Loading [MathJax]/extensions/MathZoom.js

3

76
7

文字

分享

3
76
7

到底是 GMT+8 還是 UTC+8 ?

Whyjay
・2015/09/07 ・3312字 ・閱讀時間約 6 分鐘 ・SR值 536 ・七年級

-----廣告,請繼續往下閱讀-----

business-257911_1920

打開你的手機,進入設定選項中的「日期與時間」調整時區──對於出過國的人來說,這個動作應該不陌生,因為每到了不同的時區,當地的時間就會與手錶上殘留的「台灣時間」有著一至數小時不等的差距。

台灣的所屬時區比協調世界時快8小時,是由國家時間與頻率標準實驗室發佈與維護[1]。在十幾二十年以前有個常聽見但並不正式的稱呼:「中原標準時間」[2]。現在正式的名稱則為「國家標準時間」,但在國際上仍然沒有官方的說法,溝通時通常會說成「台灣時間」或是「台北時間」,或是乾脆直接說成 UTC+8 或是 GMT+8 ,這裡的 +8 是指比 UTC 或是 GMT 快8小時的意思。

問題來了:請問你的手機時區的設定頁面中,台灣的時區是「UTC+8」,還是「GMT+8」?你覺得這兩者有差嗎?如果有差,是差在哪裡?如果沒差,那為什麼還會有兩種名稱?

答案就在圖片下方,歡迎各位先猜猜看再往下看答案……

-----廣告,請繼續往下閱讀-----
Screenshot_2015-09-06-23-33-29
筆者的手機是 GMT+8。我不懂為什麼「台北標準時間」後面還要括弧加註「台北」…

簡單的回答是:GMT 和 UTC 在一般使用的情況下沒有差別,你要說台灣的時區是 UTC+8 或是 GMT+8 都可以。但如果仁兄的時間寶貴,是「一秒鐘幾十萬上下」的狀況,筆者推薦你使用 UTC,每一年半載就可以賺到一閏秒。但如果你是系統工程師,GMT 應該才會受到你的青睞。[3]

以下,就讓我們來看看這兩個縮寫到底差在哪裡。

GMT 的全名是格林威治標準時間或格林威治平時 (Greenwich Mean Time),這個時間系統的概念在 1884 年確立,由英國倫敦的格林威治皇家天文台計算並維護,並在往後的幾十年往歐陸其他國家擴散。在 1924 年開始,格林威治天文台每小時就會向全世界播報時間。

在剛開始的幾十年,GMT 的測量方法非常簡單:觀測者隨時監控太陽在天空的位置,並且把每天太陽爬升到仰角最高的時候記錄下來,這個時間點稱呼為「過中天」。一般人對於一天 24 小時的理解,大致上就相等於兩次太陽過中天的時間間隔。不過由於地球是以橢圓軌道繞著太陽,在軌道上的行進速率不一,導致一年之中會有「比較長的一天」與「比較短的一天」[4],所以格林威治的觀測者必須要至少連續觀測一年,然後求取 365 個長度不一的「天」,再把他們全部平均後,得到固定的一天長度,之後再細分成時、分、秒等單位。這個就是 GMT。

231604532_0b80c30ef9_o
格林威治天文臺的報時鐘。Photo by: Happy A @ flickr, CC BY-NC-SA 2.0

近幾十年來,我們有了更穩定的觀測 GMT,或是說,觀測太陽日[4]的方法,那就是利用宇宙中穩定一致的無線電波源週期性的訊號,搭配電波源抵達地球時觀測的角度,直接計算地球的自轉與公轉速率,再以此計算一年、一天、時分秒的平均長度。這些觀測可以交由其他更高科技的天文台,或是衛星來負責,而跟格林威治天文台的觀測沒有關係,所以它有一個新名字:世界時(Universal Time),縮寫是 UT。[5]世界時有三種版本,分別叫 UT0、UT1 跟 UT2,UT0 是最原始的觀測結果計算值,UT1 則是修正了地球在長時間尺度下會產生的自轉軸漂移的影響,UT2 則是為了研究需求,比 UT1 多修正了季節性的影響。

