辨的,也就是找到自旋向上或向下的電子的機率是一樣的,我們稱這個特性為「自旋不可分辨性」。

但當電子通過具有鐵磁性的材料時,如果材料內部具有自發性磁矩(編按:即材料已經具備了磁性),不同自旋方向的電子與材料內部磁矩會產生交互作用,就會有不同的表現,而我們可以利用這個特性將自旋不同方向的電子區分開來。

與自發磁矩平行的電子在傳導過程中較不會被散射,但與自發磁矩反平行的電子,則很容易與自發磁矩碰撞而散射。這個效應可以用一個實例來比喻:在跨年夜時順著人流行走,與逆著人流行走,速度將有顯著的差異。對應到磁性材料中,逆向人流將產生更多的擦撞(散射),進而使整體的輸運速度降低(高電阻)。

若把這個原理套用到 1988 年費爾與葛林柏格博士所提出的鐵鉻多層膜結構時,就可以解釋巨磁阻效應是怎麼發生的:每一層鐵的磁矩全部平行時,只有自旋方向與磁距相反的電子會被散射,而自旋方向相同的電子則容易通過。反之,當每一層鐵呈現交互反平行時,無論自旋向上或向下的電子都會被散射。

-----廣告,請繼續往下閱讀-----

這個結果反映在鐵鉻多層膜電阻的量測上,就會呈現極大的電阻變化率,這種模型稱為「電流雙通道模型」。

電流雙通道模型。FM(藍色)表示磁性材料,NM(橘色)表示非磁性材料,磁性材料中的箭頭表示磁化方向;Spin的箭頭表示通過電子的自旋方向;R(綠色)表示電阻值,綠色較小表示電阻值小,綠色較大表示電阻值大。圖片改作自 wiki commons Guillom。 CC BY-SA 3.0, 連結

如上圖所示,我們將一束電流拆成自旋向上與向下的電子,他們在通過磁化方向與自身相同的鐵性層時將體驗到小電阻 (r),反之通過相反磁化方向的磁性層時將體驗到大電阻 (R)。從巨觀的角度這裡的電阻有兩個並聯,而圖右的 Rr – rR 並聯相較於圖左的 rr – RR 並聯大得多,也就是右圖的磁化方向交叉出現,就會出現巨磁阻效應。

而時隔 30 年,美國華盛頓大學與香港的研究團隊發現了一種新穎的複合性材料,使巨磁阻效應能被更顯著放大。

他們改良 1988 年費爾等人的鐵鉻多層膜結構,藉由先進的奈米技術在兩層石墨烯中間插入一至多層的三碘化鉻薄膜,形成另一種多層膜材料。而由於 CrI3 分子內含較「鐵鉻多層膜結構」中的鉻層更大的磁矩,因此更容易操縱電子在其中的移動速率。

-----廣告,請繼續往下閱讀-----
新研究中將兩層石墨烯中間插入三碘化鉻薄膜,形成電阻變化率更大的多層膜材料。圖/Song et al, 2018

此一複合系統只需施加微量的磁場改變其中 CrI3 的磁化方向,便可出現出高達 19000% 的電阻變化率,與最初費爾等人的 50% 相比,提高了近 400 倍。

而此一大躍進,不僅使物理界為之振奮,也為科技界注入一劑強心針。

巨磁阻:我們生活中的科技應用

事實上,日常生活中所見的磁碟即是受惠於巨磁阻效應。

我們日常生活使用的磁碟儲存資料的方式,是所謂的「磁記錄」。即是利用磁場感應的方式,探測或改變部分鐵磁性材料區域的磁矩方向,以達成記錄目的。

磁性材料中磁矩的分布通常是一區一區的,稱為「磁域」。在同一磁域中磁矩的排列方向都相同,但不同磁域的磁化方向可以不同,磁域的排列方向便可做為 1 或 0 的數位訊號。因此磁域密度大小,與讀寫入磁域方向的方法,將是決定磁儲存技術品質的關鍵。

-----廣告,請繼續往下閱讀-----
The inside of a computer hard drive
我們日常生活使用的磁碟儲存資料的方式,即是所謂的「磁記錄」。圖片來源

