0

0
0

文字

分享

0
0
0

大熊貓由葷轉素的心路歷程

葉綠舒
・2015/09/16 ・2101字 ・閱讀時間約 4 分鐘 ・SR值 510 ・六年級
大熊貓
Source: wikipedia

大熊貓(Aliuropoda melanoleuca)吃竹子,但是牠並不是從一開始就是吃素的。

大熊貓的口腔解剖構造(有力的上下顎與牙齒)以及短短的腸道長度,都說明了牠本來是吃肉的;其他的熊也都是吃肉的動物。那麼,大熊貓是怎麼轉葷為素的?要轉葷為素並不是那麼容易的事,雖然有力的上下顎與牙齒同樣可以用來吃草,但是肉食轉葷食還有一個難關:口味。

看過「歷險小恐龍」(The Land Before Time)續集的朋友,一定記得有個角色「Chomper」,牠是一隻暴龍(T. rex)。每次Chomper吃到草的時候,都會很誇張的吐出來。草真的這麼難吃嗎?

食不知味?

大家吃菜的時候,如果有認真比較過,應該會發現青菜通常少了肉的鮮味(umami)。鮮味來自於食物中解離出的胺基酸,由於肉類食品原本就含有大量的蛋白質,解離出來的胺基酸也較多,因此肉類食品的鮮味也比蔬菜要濃重。這也就是為何味素可以為食物添加鮮味,因為味素本身就是胺基酸(谷胺酸)。

除了胺基酸以外,核苷酸也是鮮味的來源。因為我們可以感受鮮味,所以轉葷為素的一開始總是百般不習慣,尤其是吃慣了大魚大肉的人,有些甚至完全不肯茹素。

那麼,大熊貓是如何轉葷為素的?當然不是發願(XD),究竟什麼原因(打擊?)讓牠不再吃肉已不可考,但化石證據發現,大熊貓大約在七百萬年前開始嘗試吃竹子,在200-240萬年前牠開始了99%的食物都是竹子的生涯。

吃過竹筍一定知道竹筍比蔬菜還清淡,為什麼大熊貓可以開始啃竹子,在2010年的「分子生物學演化期刊」(Mol. Biol. Evol.)找到了解答。

原來大熊貓在演化的過程中,牠感應鮮味的接受器基因之一Tas1r1發生了突變,造成這個基因完全無法產生有功能的蛋白質,於是大熊貓就不再能品嚐鮮味了。這個突變正好發生在牠轉換主食的過程中(大約420萬年前),加上多巴胺合成也出了問題,造成食慾獎勵機制也無法正確回饋,於是大熊貓就不再在乎有沒有鮮味了,反正吃起來都一樣。

Source: wikipedia
Source: wikipedia

大熊貓轉葷為素的第一個關鍵,就是失去了感應鮮味的能力。但是,食不知味也未必就要改行吃素啊?我們感冒的時候,偶而也會食不知味,但也不見得就會改吃素。這是第一個疑點。

另一個疑點是,大熊貓失去感應鮮味的能力,大約發生在420萬年前;但是牠在大約700萬年前就開始嘗試竹子,而且還吃不少。而直到200-240萬年前,大熊貓才開始幾乎只吃竹子。所以,大約有380萬年的時間,大熊貓還是吃得出鮮味的;而在失去嚐出鮮味的能力之後,也還有快兩百萬年的時間,牠並不光吃竹子。

熊貓吃竹子會開心嗎?

到底發生什麼事呢?科學家想到,我們有所謂的食慾獎勵機制(appetite-reward circuitry),主要是有賴於類鴉片(opioid)與多巴胺(dopamine)來啟動,是否大熊貓的食慾獎勵機制出了問題?

中國與日本科學家所組成的研究團隊,因此展開了一場「找基因」的研究。由於大熊貓的基因已經在2010年定序完成,因此經過序列比對,研究團隊找到了六個與多巴胺代謝有關的基因。深入研究這六個基因之後發現,其中一個,簡稱為COMT(catechol-o-methyltransferase),在大貓熊中竟然有突變!