-----廣告,請繼續往下閱讀-----

此寶劍一出,照理說 GMT 系統應該就要退役,但實際上由於 GMT這個名字已經被使用了幾十年,而且 GMT 跟 UT1 要測量的概念基本上是相同的,都是「長時間尺度下的平均太陽日」,所以 GMT 這個名字被保留了下來,作為一般的人民溝通使用的詞彙。現在 UT1 的測量,主要是靠特長基線干涉儀 (VLBI)[6]來進行前面所述的觀測後再計算而得。

technology-683833_1280
現在都是用這種儀器在測量地球的自轉。

以上總結:GMT 是老古董,UT1 承先啟後,但是一般概念上 GMT = UT1,都是觀測平均太陽日,兩個名詞的使用可以互相轉換。[7]

另外一方面,自從 1967 年國際度量衡大會把秒的定義改成銫原子進行固定震盪次數的時間後[8],時間的測量就可以與星球的自轉脫節了。只利用原子鐘計算時間與日期的系統,稱作國際原子時 (International Atomic Time)[9],這是一種只有「天」的系統,時分秒都以「天」的小數點零頭來表示。以國際原子時為計算基準,把時間格式與 UT1 對齊,讓一般人都方便使用的時間系統,就叫做協調世界時 (Universal Time Coordinated),也就是 UTC。這也就是 UTC 為什麼與 GMT 幾乎一樣的關係。由於 UTC 直接與國際度量衡標準相聯繫,所以目前所有的國際通訊系統,像是衛星、航空、GPS 等等,全部都協議採用 UTC 時間。

Atomic_clocks
美國國家標準的原子鐘。

但是,透過原子鐘 (UTC)模擬平均太陽日(UT1 = GMT),會出現一個很嚴重的問題:由於地球的自轉正在緩慢減速[10][11],導致平均太陽日會逐漸變長。也就是說,GMT 的一秒會越來越久,但是只要我們不改度量衡對於秒的定義,那麼 UTC 的一秒就會始終如一。長久下來,UTC 一定會超前 GMT 一秒以上,而且會越來越多!因此,目前負責管理 UTC 的專責機構──國際地球自轉服務 (International Earth Rotation and Reference Systems Service,又稱為 IERS)[12]決定在 UTC 超前 GMT 快一秒時,選擇適當的時間加入閏秒,來抵銷超前的量。上一次的閏秒是在今年的 6 月 30 日,不知各位還有沒有印象?[3][13]

-----廣告,請繼續往下閱讀-----

總而言之,從 1972 年實行 UTC 以來,已經加過 26 次的閏秒[9][14],近幾年的閏秒要加的時候,總是會有不小的騷動和新聞版面,但是卻都安然無事的過了,就算是這樣,世界各國還是有不少建議取消閏秒的意見,理由不外乎麻煩、增加成本,以及許多不必要的風險。在今年 11 月預計召開的國際無線電通訊會議,也將直接討論此議題,並且做出扮演閏秒存廢的關鍵決議,各位可一起拭目以待。

以上總結:UTC 很潮的使用原子鐘計時,也成為國際通訊的公用標準。UTC 努力符合 GMT 的計時格式與概念,因此雖然不會差太多,但每隔三五年就要加一個閏秒來「多等GMT一秒鐘」。

所以呢?

回到時區的寫法,如果要遵循國際標準,台灣的時區寫成「UTC+8」才是正確的。但在一般的狀況下,我們都不會在意 GMT 與 UTC 那不到一秒的差距,就算是用 UTC 計時,但寫成「GMT+8」也無不可,反正也不會差太多嘛!只要跟著社會潮流走,管他手機顯示什麼,你還是可以擁有那一閏秒的「放空時間」。有機會的話許個願吧!跟每天都看得到的流星比起來,這可是平均每三年才能擁有一次的奇景。

Leap_Second_-_30_June_2015
今年六月錯過,下次不知還有沒有機會看到?