巨磁阻效應最大的應用在於製作硬碟機的讀取頭。當讀取頭經過不同磁矩方向的磁區時,其內多層薄膜的磁性層會與磁區發生交互作用,進而影響讀取頭內多層膜中的磁性層,呈現平行或反平行狀態,因而使得整個薄膜系統的電阻產生極大變化、影響通過電流的大小,由此讀取待測磁區的相關資訊。

巨磁阻讀取頭是利用磁區之間的磁場大小,來決定多層膜中的磁性層是否反轉;相較於原本依靠磁通量變化使讀取頭內線圈產生感應電流來判讀的方式,更能減少因電流雜訊所造成的誤判。除了更加準確,同時也更薄更省電。薄膜奈米級的厚度,以及讀取的精準度,大幅縮小了硬碟的體積,使新一代硬碟的容量得以大幅增加。

巨磁阻薄膜奈米級的厚度使新一代硬碟的容量大幅增加。

有了 MRAM,未來電腦手機開機只需一秒?

除了硬碟讀取頭的應用之外,巨磁阻效應在記憶體的進步也占有一席之地。

目前常用的記憶體 (RAM) 可分為兩類,一是揮發性記憶體,如動態隨機存取記憶體 (DRAM) 或靜態隨機存取記憶體 (SRAM);另一類則是非揮發性記憶體,如快閃記憶體。

-----廣告,請繼續往下閱讀-----

「揮發性」或「非揮發性」的區別,是指當某個元件儲存資料後,若外部電源關閉,在電源重新啟動時先前儲存的資料尚能保留住,則稱為非揮發性,若否,則稱為揮發性。

DRAM 與 SRAM 是電腦中最重要的兩種記憶體,它們的特性各異。DRAM 耗電量大且資料處理速度慢,優點是容量較大;而 SRAM 處理速度非常快,記憶密度卻小了很多。由於 DRAM 與 SRAM 都是揮發性記憶體,每當電腦啟動時,都須重新執行作業系統的載入動作,耗時甚多。若能使用非揮發性記憶體取代它們,便可實現隨開即用的便利。

但現有的非揮發性記憶體因處理速度緩慢,而且讀寫數次後便會失效,因此尚無法取代 DRAM 與 SRAM。

但若能應用巨磁電阻效應開發出磁阻式隨機存取記憶體 (MRAM),除了兼具非揮發性、省電、處理速度快,以及高度可重複讀寫特性之外,記憶密度也非常高。前面提及研究中,所發表的新穎材料亦讓人們看到 MRAM 愈趨耀眼的前途。

-----廣告,請繼續往下閱讀-----

如新材料能成功進入應用階段,將可望在不久之後取代現有的記憶體元件,成為新世代的記憶體。如台積電近年來即開始研發整合自家低漏電的電晶體與 MRAM,打造出利於物聯網的硬體環境。

未來技術成熟時,若能以 MRAM 成功取代目前電腦手機上的記憶體,不僅將大幅降低功耗,開機時間也將縮短至一秒以內,更多應用也會隨之而生。

未來技術成熟時,MRAM 甚至能開機時間縮短至一秒以內。圖/Pixabay@Pexels

總而言之,巨磁阻效應的重要性,會在未來的科技產品中慢慢浮現,而此次華盛頓大學與香港團隊對於巨磁阻薄膜的突破性發現,也在相關的科學與科技領域中,立下一新的里程碑。

致謝

本文源自於臺灣大學物理學系電子學的課程報告,感謝朱士維教授與程暐瀅助教的協助。

註解:

  1. 勞侖茲力 (Lorentz force):運動於電磁場的帶電粒子所感受到的作用力。
  2. 鐵磁性 (Ferromagnetism):又稱作強磁性,指的是材料在磁化後,仍能維持磁性的特性。常見如鐵在磁場中放置一段時間後,即使磁場消失仍能維持一定之磁性。

