0

0
0

文字

分享

0
0
0

倫敦的獅子 -《測量野性的人》

PanSci_96
・2015/07/30 ・1950字 ・閱讀時間約 4 分鐘 ・SR值 559 ・八年級

倫敦

一八五八年二月的一個夜晚,共濟會會堂〈Freemasons’ Hall〉裡擠滿了賓客,理查.歐文從主桌站起身來,當著三百五十位客人的面,舉杯對著坐在他右邊的男子敬酒,歐文說:「敬傑出的旅行家,今日我們齊聚一堂就是為了向他致敬。」

在那一刻,大衛.李文斯通可能是全英國最有名的人。這位蘇格蘭傳教士多年來深入非洲探險,他將這份經歷,包含他遇見獅子因而失去左手臂的可怕遭遇,寫成一本實錄,成為當時英國最熱賣的書。從非洲回來後,他一整年都在各地領取榮譽學位,在門票全罄的講座上受到崇拜者的包圍,同時他還定期為貴賓舉辦展覽。他的公眾形象完好無缺,歐文告訴在場的賓客:李文斯通是一個勇敢而謙卑的冒險家,致力於傳播「超凡脫俗的高超智慧」。就在那天早上,李文斯通才私下覲見了維多利亞女王,她還祝他下一場探險順利;他計畫從贊比西河進入非洲探險。這場即將到來的遠征,他最具野心的一場探險活動,是由英國皇家地理學會資助的,這場晚宴也是學會舉辦的,是為他送行的正式餞別宴。

歐文告訴觀眾他在十八年前遇見李文斯通的始末,當時這位年輕的傳教士,在第一次去非洲探險前,特別前來向歐文請教蒐集自然史標本的意見。從那時起,李文斯通不時會提供歐文標本,從恐龍化石到象牙都有。歐文則幫助他校對他的書,確保當中的生物描述無誤,以此作為回報。在女士的這一廳,李文斯通的妻子坐在歐文的妻子卡洛琳旁邊;他自己也成了他口中這位「教授」的好朋友。多年後,李文斯通打趣地說,他那隻截肢下來的左臂,也就是他勇敢事蹟的象徵標誌,應該要在他往生後遺贈給歐文。他說:「這是大衛.李文斯通的遺囑。」

李文斯通可能覺得請歐文校閱一位傳教士的著作是否合乎科學,多少有點委屈他,而且還因而讓這位傳教士贏得世界各地學術圈的尊重,因此對他深感虧欠。但今晚歐文的支持,也許並不全是為了李文斯通,而是為了他的好朋友,同時是皇家地理學會的會長羅德里克.默奇森。

-----廣告,請繼續往下閱讀-----

默奇森親自打理晚宴的每一項細節,從祝酒詞到由樂隊演奏的蘇格蘭樂曲的順序,將李文斯通塑造成名人是默奇森當晚的首要任務。早在李文斯通得知默奇森可能想要寫一本關於他的冒險經歷前,默奇森就已安排好出版社,確保了這項出書計畫的交易。李文斯通之所以會在倫敦的街道上被人群所包圍,也是默奇森動用人脈事先打點好的。

就跟歐文一樣,默奇森也是真心喜歡李文斯通,並對他十分敬重。但在他對他的推崇中,多少還是帶著一些別有用心的成分。

從一八四三年起,默奇森曾三度當選英國皇家地理學會會長。當這個學會升格為皇家機構時,默奇森是唯一被提名的人。在很多人眼中,他就是英國皇家地理學會創始人。

年輕時,默奇森過著休閒的鄉紳生活。但在妻子的鼓舞下,他選擇攻讀她很喜歡的地質學,並且開始投入大量的閒暇時間來進行研究。他繼承的財富讓他有足夠的資金前往蘇格蘭、俄羅斯和阿爾卑斯山,沒多久他就爬到這個學門的頂峰。他的山脈形成研究和地質分層分類皆是這個新興領域的重要發展。