參考連結

  1. 實驗室網頁在此。
  2. (歷史上的今天)中廣告別「中原標準時間」
  3. 只因「閏秒」這 1 秒的解決方案,AWS 工程師可能花上數百小時
  4. 克卜勒第二運動定律 (Wiki),利用過中天的手段求取一天長度,屬於測量「太陽日」的領域,因為參考了地球上的某一點對太陽的角度,所以太陽日的每日長度,跟地球自轉與公轉都有關。
  5. UT 的系統介紹
  6. VLBI (Wiki)
  7. GMT 其實也被當成 UTC+0 的時區名字。這使得 GMT 這個詞能指涉的東西更加的模糊。
  8. Resolution 1 of the 13th CGPM (1967/68)。SI 單位中,一秒的定義為 Cs-133 基態原子在兩個超精細能階間躍遷輻射 9,192,631,770 次所花的時間。
  9. 這裡可以看到國際原子時與 UTC 的差異。為了方便起見,國際原子時也已經化成時分秒的格式。除了這幾十年內設置的 26 秒閏秒之外,還有額外的 10 秒差異,是在當初定義時就存在的。
  10. 地月系統的潮汐影響 (Wiki)
  11. 無可避免的地球自轉減速,東吳大學賈老師的部落格
  12. IERS 網站
  13. 蘋果日報2015/6/21:六月底多一秒 小心閏秒造成當機
  14. 閏秒 (Wiki)

 

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 3
Whyjay
17 篇文章 ・ 10 位粉絲
透過我的眼睛、鏡頭的眼睛、還有衛星的眼睛看世界的地球科學研究者。期望與你分享冰川下封存的秘密或是火山上隱藏的故事;夜晚,我們更可以遙望皎潔的明月,更遠的木星與冰衛星,甚至更遠更遠──某顆系外行星上的生命,或許也正拿望遠鏡看著我們討論人類最終的歸宿。推特:https://twitter.com/WhyjayZ (英文)

0

1
0

文字

分享

0
1
0
任意添加光學元件 為研究打開大門的無限遠光學系統
顯微觀點_96
・2025/01/30 ・1763字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖 / 顯微觀點

顯微鏡在科學發展中扮演關鍵的角色,讓人們得以突破肉眼的限制,深入微觀的世界探索。而隨著時間推進,顯微技術也日新月異,其中現代顯微鏡設計了所謂的「無限遠光學系統」(Infinity Optical Systems),更是提升了顯微鏡性能和突破過去的觀察瓶頸。因此主要的顯微鏡製造商現在都改為無限遠校正物鏡,成為顯微鏡的技術「標配」。

1930 年代,相位差顯微技術出現,利用光線在穿過透明的樣品時產生的微小的相位差造成對比,使透明樣本需染色就能更容易被觀察。1950 年左右,則出現使用兩個 Nomarski 稜鏡,將光路分割再合併產生 干涉效應的 DIC 顯微技術,讓透明樣本立體呈現、便於觀察。

在傳統「有限遠系統」中,單純的物鏡凸透鏡構造,會直接將光線聚焦到一個固定距離處,再經過目鏡放大成像。也因此過去顯微鏡的物鏡上通常會標示適用的鏡筒長度,通常以毫米數(160、170、210 等)表示。

-----廣告,請繼續往下閱讀-----

而在過渡到無限遠校正光學元件之前,選用的物鏡和鏡筒長度必須匹配才能獲得最佳影像,且大多數物鏡專門設計為與一組稱為補償目鏡的目鏡一起使用,來幫助消除橫向色差。

但是問題來了!當這些光學配件要添加到固定鏡筒長度的顯微鏡光路中,原本已完美校正的光學系統的有效鏡筒長度大於原先設定,顯微鏡製造商必須增加管長,但可能導致放大倍率增加和光線減少。因此廠商以「無限遠」光學系統來解決這樣的困境。

德國顯微鏡製造商 Reichert 在 1930 年代開始嘗試所謂的無限遠校正光學系統,這項技術隨後被徠卡、蔡司等其他顯微鏡公司採用,但直到 1980 年代才變得普遍。