參考資料

  1. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures
    Science 360 (6394), 1214-1218. DOI: 10.1126/science.aar4851 May 3, 2018
  2. 新一代記憶體發威 MRAM 開啟下一波儲存浪潮
  3. Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications. MDPI Sensors 2016, 16, 904 17 June 2016

(編按:增補作者與致謝資訊。2020/7/20)

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 130 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
242 篇文章 ・ 318 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
缺席的普拉修,2008 年諾貝爾化學獎第 4 位得主 (3)
顯微觀點_96
・2025/03/13 ・3195字 ・閱讀時間約 6 分鐘

本文轉載自顯微觀點

圖/顯微觀點

科學:一場每天進行的淘汰賽

在以錦標賽理論(tournament theory)運作的專門領域中,贏家獲得的獎勵將遠超出輸家,即使兩者的實際表現、累積貢獻僅有毫釐之差。就像奧運百米賽跑,0.005 秒決定了金牌與銀牌,只慢了 0.01 秒的第四名沒有資格出現在頒獎台。

諾貝爾獎、終身職制度、學術獎金、研究計畫的經費審核,也依照近乎贏者全拿的錦標賽理論運作。錦標賽制度在運動賽事中可以促進選手與隊伍不斷提高表現水準,但在科學領域呢?

諾貝爾獎作為額外的最高榮譽,嚴格維持其傳統限制(獎項最多由 3 人共享、僅頒發給在世者),許多傑出科學家成為遺珠,但這不阻礙他們在專業領域得到足以安心的資源,作出重要貢獻。

-----廣告,請繼續往下閱讀-----
2008nobel Prize Group Photo 2
2008 年,諾貝爾獎得主合照。左一為錢永健,左二為下村脩,左四為查菲。普拉修曾想像自己置身其中,並得到更光明的學術前途。Courtesy of Nobel Prize website.

但是,目標包含鼓勵尖端學術研究、探索重要問題的學術終身職制度與計畫審查系統,它們的錦標賽特質卻在普拉修身上呈現負面效果。

若說錦標賽模式的獎勵機制可以鼓勵科學家投入潛力豐厚的研究題材,以及努力實踐靈感的能力。那麼普拉修和查菲一樣,及早意識到能夠獨立發光的 GFP 是生物學研究的金礦,可以用來追蹤活體細胞中的基因與蛋白質表現。而且普拉修更早著手研究,優先踏上 GFP 基因轉殖的跑道。

「要是我們在普拉修完成 GFP 序列後馬上展開合作,他應該不需要離開伍茲霍爾。」
說起自己與普拉修在 1989 年到 1992 年之間的失聯,查菲如此猜測

查菲和錢永健之所以能夠找到普拉修,搶先實現 GFP 應用(當時有其他競爭團隊在研發細胞內的螢光標記),是因為當時網路快速發展,使美國國家醫學圖書館(NLM)的線上文獻查詢系統 Medline 在 1992 年進入大學圖書資訊系統,他們才能起身實踐靈感,唾手找到普拉修的最新研究。

就普拉修的運氣來說,網路卻發展得不夠快。在 1990 年代中期開始流行的電子郵件若早個幾年普及化,普拉修更可能維繫與查菲的合作,及時得到經費與GFP轉殖成果,並晉升終身職。

-----廣告,請繼續往下閱讀-----

當年普拉修的電話留言渺無回音,他以為查菲退出學術圈(查菲年輕時確實曾刻意遠離科學)。而查菲則猜測普拉修挫敗於GFP基因選殖,連個通知都沒有。在網路、電子郵件還不普及的 1990 年,要維持與合作者的聯繫需要付出更多心力與時間。通訊的困難與少許不足的人際積極性,導致兩年的延遲發表,讓普拉修耗盡研究經費與終身職的機會。

查菲的gfp線索筆記
查菲的 GFP 線索筆記,普拉修出現在右下區,線索的末端。他的前雇主科米爾、GFP 純化者下村脩(Shimomura)也出現在上方。查菲在回憶錄中說,這些線索引導他實現後來的成就。Courtesy of M. Chalfie