-----廣告,請繼續往下閱讀-----

不過到了一八五○年代後期,大家逐漸忘卻他的地質學家身分,而將他視為皇家地質學會探險家的金主。在經過三個世紀的遠洋探險後,十九世紀中葉已發展成內陸探索的黃金時期,在這一點上,沒有人可以媲美默奇森的貢獻。在某些人眼中,他活像是帝國的國際象棋大師,運籌帷幄,在世界各地部署他的棋子,隨著一次又一次的探索,擴展大英帝國的疆域。他的影響力甚至滲透到世界地圖集中,在全球六大洲中,分別有二十三處的地形以他的姓名來命名,比方說南極洲的默奇森山、烏干達的默奇森瀑布、加拿大的默奇森島、澳洲西部的默奇森河,再加上另外兩條支流羅德里克和安佩。世界各地的探險家都很尊敬他,至少在分享榮耀時絕不會忘了他,畢竟他是他們的生命線:他可是一隻手放在維多利亞女王錢包上的男人。

Source: https://upload.wikimedia.org/wikipedia/commons/0/07/Africa_relief_location_map.jpg
Source: Africa_relief_location_map

在他眼中,非洲獨具魅力。李文斯通引發了英國公眾前所未有的非洲熱,他們渴望更多的探險故事,而默奇森要滿足這項需求。他號召他的黑暗大陸核心探險小組:李文斯通、理查.伯頓和約翰.漢寧.史皮克等,這群人可是他費心照料的「獅子」。

皇家地理學會搭著公眾對探險的狂熱,完全發揮其價值。會員人數爆炸性的成長,每月的例會成 了這城市上層階級交流的地方。

當李文斯通在一八五八年離開倫敦展開這趟預計將持續數年的最新探險時,默奇森已掌握到讓他的探險帝國在大英帝國內持續成長和獲得資金的關鍵:有驚心動魄故事可講的英雄。

-----廣告,請繼續往下閱讀-----

 

0429-臉譜-測量野性的人-立體-300本文摘自《 測量野性的人:從叢林出發,用一生見證文明與野蠻》,臉譜出版。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

2
2

文字

分享

1
2
2
原住民祖先見過明亮的南方之星?傳說是真的,而且超過一萬年!
寒波_96
・2023/11/08 ・2777字 ・閱讀時間約 5 分鐘

有些故事代代相傳之下,經歷非常漫長的時光。過去很久以後,五百年、三千年或一萬年,都已經是「很久很久以前」,難以判斷到底多久。2023 年發表的一項研究認為,澳洲南方的塔斯馬尼亞島,有個故事似乎能追溯到超過一萬年前。

塔斯馬尼亞的祖傳故事

大英帝國的調查隊抵達塔斯馬尼亞初期,估計島上約六千到八千位居民;原住民們統稱為「palawa」,不過又能分成多個有所區別的族群。英國人在公元 1803 年建立第一個殖民地,然後,不意外地起爭議。

走訪塔斯馬尼亞各地,留下許多紀錄的英國人魯賓遜先生(George Augustus Robinson)。圖/參考資料3

走訪塔斯馬尼亞各地,留下許多紀錄的英國人魯賓遜先生(George Augustus Robinson)。圖/參考資料3

殖民者與原住民的衝突加劇後,1823 到 1832 年間導致約兩百位殖民者及九百位原住民身亡。有些英國人希望能和平解決問題,最終勸誘加上強迫,1829 到 1835 年間將島上的原住民,都成功遷移到位於塔斯馬尼亞和澳洲之間,巴斯海峽的弗林德斯島(Flinders)。

-----廣告,請繼續往下閱讀-----

英國人認為這是一次「友善」的轉移任務。以當時狀況而言,確實算是相對和平的收場,但是慘遭強制搬遷的原住民依然損失慘重,人口以外,他們脫離原本的家園「Lutruwita」,文化、語言幾乎喪失殆盡。

遷徙計畫中,英國人魯賓遜先生(George Augustus Robinson)可謂關鍵角色。他走訪塔斯馬尼亞各地,說服原住民搬家,也對當地風俗文化非常好奇,留下大量紀錄。

這些 1830 年代的紀錄,就像塔斯馬尼亞傳統文化的切片。後來有些原住民重返塔斯馬尼亞,試圖擺脫殖民時,英國殖民者當初搜集原汁原味的資料,也成為重建傳統的材料之一。