無限遠系統的核心在於其物鏡光路設計。穿透樣本或是樣本反射的光線透過無限遠校正物鏡,從每個方位角以平行射線的方式射出,將影像投射到無限遠。

-----廣告,請繼續往下閱讀-----
有限遠(上)和無限遠(下)光學系統的光路差別
有限遠(上)和無限遠(下)光學系統的光路差別。圖 / 擷自 Optical microscopy

透過這種方法,當使用者將 DIC 稜鏡等光學配件添加到物鏡、目鏡間鏡筒的「無限空間」中,影像的位置和焦點便不會被改變,也就不會改變成像比例和產生像差,而影響影像品質。

但也因為無限遠系統物鏡將光線平行化,因此這些光線必須再經過套筒透鏡在目鏡前聚焦。有些顯微鏡的鏡筒透鏡是固定的,有些則設計為可更換的光學元件,以根據不同實驗需求更換不同焦距或特性的透鏡。

除了可以安插不同的光學元件到光路中而不影響成像品質外,大多數顯微鏡都有物鏡鼻輪,使用者可以根據所需的放大倍率安裝和旋轉更換不同的物鏡。

傳統上一旦更換物鏡,樣本可能就偏離焦點,而須重新對焦。但在無限遠光學系統的設計中,物鏡到套筒透鏡的光路長度固定,也就意味著無論更換哪個物鏡,只要物鏡設計遵循無限遠系統的標準,光路長度和光學路徑的一致性得以保持。

-----廣告,請繼續往下閱讀-----

因此無限遠光學系統也有助於保持齊焦性,減少焦距偏移。這對需要頻繁切換倍率的實驗操作來說,變得更為便利和具有效率。

不過使用上需要注意的是,每個顯微鏡製造商的無限遠概念都有其專利,混合使用不同製造商的無限遠物鏡可能導致不正確的放大倍率和色差。

改良顯微技術,使研究人員能夠看到更精確的目標;以及如何讓更多光學配件進入無限遠光學系統中的可能性仍然在不斷發展中。但無限遠光學系統的出現已為研究人員打開了大門,可以在不犧牲影像品質的情況下輕鬆連接其他光學設備,獲得更精密的顯微影像。

  1. M. W. Davidson and M. Abramowitz, “Optical microscopy”, Encyclopedia Imag. Sci. Technol., vol. 2, no. 1106, pp. 120, 2002.
  2. C. Greb, “Infinity Optical Systems: From infinity optics to the infinity port,” Opt. Photonik 11(1), 34–37 (2016).
  3. Infinity Optical Systems: From infinity optics to the infinity port
  4. Basic Principle of Infinity Optical Systems
  5. Infinity Optical Systems

延伸閱讀選擇適合物鏡 解析鏡頭上的密碼

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
28 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

0
0

文字

分享

0
0
0
螃蟹有痛感嗎?我們是怎麼知道的?
F 編_96
・2025/01/16 ・1669字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live science

螃蟹一直是海鮮美食中的明星,從油炸軟殼蟹到清蒸螃蟹,餐桌上經常見到牠們的身影。有地方也習慣直接將活螃蟹丟沸水煮熟,認為這能保留最多的鮮味。過去人們認為甲殼類缺乏複雜神經結構,不會感受到痛苦,因此不必過度憂心道德問題。但近年來,越來越多研究開始挑戰此一想法,指出螃蟹與龍蝦等甲殼動物可能具備類似疼痛的神經機制。

以前大家相信甲殼類缺乏複雜神經結構,但近期這一認知逐漸受到質疑。 圖 / unsplash

甲殼類是否能感覺到痛?