查菲團隊實現 GFP 基因轉殖的時候,實驗室裡甚至連一台螢光顯微鏡都還沒添購,他們必須和其他學者借用、排隊等候系所共用的共軛焦顯微鏡,才能觀察大腸桿菌與線蟲體內新生的螢光。後來,查菲多次要求顯微鏡供應商帶螢光顯微鏡來提供「試用」,團隊才得以更便利地檢驗轉殖成果。

GFP 的應用需求,大力刺激光學顯微技術的進展。它最早期的轉殖實驗成果,竟是由免費試用的螢光顯微鏡呈現。這聽起來是令人莞爾的科學史軼聞,但能夠靈活周轉的人脈、儀器,也是孤立的普拉修和著名大學教授查菲的學術資本落差之一。

透過改變訓練技巧與累積訓練量、最大化優勢、競賽當下的意志與觀察力,運動員偶有逆轉資本落差的機會,以黑馬之姿獲勝。但是在學術領域,研究題材的重要性與個人的才華、執行能力卻不像跑道上的衝刺秒數一樣清晰。

-----廣告,請繼續往下閱讀-----

「他們大可以把我從諾貝爾獎名單去掉,換上普拉修。」
查菲總是對媒體表示,普拉修的貢獻不可忽視

在科學這個由同儕評價定勝負的錦標賽中,多數科學家難以逆轉經費、人脈等資本差距,也很難讓不同領域的專家了解自己的研究重要性,只能努力支撐、累積資本,期待自己贏得經費與知名度的時刻。等待運氣與環境好轉的餘裕,得以截長補短的經濟與社會資本,卻正是學術領域錦標賽中多數年輕科學家所缺乏的。

落敗的運動員至少獲得在競賽中表現的機會,以及某個程度的肯定。論文發表日期稍微落後競爭對手的科學家,則連努力被看見的機會都非常稀少。

普拉修與諾貝爾化學獎失之交臂、鬱鬱不得志的職涯是段引人喟嘆的個人史,並非科學體系的挫敗。他只是科學錦標賽持續依照慣例淘汰的諸多優秀人才中,有幸被贏家們提及的一位。

比普拉修年輕一歲,學術晉升之路卻順暢許多的錢永健曾說,「下村脩和普拉修對 GFP 研究的貢獻是無可取代的。」而且在普拉修 1992 年發表 GFP 基因的純化與定序,並且樂意對任何人分享之後,

-----廣告,請繼續往下閱讀-----

「後面那些以研發 GFP 獲得榮譽的人,與其他人的不同可能只有些微的進度落差。」

錢永健在 2004 年至 2008 年之間,積極地建議諾貝爾獎委員會頒獎給下村脩與普拉修,但結果並非如此。

生命中的萬花筒 陳樂融
源自錢永健開發的多種螢光蛋白,形成 brainbow 技術。作品名:生命中的萬花筒,作者:陳樂融 Courtesy of Taiwan顯微攝影競賽

後續發展

普拉修從斯德哥爾摩回到亨茨維之後,受到包括國家公共廣播電台(National Public Radio)、《科學》期刊、亨茨維時報等美國媒體關注。但在訪談與報導的熱潮過後,普拉修依然坐困時薪 8.5 美元的豐田接駁車裏頭。

從諾貝爾頒獎典禮的輝煌榮譽,回到乏味、有時不受尊重的駕駛座上,失落的普拉修不敢相信自己依然找不到科學研發相關的工作。他喪氣地想,「經歷了這一切,我竟然還是沒有辦法回到科學領域。這中間一定出了什麼錯。」

在最憂鬱的那天,普拉修一度把接駁車停在路邊,撥號向亨茨維自殺防治熱線求助。過不多時,他在 2010 年找到科技研發的職位,2012 年他接受錢永健的提議,進入他的實驗團隊擔任研究員。重新在一個充滿支持與資源的環境投入科學研究,讓普拉修再度感到生活的動力與快樂。

-----廣告,請繼續往下閱讀-----

2016 年錢永健逝世,實驗團隊解散,而普拉修在前一年就已離開 UCSD,從此沒有留下任何公開痕跡。曾被自殺防治熱線的機械式留言激怒到啞然失笑,決定繼續活下去的普拉修今年已經 73 歲,科學錦標賽的勝負再也不能困擾他,但科學思考帶給他的樂趣或許能夠不斷更新。