魯賓遜等人搜集的紀錄來自多位原住民的說法,其中一個故事相當費解,至少當年魯賓遜無法理解,新問世的論文總算揭開奧秘。

-----廣告,請繼續往下閱讀-----

情節湊不上,是因為發生在太久之前

祖先的遷徙故事,提到他們來自一片大陸;後來大陸被海水淹沒,當時岸邊附近有冰山漂浮。那時望向南方的天空,可以見到一顆很亮的星。

塔斯馬尼亞與澳洲之間的地形。兩地之間原本存在陸橋,海水上升後形成巴斯海峽。圖/參考資料1

塔斯馬尼亞原住民一代一代仰望星空,也建立一些自己的天文學知識,被魯賓遜忠實收錄。那顆南方大星星卻令人費解,因為星空中根本沒有符合描述的那顆星。最可能的對象是老人星(Canopus),也稱為船底座α(α Carinae)。

星空中最亮的是天狼星,第二就是老人星,顯然它非常顯眼,可是位置明顯有差。是原住民唬爛,還是魯賓遜唬爛,或是魯賓遜紀錄錯誤呢?新的分析指出,他們都是正確的,因為一萬兩千年前的星空,老人星確實處於故事中的那個位置。

-----廣告,請繼續往下閱讀-----

首先,故事提到祖先前來的道路被大海淹沒,冰山在岸邊漂浮。對照現代科學知識,能輕易推論這講的是冰河時期結束,海平面上升,淹沒澳洲與塔斯馬尼亞之間的陸橋,形成巴斯海峽,讓塔斯馬尼亞成為一個四面環海的島。

接著是星空為什麼不同?從地球表面仰望夜空,星星的分布位置會由於「歲差」緩慢改變。回溯調整成一萬多年前的星空,老人星的確就在那兒。

地表很多位置都能見到南方明亮的老人星,不同民族、文化各有自己的想像。台灣人即使沒有親眼注意過,也肯定知道老人星,因為這就是福祿壽中的「壽星」,形象化叫作南極仙翁。

有趣的是,中文名字叫老人星,英文名字 Canopus 則來自特洛伊戰爭傳說中的一位年輕人,他是航海家,後來不幸在埃及被毒蛇咬死……所以中國想像這顆星是老人,歐洲卻想像是年輕小夥。

-----廣告,請繼續往下閱讀-----

回溯塔斯馬尼亞 1831 年 8 月 1 日,凌晨 5 點時的星空。圖/參考資料1

難以理解的時候,先忠實紀錄

考慮到魯賓遜紀錄的日期是 1830 年代,更加深故事的真實感,因為當時英國人還不知道「冰河時期結束導致海面上升」。阿加西(Louis Agassiz)首度宣稱冰川歷史的想法要等到 1837 年,更多年後取得較多支持,十九世紀後期才廣為人知。

魯賓遜等歐洲人對聽到的故事內容難以理解,他們或許會聯想到聖經的大洪水,但是完全想像不到冰河時期。所以這些內容,大概更能免於印象或偏好影響,反映忠實的紀錄。

據此推敲,塔斯馬尼亞祖傳故事講的是:「大約 1.2 萬年前海水上升之際,明亮的老人星在那個位置」。如果推論正確,這便是傳承 1.2 萬年的口述歷史,堪稱全人類罕見的文化遺產。

-----廣告,請繼續往下閱讀-----

有人或許會好奇,一些研究認為早在四萬年前,已經有人穿過澳洲,抵達塔斯馬尼亞。可是島上原住民的祖先故事,卻是一萬多年前?

我想可能是因為,記憶對於愈久遠的事情常常會愈壓縮,把更早發生的事情疊加到比較近期,印象很深的事件中。或許原住民的祖先很早就過去,但是海水上升淹沒陸橋令人印象太過深刻,就變成故事的素材。

另一件啟示是,世界上不知道的事情太多了,當你不太理解聽到什麼的時候,不要試著腦補,就照聽到的忠實紀錄下來!

延伸閱讀

參考資料

  1. Hamacher, D., Nunn, P., Gantevoort, M., Taylor, R., Lehman, G., Law, K. H. A., & Miles, M. (2023). The archaeology of orality: Dating Tasmanian Aboriginal oral traditions to the Late Pleistocene. Journal of Archaeological Science, 105819.
  2. Rising seas and a great southern star: Aboriginal oral traditions stretch back more than 12,000 years
  3. GEORGE AUGUSTUS ROBINSON
  4. 老人星名字來源神話人物 Canopus 維基百科

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 1
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

0
1

文字

分享

0
0
1
為什麼腿短短,走路還搖搖晃晃?解密企鵝賣萌的背後真相!——《鴿子為什麼要邊走邊搖頭?》
晨星出版
・2023/10/24 ・1652字 ・閱讀時間約 3 分鐘