人類長期習慣以哺乳類的神經構造作為痛覺判斷依據,由於螃蟹沒有哺乳動物那樣的大腦腦區,便被認為只憑簡單反射行動,談不上真正「痛」。然而,新興科學證據顯示包括螃蟹、龍蝦在內的甲殼類,除了可能存在被稱為「nociceptors」的神經末梢,更在行為上展現自我防禦模式。這些研究結果顯示,螃蟹對強烈刺激不僅是本能抽搐,還有可能進行風險評估或逃避策略,暗示牠們的認知或感受方式比我們想像更精緻。

關鍵證據:nociceptors 與自我保護行為

近期實驗在歐洲岸蟹(Carcinus maenas)中觀察到,當研究人員以刺針或醋等刺激手段測量神經反應,牠們顯示與痛覺反應類似的神經興奮;若只是海水或無害操作,則無此現象。此外,透過行為實驗也可看出,寄居蟹在受到電擊時,會毅然捨棄原本的殼子逃離電源,但若同時存在掠食者味道,牠們會猶豫要不要冒著風險離開殼子。這些結果使科學家認為,螃蟹並非單純反射,而可能有對於痛感的判斷。若只是「低等反射」,牠們不會考慮掠食風險等外在因素。

痛覺與保護:實驗結果引發的道德思考

以上發現已在科學界引發廣泛關注,因為餐飲業與漁業中常見「活煮」或「刺穿」處理螃蟹方式,如今看來很可能讓牠們承受相當程度的不適或疼痛。瑞士、挪威與紐西蘭等國已開始禁止活煮龍蝦或螃蟹,要求先以電擊或機械方法使其失去意識,試圖減少痛苦。英國也曾討論是否將甲殼類納入動物福利法保護範圍,最後暫時擱置,但此爭議仍在延燒。

-----廣告,請繼續往下閱讀-----
英國對於是否將甲殼類列入動物福利法的保護範圍,有所爭議。 圖 / unsplash

部分學者保持保留態度,認為雖然甲殼類展現疑似痛覺的行為與神經反應,但與哺乳類相同的「主觀痛感」仍需更多研究證明。大腦與神經系統結構畢竟存在很大差異,有些反射也可能是進化而來的自衛機制,而非真正意義上的感受。然而,科學家普遍同意,既然相關證據已經累積到一定程度,毋寧先採取更謹慎與人道的處理模式,而非輕易推卸為「牠們不會痛」。

海洋生物福利:未來的規範與影響

如果螃蟹被證實擁有痛覺,將牽動更廣泛的海洋生物福利議題,包括鎖管、章魚或多種貝類也可能具有類似神經機制。人類一直以來習慣將無脊椎動物視為「低等生物」,未必給予與哺乳類相同的法律或倫理關注。但若更多實驗持續指出,牠們同樣對嚴重刺激展開避痛行為,社會或終將呼籲修訂漁業與餐飲相關法規。未來可能要求業者在捕撈與宰殺前使用電擊或麻醉,並限制活煮等方式。這勢必對漁業流程與餐廳文化造成衝擊,也引發經濟與文化折衷的爭議。

龐大的實驗數據雖已暗示螃蟹「會痛」,但確鑿的最終定論仍需更多嚴謹研究支持,包括更深入的大腦活動成像與突觸路徑分析。同時,落實到實際操作也需追問:是否存在更快、更人道的宰殺或料理方式?能否維持食材鮮度同時保障動物福利?這種思維轉變既考驗科學進程,也考驗人類對自然資源的態度。也許未來,既然我們仍會食用海產,就該以最小痛苦的方式對待那些可能感受痛苦的生物,為牠們提供基本尊重。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

2
0

文字

分享

0
2
0
一年有幾週?背後竟隱藏著宗教、政治與天文觀測的紛爭?為何決定一年有幾週如此大費周章?
F 編_96
・2025/01/06 ・3256字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

每到歲末或年初時,大家常會打開新的行事曆,做新一年的計畫。從直覺來看,我們常以「一年有 365 天」或「閏年 366 天」的概念衡量時間。如果將 365 天除以 7(每週 7 天),得到的答案約是 52 週又 1 天;若遇到閏年(366 天),則是 52 週又 2 天。換句話說,無論是一般年還是閏年,一年都不可能整除,剛好 52 週,總要多出 1 或 2 天。