501px-Dopamine_degradation.svg
source: wiki

COMT與多巴胺的分解有關,負責將DOPAC(3,4-dihydroxyphenyl-acetic acid)分解為HVA(homovanillic acid)(見上圖)。研究團隊發現的突變,使得大熊貓的COMT少了四個胺基酸,也造成第四個α螺旋(α4 helix)消失。由於第四個α螺旋需要跟位於另外兩處的兩個胺基酸共同與COMT的受質SAM(S-adenosyl-L-methionine)接觸,少掉了這個螺旋,對COMT本身的酵素活性影響應該很大。

而進一步分析COMT以及其他與多巴胺分解相關的基因又發現,COMT基因的表現量可能不高,因為它的轉譯(translation)信號頗弱。轉譯信號(Kozak motif)位於基因的第一個密碼的周圍,是提供給核糖體辨認的信號;如果一個基因的轉譯信號弱,就代表能被轉譯出來(產生蛋白質)的機會較低。加上COMT基因裡面有微小RNA(microRNA)的辨認序列,會使得COMT的信息RNA(mRNA)被分解得更快。因此,研究團隊認為,所有這些證據指向:COMT在大熊貓體內表現量偏低。

由於COMT主要功能是分解多巴胺,COMT基因缺損與表現量偏低應該會造成多巴胺濃度上昇。但是,多巴胺濃度上昇究竟會造成食慾變好或是變壞?COMT基因缺損的小鼠,食慾是變得更好而不是變得更差;人類的COMT缺損產生的症狀則相當複雜。無論如何,應該要進一步檢驗大熊貓的體內的多巴胺濃度才是。

所以,究竟大熊貓為何轉葷為素呢?所有這些研究結果,包括失去感應鮮味的能力以及多巴胺代謝障礙,都只能回答一小部分的問題;或許竹子裡面有可以提高多巴胺的化合物,或許當地曾發生氣候變遷,造成在一段時間中,大熊貓只能吃竹子?這些問題都需要更進一步的研究去協助解答,而有些問題可能不太容易找到答案呢!

 

參考文獻

  1. Jianzhi Zhang et. al. 2010. Pseudogenization of the Umami Taste Receptor Gene Tas1r1 in the Giant Panda Coincided with its Dietary Switch to Bamboo. Mol. Biol. Evol. 27(12):2669-2673.
  2. Jin K, Xue C, Wu X, Qian J, Zhu Y, et al. (2011) Why Does the Giant Panda Eat Bamboo? A Comparative Analysis of Appetite-Reward-Related Genes among Mammals. PLoS ONE 6(7): e22602.

原文轉載自作者部落格 Miscellaneous 999 文章 (1)(2)

文章難易度
葉綠舒
262 篇文章 ・ 5 位粉絲
做人一定要讀書(主動學習),將來才會有出息。


2

4
0

文字

分享

2
4
0

發炎性腸道疾病的獵奇療法:來一杯「鉤蟲卵」吧!——《我們為什麼還沒有死掉?》

麥田出版_96
・2021/10/24 ・2290字 ・閱讀時間約 4 分鐘

• 作者/伊丹.班—巴拉克
• 譯者/傅賀

上一節,我提到了犬蛔蟲,我好不容易才忍住沒有提另外一種寄生蟲:蠕蟲。這類寄生蟲成員眾多,個個都是入侵或躲避免疫系統的行家,牠們有許多花招可以幫助牠們在人體內存活下來、繁榮昌盛。牠們之所以需要這些花招,是因為作為寄生蟲,牠們的個頭太大了,免疫系統不可能看不到牠們。即使是較小的蠕蟲物種,也有幾公釐長,跟病毒或細菌比起來,可謂龐然大物。

蠕蟲感染者的腸道 X 光照片,圖中黑線都是蠕蟲。圖/WIKIPEDIA by Secretariat

在世界上許多較貧窮的地區,由於衛生條件較差,蠕蟲帶來了無盡的痛苦:據統計,世界上約四分之一的人口感染了某種類型的蠕蟲。衛生機構正在嘗試使用預防、清潔的手段和抗蟲藥物來緩解疫情。與此同時,在已開發國家,人們已經成功消滅了蠕蟲疾病。

也許有點過於成功。

免疫反應有幾種不同的形式。我們理解得最透徹的兩種是 Th1 和 Th2(Th 代表輔助 T 細胞,這是一種重要的 T 細胞)。它們的細節比較複雜,但大體畫面是這樣的:這兩種反應處理的是不同類型的感染——Th1 類型的輔助 T 細胞會向吞噬細胞和胞毒 T 細胞發出啟動訊號。聽到「集結號」之後,這些細胞會追蹤並摧毀任何被病毒或特定細菌感染的人類細胞。與此相反,Th2 反應是直接攻擊那些尚未入侵人體的病原體,Th2 細胞會啟動一種叫作嗜酸性球(eosinophils)的免疫細胞,來殺死蠕蟲。只要一種 Th 反應上調,另外一種就會下調。這種機制是合理的,因為這樣可以節約身體的資源,並降低免疫反應的副作用。