企鵝搖搖晃晃地走路

圖/giphy

說到用兩隻腳走路的鳥類,就不得不提企鵝。企鵝用兩隻腳在冰上搖搖晃晃走路的樣子非常可愛。在水中卻可以自由自在地高速游泳、追捕魚,這兩種樣子帶給人的印象有非常大的不同。

話說,企鵝意外地可以走很長一段距離。牠們會在地上蒐集石頭來作巢,所以當然要可以走到築巢的地點。通常企鵝類的繁殖群會位在距離海岸線幾百公尺的地方,但有時會在距離海岸 3 公里以上的內陸,想像企鵝排成一列搖搖晃晃地走 3 公里,實在是可愛至極。

說是這樣說,但是走 3 公里,我們人類都覺得有點遠了,企鵝真的可以搖搖晃晃走過去嗎?

牠們的走路方式感覺效率很差,好像很累。企鵝走路時腳會使用的力量以及計算其所需能量的研究顯示,企鵝的走路方式一如外表印象,效率很差。大概所有人都會覺得「我想也是」吧,但我們不妨來仔細思考為什麼會效率很差。

-----廣告,請繼續往下閱讀-----
圖/giphy

鵝生好累!企鵝其實一直蹲著?

在討論企鵝的步行時,首先得要知道的是其獨特的體型。企鵝看起來是用兩隻腳站著,腳感覺極端的短。大概因為身上的毛色彷彿穿著燕尾服一樣,總覺得像是人類的喜劇演員一般。

但是牠嚴格說來並不是「站著」。看企鵝的骨骼圖(圖一)就很清楚。髖關節跟膝關節強烈彎曲的姿勢,以人類來說就是「蹲著」。換言之,企鵝時時刻刻都是蹲著的,連走路時也是蹲著的狀態。試著自己蹲著走路看看,就會像企鵝那樣搖搖晃晃地。牠們搖搖晃晃的姿態,背後的祕密就是體型與姿勢。

而由此延伸,企鵝的步行方式非常沒效率的理由,可能就是身體橫向搖擺和轉動幅度非常大。搖擺跟旋轉的動作,對前進而言怎麼看都是不必要的舉動,但是根據之前的研究,其實企鵝不搖晃反而效率會更差。之前也說過雙足步行的動能跟位能要有效率地轉換,才能有效率地運動,但企鵝似乎是用橫向搖擺的動作來進行這種能量轉換。

圖一、企鵝的樣子跟人很像,所以如果讓企鵝在山手線月台上排隊,也不會有人發現(右),但是如果看骨骼(左),企鵝蹲下來就可以跟站著的人類簡單區分開來。

短腿優先?

也就是說,企鵝走路效率不佳的理由,跟牠們這種體型跟姿勢有關。

-----廣告,請繼續往下閱讀-----

企鵝的腳確實很短,以現在還活著的企鵝種類來說,體型最大的皇帝企鵝的體重將近 20 公斤,和澳洲的平胸鳥類鶆䴈幾乎相同,然而比較這兩種鳥類的腿長的話,鶆䴈的髖關節大概在 80 公分高的位置,而皇帝企鵝大概在 30 公分高左右。明明體重差不多相同,企鵝的腳的長度卻只有鶆䴈的一半以下,步行效率差也是沒辦法的事。

本章已經反覆提過好幾次,腿愈長一般來說會步行速度愈快、效率也愈好,企鵝的短腳和蹲下的姿勢非常不適合走路,這點沒有人能否定。

圖/giphy

企鵝的腳會這麼短,恐怕是為了在寒冷地帶保住體溫。雖然也有棲息在熱帶的企鵝,但多數企鵝都棲息在極地,在水中跟地面上不失去體溫就是牠們最重要的課題。四肢末梢要是比較長,就會因為體積的表面積變大,容易失去體溫。所以在寒冷地帶演化的物種,耳朵等突出部位通常都會比較小。

雖然意外地能走很長距離,但企鵝仍然主要屬於在寒冷地區游泳的鳥類,為此演化出的短腿跟蹲著的姿勢,必須讓身體左右搖晃走路來補足才更有效率。

-----廣告,請繼續往下閱讀-----

——本文摘自《鴿子為什麼要邊走邊搖頭?》,2023 年 8 月,晨星出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----