Prasher In Ucsd
普拉修在錢永健實驗室的照片。讓他對人生更加滿意的不是體面的加州大學聖地牙哥分校制服,而是可以實現對科學的好奇與想像,並得到周遭的支持。Courtesy of San Diego Union Tribune

延伸閱讀:

參考資料:

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
44 篇文章 ・ 10 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

0
0

文字

分享

0
0
0
缺席的普拉修,2008 年諾貝爾化學獎第 4 位得主 (2)
顯微觀點_96
・2025/03/06 ・2645字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖/顯微觀點

科學遠見的現實基礎

儘管 GFP 基因定序研究在 1992 年受到查菲和錢永健重視,普拉修卻已經決定轉換跑道,停止在伍茲霍爾海洋研究所的苦悶掙扎。他向所內評審委員會提出中止審核,放棄晉升,並將在一年內離職。

延伸閱讀:缺席的普拉修,2008年諾貝爾化學獎第4位得主(1)

當普拉修把查菲和錢永健要求的 GFP 基因樣本送到,他一面感到終結的哀傷,一面認知到「不問報酬地把 GFP 基因交棒給其他人,是當下最合理的選擇。」尤其是像自己這樣使用公共經費進行研究的學者。

除了對社會的責任感,普拉修也意識到學術現實面,研究資源充沛的成功學者,更有機會實現GFP的潛力。在知名大學任教的查菲和錢永健已在各自領域中奠定名聲,更容易申請經費。而且他們可以用既有經費支應 GFP 轉殖實驗的開銷,不需要特意申請高門檻的 GFP 獨立經費,更不會落到像普拉修一樣,經費耗盡還慘澹經營 GFP 基因選殖一整年。

-----廣告,請繼續往下閱讀-----

此外,查菲和錢永健還有研究生和博士後研究員的充沛學術勞動力,而普拉修則總是獨力進行所有研究勞動。孤立、勞累而缺乏成就感,普拉修沒能成功以綠色螢光照亮細胞生理,也無法驅散他自己周遭的職業陰霾。

查菲能在 1992 年重新連繫上普拉修,是因為查菲向研究生尤斯克亨(Ghia Euskirchen)感嘆,普拉修從未回報 GFP 的基因選殖成果,或許是個難以成功的任務。

查菲與完成第一個線蟲螢光基因轉殖的四人團隊 1
查菲回憶錄中列出為 GFP 基因轉殖技術做出巨大貢獻的四人團隊,左上為普拉修,右上為尤斯克亨,下方兩位是接替尤斯克亨進行 GFP 轉殖實驗的技術人員。Courtesy of M. Chalfie

尤斯克亨當下便和查菲一起打開實驗室電腦,用剛安裝的線上論文資料庫 Medline 搜尋相關文獻。他們不可置信地在搜尋結果第一位看見普拉修的 GFP 基因選殖論文,接著飛奔到圖書館尋找實體期刊,在上面找到普拉修的電話,重新建立聯繫。

在查菲的指導下,尤斯克亨只花一個月就完成了大腸桿菌的 GFP 轉殖,成為第一個螢光轉殖生物的拍攝者。接著,查菲團隊順利地讓線蟲的神經細胞表現綠色螢光,證明 GFP 可以在不同生物體內獨立發光,無須其他來自水母的分子。微觀生物學的未來一片光明。

-----廣告,請繼續往下閱讀-----
199210.14 第一張螢光大腸桿菌照片
1992 年 10 月 14 日,尤斯克亨拍下第一張螢光大腸桿菌照片。當時查菲還沒準備好觀察成功轉殖的螢光樣本,尤斯克亨只好到以前待過的實驗室借用螢光顯微鏡。Courtesy of M. Chalfie

