0

0
0

文字

分享

0
0
0

原來我們一直在吃基改蕃薯?!

葉綠舒
・2015/05/13 ・1912字 ・閱讀時間約 3 分鐘 ・SR值 528 ・七年級

基改作物(Genetically modified organism,GMO)在過去這些年一直被追打,當然有一部份原因是因為生技公司硬推,堅持GMO是安全的,不需要額外的檢驗來確認其安全性等等;另一部份則是有些民眾與專家堅持GMO是「把細菌的基因放在植物裡」,是不自然的。

筆者認為基改作物還是需要審慎的檢驗,畢竟雖然天然的食物也有人對它過敏,但過敏的人有權利不去食用會產生過敏的食物,而食品中也都會列出這些可能的過敏原(如花生、核桃等)。以目前有些國家容許食品可不列出含有基改成分,其實是不安全也罔顧消費者的權利的。

農桿菌(Agrobacterium tumefaciens) credit:wiki
農桿菌(Agrobacterium tumefaciens)
credit:wiki

但是細菌的基因出現在植物中,真的就不自然嗎?別忘了農桿菌(Agrobacterium tumefaciensAgrobacterium rhizogenes)本來就是植物的病原菌喔!

農桿菌平常生活在土壤中,當植物的表皮出現傷口時,農桿菌很容易便隨著風被帶到傷口,而後便開始感染、繁殖(過程可參考「農桿菌的不確定性」一文)。由於農桿菌的感染需要將自己質體上的一段基因(即T-DNA)插入到宿主的基因體中,而一旦插入便不會移出,這段DNA便永久地留在植物的基因體中了。

-----廣告,請繼續往下閱讀-----

可能有讀者問,如果是這樣,為何過去沒有在植物中發現農桿菌的序列呢?

這是因為,農桿菌感染的只是一小部分植物的細胞,而這些細胞是「體細胞」,所以不會遺傳下來。現代生物科技製作基改作物,雖然也是感染體細胞,但接下來的篩選卻會將不帶有農桿菌基因的體細胞給去掉。

怎麼去掉的呢?原來科學家們為了方便篩選,在轉殖基因中加入了抗生素耐受性標籤(ARM,antibiotics resistant marker)。因此,在轉殖完成後,接下來只要把植物組織放在有抗生素的培養基上培養,便可以殺死沒有接受到轉殖基因的植物細胞了!

當然,在自然界,當農桿菌感染植物時,並不會帶有ARM基因。所以,我們只能以植物是否長瘤來做為辨別這株植物是否受到農桿菌感染;因為農桿菌插入植物的T-DNA中含有可以製造更多的生長素(auxin,包括吲哚乙酸等)以及細胞分裂素(cytokinin),使得帶有T-DNA的植物細胞可以加速分裂增生。當局部的植物細胞分裂速度比其他細胞要快得多結果當然就是長瘤囉!而T-DNA還帶有合成農桿菌的食物的基因,所以這些植物的瘤其實就是農桿菌的殖民地,農桿菌在此建立農場,生產他們需要的食物、繁衍子孫呢!

-----廣告,請繼續往下閱讀-----

不過,如果植物在被農桿菌感染後,在某個時間點農桿菌消失了(不要問我怎麼消失的),而所有的細胞還是都帶有T-DNA,因為大家都長得一樣快,所以就不會看到長瘤的現象囉!

講了這麼多,其實是因為最近華盛頓大學(University of Washington, Seattle)在進行蕃薯(Ipomoea batatas)的RNA定序時發現了一些與農桿菌非常相似的序列。接著他們便進行基因體的定序,結果發現了更多農桿菌的基因:包括了合成生長素的酵素基因等等。

而後續的實驗也證明了這些農桿菌的基因確實是位於蕃薯上,而且也有表現出來。這些農桿菌基因分成兩段,其中第一段在研究團隊偵測的291個蕃薯的栽培種中都可以找到,但在野生種中沒有發現;第二段則分佈得較不廣泛,在217個蕃薯品種(包括栽培種與野生種)中,只有45個找到。

這些好吃的蕃薯,原來也都是「基改」作物? credit:農委會
這些好吃的蕃薯,原來也都是「基改」作物?
credit:農委會

為什麼第一段農桿菌基因不出現在野生種中呢?筆者認為,由於第一段農桿菌基因中包括了製作生長素的酵素基因,這可能會使蕃薯長得很快,但是在野地裡因為土壤的養分不可能一直都很充足,長得快當然也意味著需要更多養分,這可能會使得這些蕃薯在自然界反而競爭不過他們長得慢一點的兄弟們。但是長得快卻是人類喜歡的特點,於是就在選種中被特意地留下來了。第二段農桿菌基因可能因為與生長速度無關,但也與蕃薯本身的生存競爭力無關,所以雖然還存在於野生種與栽培種中但分佈的並不十分廣泛。

-----廣告,請繼續往下閱讀-----

基改作物的定義是什麼?如果以「帶有農桿菌序列」來做為標準,那麼我們已經吃天然基改蕃薯數千年(臺灣大約在明清時接觸到蕃薯,所以應該是五六百年);而這些蕃薯因為帶有農桿菌的基因,所以長得特別快,也受到人類的喜愛而在選種的過程中被保留了下來。

筆者無意為基改作物辯解,也不是基改作物的擁護者;只是覺得這個例子可以讓我們再思考一下。在漫長的人類演化過程中,我們一直在嘗試新的事物/食物;有些對大部分的人都有害,有些則對大部分的人有好處。在二十一世紀,每天都有新事物被發明出來的時刻,我們除了立法規範外,是否應該用較為開放的心胸去評斷這些新事物呢?