對多數人而言,這種「約 52 週加 1 天」似乎是再自然不過的事。然而,實際上人類在訂定「一年幾天」與「多久閏一次」的規則上,一路走來經歷了漫長探索與爭議。自古以來,不同文明先後採用依太陽或月亮運行週期為基準的曆法;儘管最終各國大多轉而採行以太陽週期為主的格里高利曆(Gregorian calendar),但並非一蹴可幾,而是一段包含宗教、政治、天文觀測的故事。

一年感覺很長,其實也就 52 週(+1 或 +2 天)。 圖/unsplash

從洪荒到曆法:人類如何決定時間單位

追溯人類對時間的測量,可遠至一萬多年前:考古發現顯示,澳洲原住民或新石器時代的部落,便會根據太陽、星象的移動,來推算季節變遷與祭典進行。後來,隨著農業興起,區分一年四季並掌握耕作節氣成了首要需求,日曆的概念亦逐漸成型。

  • 宗教推力:古埃及與蘇美等文明常需要在特定時刻進行祭祀或儀式,故對晝夜長短、月相週期乃至每年太陽位置頗為講究。
  • 日月曆法之爭:有些文明依月亮週期(約 29.5 天)為月數基礎,稱「陰曆」;也有採納太陽年度(約 365 日)稱「陽曆」,或折衷稱「陰陽合曆」。

就週數而言,古人或許更關注「每個月有幾天」與「一年有幾個月」,而非「一年到底可以分成幾週」。然而,週的概念在很多宗教與文化裡同樣重要,如猶太教及後來的基督宗教都強調「七天」一週之體系,用於安息日或祈禱輪替。因此,當今的一年分成「52 週多幾天」,也綜合了宗教傳統與太陽年的計算。

-----廣告,請繼續往下閱讀-----

朱利安曆失準?教宗格里高利的關鍵校正

現行國際普及的格里高利曆,最早源自於古羅馬朱利安曆(Julian calendar)。公元前 46 年,凱撒大帝(Julius Caesar)在天文學家蘇西根尼斯(Sosigenes)建議下,設定一年 365.25 天,並每四年加一天作閏年。看似精妙,但實際上太陽年長度約是 365.2422 天,每年多出的 0.0078 天、也就是大約 11 分鐘,雖然聽來微乎其微,卻在一段世紀之後累積成巨大的誤差。

對天主教而言,耶穌受難與復活日期影響了整年眾多教會節日。若曆法逐漸偏移,像復活節等慶典便逐年脫節了季節原意。至 16 世紀末時,朱利安曆已誤差累積多達 10 天。教宗格里高利十三世遂在 1582 年宣佈大刀闊斧改革:10 月 4 日的次日直接跳到 10 月 15 日,並規定「百年年份如若非 400 整除,則不列為閏年」。如此,將一年的平均時長微調至更貼近 365.2422 天。

一些國家如法國、西班牙和義大利等迅速採納「新曆」,但英國則因宗教立場等因素拖延至 1752 年才肯切換。中國雖在 1912 年起算是「正式認可」,但廣泛實施延至 1929 年。這樣因曆制修整所產生的「失落日子」,在各國各時期都曾引發不小民眾抗議與混亂,但如今我們所熟知的「一年 365(或 366)天、每週 7 天」全球大體一致,正是拜此改革所賜。

教宗格里高利十三世的改革,成了日後我們熟知的「一年 365(或 366)天、每週 7 天」。圖/unsplash

一年是 52 週又幾天?