錢永健則是透過與同儕的討論,知道生命科學仍然缺乏合適的螢光標記蛋白,進而在 UCSD(加州大學聖地牙哥分校)新安裝的 Medline 資料庫上搜尋「綠色螢光蛋白」,驚訝地發現普拉修的論文摘要。和查菲一樣,錢永健衝進圖書館影印實體論文,並馬上連繫普拉修,比查菲更早確保 GFP 基因序列的樣本。

查菲團隊轉殖 GFP 的同時,錢永健團隊建構出多種 GFP 變異體,人類開始以不同螢光蛋白觀察細胞內部運作。兩個團隊的成果啟動了學術界和生技產業洪流般的關注與需求,錢永健團隊甚至設立了自動化的樣本供應網頁,只要填寫線上申請書,錢永健實驗室就會無償將螢光蛋白基因載體寄送到府。

值得一份晚餐,或是更多

接下來的十多年,GFP 相關蛋白照亮細胞內的奧秘,成為「生化研究的領航星」,並帶領研發者邁向諾貝爾化學獎。而捨棄 GFP 研究的普拉修,則像是失去指引一般,不僅沒能獲獎,更經歷了顛簸困頓的人生苦旅。

離開伍茲霍爾海洋研究所,普拉修在美國農業部轄下獲得分子生物學技師職位。在政府機構經歷職場摩擦、調職搬遷,使緊繃難熬的氣氛瀰漫普拉修全家之後,他前往亨茨維應徵 NASA 承包商的工程師職缺。在火箭城研發太空診斷器是讓普拉修覺得相對有趣的任務,經費短缺卻再次扼殺了他的期待。

-----廣告,請繼續往下閱讀-----

NASA 在 2006 年裁減生命科學研究經費,普拉修因此被裁員,轉而成為接駁車司機。他在駕駛座上友善健談,意外發現自己其實喜歡工作中和陌生人互動的部分。但是 8.5 美元的時薪讓他入不敷出,連他和查菲共享的 GFP 專利金都在幾年內消耗殆盡。

1994 F Science Gfpcover
1994 年 2 月 11 日發行的《科學》採用查菲團隊的 GFP 線蟲做為期刊封面,象徵螢光蛋白普照分子生物學的光明時代開端。此圖片也收錄在查菲的 GFP 回憶錄《點亮生命》(Lightung Up Life)中。相反的是,普拉修的生涯似乎始終不被綠色螢光照耀。Courtesy of M. Chalfie

儘管事業成果的對比相當符合美國媒體對「不公平」題材的嗜好,普拉修不曾在訪談間表現對查菲和錢永健的嫉妒。

2008 年 10 月 8 號早餐之前,普拉修聽到三位科學家因為 GFP 獲得諾貝爾化學獎,他若無其事地換上灰色制服前往公司開車。不過,上班前他打了通電話到當地電台,糾正他們對錢永健姓氏的發音。

查菲和錢永健在諾貝爾獎致詞與回憶錄中,不約而同地感謝普拉修的研究貢獻,錢永健更經常提供普拉修回到學術領域的工作機會。不願接受研究職位作為恩惠、從斯德哥爾摩回到亨茨維開接駁車的普拉修則笑說「如果他們來到亨茨維,該請我吃頓晚餐。」

-----廣告,請繼續往下閱讀-----

「他們總是有提到我的功勞,而且他們有傑出的科學事業,完成重大貢獻之後,繼續發展他們傑出的科學事業。」普拉修一向對媒體表示,查菲和錢永健是更值得諾貝爾獎的人選,而非中輟離開科學領域的自己。

Imagej=1.53t
發源於 GFP,透過多種螢光蛋白混雜表現而成的 brainbow 技術,是研究生物修復傷口、更新組織時的重要工具。作者: Marco de Leon from Taiwan 顯微攝影競賽

但是,普拉修並非真正「離開」科學領域。他結束 GFP 研究後,不論在政府機構或私人企業,依然從事超過十年的科學相關工作,並作出實際貢獻。相對於逃離科學,他其實是被不理解 GFP 潛力的終身職審查委員會給排除,被迫離開「高賭注的尖端學術領域」(high-stakes academic science)。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
44 篇文章 ・ 10 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。