TH2 細胞(左)正在被 B 細胞(右)活化。圖/WIKIPEDIA

蠕蟲激發的正是 Th2 反應。有人因此認為,此消彼長,在那些蠕蟲病發病率較高的國家,過敏反應( Th1)的概率恰恰因此更低。(在過去幾十年裡,已開發國家裡出現過敏反應的人越來越多)。流行病調查顯示:蠕蟲越是肆虐,過敏反應就越少。

蠕蟲採取的各種躲避和反擊策略,以及牠們的存在本身,都會對免疫系統產生影響。一個效果就是牠們會抑制發炎反應——要知道,世界上有許多人巴不得他們的發炎反應受到一點抑制呢。

因此,許多患有慢性自體免疫疾病(比如,發炎性腸道疾病)的人現在正在接受蠕蟲療法(用的是鉤蟲),針對其他發炎疾病的臨床治療也正在測試。

Necator Americanus L3 x1000 12-2007.jpg
鉤蟲, 被用在慢性自體免疫疾病的蠕蟲療法 。圖/WIKIPEDIA

這聽起來有點怪誕:有人竟希望——不,堅持要——被寄生蟲感染。他們向醫生求助,醫生給他們的藥是一小杯鉤蟲卵,然後他們就喝下去了。在他們的胃裡,這些卵會孵化,幼蟲會爬出來。然後,不知怎的,患者就感覺好多了。當然,鉤蟲不會存活很久(醫生選擇的物種並不會在人體腸道內存活很久,否則就會有新的麻煩了),因此,過一段時間,患者又要接受新一輪的感染,以維持免疫系統的平衡。

當然,如果我們可以不用蟲子(比如使用其中的有效成分,類似某種「鉤蟲萃取物」的藥物)就可以治療疾病,那就更好了。但是,目前還沒人知道到底哪些成分重要——而且似乎要見效,必須要用活的蠕蟲。

為了解釋關於蠕蟲的這個情況,研究人員提出了「老朋友假說」(old-friends hypothesis),這是「衛生假說」的一個改良版。你也許聽說過「衛生假說」,它已經流傳了很長一段時間,但直到一九八九年才由大衛.斯特拉昌(David Strachan)正式提出。他進行的流行病學調查顯示,那些在農場裡或田野邊上長大的孩子要比那些在城市裡長大的同齡人更少患上過敏。從此之後,「衛生假說」就被用於描述許多不同的觀念,其中一些得到了研究支持,而另一些則沒有。

總的來說,老朋友假說的大意是,人類的免疫系統是在一個充滿微生物的世界裡發育的,我們經常要跟許許多多的微生物打交道。我們已經看到了免疫系統跟腸道微生物的密切聯繫,但是這樣的親密關係也可能會擴展到病原體。免疫系統已經對一定程度的接觸和較量習以為常了。現代西方社會,是人類有史以來最愛清潔、刷洗、消毒的階段,我們受感染的機會大大減少——但這破壞了免疫系統的平衡。我們的免疫系統習慣了跟某些病原體對抗,一旦沒有了對手,它就會工作失常。因此,嬰兒和小朋友也許最好要接觸一點髒東西。

現代社會,是人類有史以來最愛清潔及消毒的階段,我們受感染的機會大大減少,但這破壞了免疫系統的平衡。圖/Pixabay

顯然,你不希望你的孩子臉上有霍亂弧菌,雖然研究人員在二○○○年發現結核病對預防氣喘有幫助,但這並不意味著你要讓孩子染上結核。但是「髒東西」裡含有許多常見病原菌的減毒突變株(不再那麼有害),這可能對孩子的身體有益。沒有它們,孩子日後也許更容易患上免疫疾病——比如過敏和自體免疫病。

問題是,要多乾淨才算乾淨,要多髒才算髒呢?抱歉,我真的不知道答案。

——本文摘自《我們為什麼還沒有死掉?》,2020 年 9 月,麥田

所有討論 2
麥田出版_96
156 篇文章 ・ 376 位粉絲
1992,麥田裡播下了種籽…… 耕耘多年,麥田在摸索中成長,然後努力使自己成為一個以人文精神為主軸的出版體。從第一本文學小說到人文、歷史、軍事、生活。麥田繼續生存、繼續成長,希圖得到眾多讀者對麥田出版的堅持認同,並成為讀者閱讀生活裡的一個重要部分。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策