回到主題:基於現在格里高利曆的「年」長度,一般年 365 天,閏年 366 天。因此只要把 365 ÷ 7 = 52 餘 1,或 366 ÷ 7 = 52 餘 2。這樣看來,52 週是某種近似值,再加上 1 或 2 天則填補了週數的縫隙。有趣的是,人們日常生活中往往不深究這些「多一天」會落在哪裡,反而透過各國法定假期、節日分布或企業排班,來靈活因應。

-----廣告,請繼續往下閱讀-----

不管日曆如何安排,七天一週與太陽一年的 365.2422 天本質上不會整除。因而實際執行層面,才衍生「一月有 4 週多幾天」或「一年 52 週多幾天」。而根據格里高利曆規範,每 4 年遇到 2、6 結尾者時通常加閏日;再以百年刪除閏日,唯獨 400 年倍數的百年不刪。如此 400 年中有 97 個閏年,非 100 次,年均值約 365.2425 天,與真實太陽年極為貼近。

再度修正:米蘭科維奇曆與東正教的調整

與此同時,一些東正教教會或科學家,仍曾嘗試做更精準的校調。例如 1923 年出現的「米蘭科維奇曆」,由塞爾維亞天文學家米蘭科維奇(Milutin Milanković)提出:

  • 改進閏年規則:如果該年不是 100 的倍數,則正常計算;若是 100 的倍數,就得看除以 900 所餘下的數是否為 200 或 600,若是,則跳過閏年。
  • 應用範圍:此一方案被視為更貼近天文年,但只有部分東正教教會接納實施,對全球世俗時間並未產生重大影響。

有趣的是,若米蘭科維奇曆被大規模推廣,平均一年長度會更符合真實太陽年,但世界各國基礎已扎根於格里高利曆,也不太可能再冒然重新改革。畢竟,每次曆改都會使官方紀錄、民間活動和宗教節慶產生協調難題,且大眾的社會慣性早已落實在現行制度裡。

時間計算背後宗教、政治與科學的糾纏

我們眼中的「一年 52 週又 1~2 天」其實是長期政治、宗教、科學交互影響的產物。數世紀以來,不同文明為祭祀、政令或貿易往來而反覆調整曆制;伴隨天文觀測與數學演算的精進,人們才一步步從古老的朱利安曆轉到格里高利曆,避免每年多出一些看似微不足道的分鐘數量,卻逐漸累積成整天的時差。在這些爭論、改革中,週數雖非爭議焦點,但它一同被帶入今日世界,最終定型為「一年 = 52 週 +1(或 2)天」。

-----廣告,請繼續往下閱讀-----
儘管目前的曆法存在些許時差,但已是目前全球通用的計日方式。圖/unsplash

另一方面,有些文化或地區在現代仍維持傳統的陰曆、陰陽曆搭配格里高利曆,如中國農曆可見節氣和月相紀錄;穆斯林世界則使用純陰曆,並以其方法計算齋戒月、開齋節等。全球一體化雖使格里高利曆成為主流,但不代表其他紀年方式就此消失。在各種曆法交錯下,「一週幾天,一年多少週」或許並非普世絕對,卻是人類根植於宗教、科學與經濟行為下逐漸形成的共識。

踏入 21 世紀,隨著全球高度互聯與商業活動頻繁,幾乎所有國際公約、金融市場、交通規劃都以格里高利曆為基準。此種高度一致有利經貿往來與跨國協作,但究其根源,私底下仍有一種「不完美但通用」的妥協性質。時至今日,要再度大規模推行新的曆制(比如米蘭科維奇曆)的機率微乎其微。

也許未來某天?

不管你是否每天翻開行事曆查看日期,或是習慣智慧型手機提醒,在全球主流價值裡,「一年 52 週又 1 或 2 天」已成幾乎不容置疑的常識。

也許未來仍有理論家建議以更精準的曆法取代格里高利曆,讓一年日數更貼合天文常數。然而,歷史經驗告訴我們,此種改革勢必付出巨大社會成本,還要面對全球龐雜的政治協調。最終,我們大概仍會安於現在這個略有瑕疵卻普及度最高的制度,繼續說著「一年有 52 週」,並在每年最後那 1 或 2 天裡,慶祝跨年、增添慶典。

-----廣告,請繼續往下閱讀-----

不論如何,時間的運行永不止息;地球仍舊繞著太陽旋轉,帶給我們四季遞嬗與新的挑戰。或許最重要的並非究竟一年「整除」了多少週,而是我們如何在這既定框架下規劃生活,在有限的時間裡,拓展出新的生活軌跡。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。