原刊轉載自作者部落格

參考文獻:

-----廣告,請繼續往下閱讀-----
文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
驅動未來科技創新的運算平台領導廠商—Arm
鳥苷三磷酸 (PanSci Promo)_96
・2023/10/26 ・2594字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 Arm 委託,泛科學企劃執行。

Arm(安謀)是一家來自英國提供處理器 IP 架構設計的矽智財公司,你可能不清楚 Arm 在做什麼?但你可能在最近的新聞中聽過它,而且,你可能每天都在使用他們的產品!

實際上,90% 的智慧型手機使用的 CPU 晶片,其指令架構集(ISA)都是採用 Arm 架構,例如部分蘋果產品所使用的晶片、Android 手機常見的驍龍系列,以及聯發科技推出的天璣系列晶片,Arm 都是這些處理器架構的主要供應商。

每片 CPU 上,都有 ISA。圖/pixabay

不過這個指令架構集(ISA)到底是什麼?為什麼每台手機甚至電腦都要有呢?

-----廣告,請繼續往下閱讀-----

什麼是指令架構集(ISA)?

指令集架構(ISA)是電腦抽象模型的一部分,它定義了 CPU 如何被軟體控制。ISA 作為硬體和軟體之間的介面,既規定了處理器能夠執行的任務,又規定了如何執行這些任務。ISA 提供了使用者與硬體互動的唯一途徑。ISA 可以被視為程式設計師的手冊,透過 ISA,組合語言程式設計師、編譯器編寫者和應用程式程式設計師方能與機器溝通。

處理器的構建和設計稱為微架構(micro-architecture),微架構告訴您特定處理器的工作原理,例如,Arm Cortex-A53 和 Cortex-A73 都是 Armv8-A 架構的實現,這意味著它們具有相同的架構,但它們具有不同的微架構。

目前常見的 ISA 有用於電腦的 Intel/AMD x86_64 架構,以及在行動裝置是主流的 Arm 架構。而 Arm 本身不製造晶片只授權其架構給各個合作夥伴,授權的架構也被稱為「矽智財」(Semiconductor intellectual property core,簡稱 IP),並由合作夥伴依據規格打造合規的矽晶片。

Arm 成為全球關注的焦點

今年九月,Arm 在美國紐約那斯達克交易所掛牌上市,吸引大量投資者的目光,除了節能的設計,Arm 持續提升產品效能,使得 Arm 架構具有強大的競爭優勢,讓 Arm 的技術和產品,除了在行動裝置與物聯網應用佔據了重要地位,也在後續發展的其他產品持續協助產業推動技術革命。

-----廣告,請繼續往下閱讀-----

最早,Arm 架構是為了依靠電池運作的產品而設計的,隨著這十多年來的轉變,行動裝置成為主流,而 Arm 架構也成為了行動裝置的首選。

除了 Arm 原本行動裝置的通用 CPU 領域,Arm 亦著手開發專用 CPU 的架構,這些專用 CPU 的使用情境包含雲端基礎設施、車用和物聯網(IoT)。

現在 Arm 除了在手機處理器上有超過 90 % 的市占率外,在物聯網與嵌入式應用上有 65% 的市占率,目前車用晶片也逐步轉向由軟體來定義汽車的電子電氣架構,這凸顯了軟體在未來汽車架構的重要性。「嵌入式邊緣裝置使用的可擴充開放架構 (Scalable Open Architecture for Embedded Edge;SOAFEE) 」建立以雲原生的系統架構,透過雲端先行開發軟體,協助汽車產業業者在產品正式商品化前,能在基於 Arm 架構的晶片上進行虛擬環境測試,目前 Arm 在車用晶片上,市佔率超過四成。

由感測器至智慧製造系統設計,Arm 與生態系密切合作,推動技術創新

在雲端運算上,Arm 也推出了 Arm Neoverse 技術平台來協助雲端伺服器的晶片設計,並配合新推出的 Arm Neoverse 運算子系統(CSS),來簡化專用晶片的設計複雜性,減少晶片設計花費的時間。

-----廣告,請繼續往下閱讀-----

在 Arm 日益完整的產品組合下,透過與廣大生態系合作,能為市場提供許多軟硬體解決方案。首先,在行動裝置上,Arm 近乎霸占市場。而在 AI 發展與網路速度持續提升的趨勢下,許多運算都可以在雲端完成,最近的實例為 Nvidia 的 GeForce Now,只需一台文書機,就能暢玩 3A 大作,或是 Google 的 Colab,讓 AI 能在文書機上完成運算,造福了沒有高級顯卡的使用者。

未來,邊緣運算將陸續解開雲端運算的束縛,而 Arm 也在前期投入了雲端基礎開發,配合行動裝置的市占率,無論如何 Arm 都將在未來科技業占有一席之地。

Arm Tech Symposia 將在 11 / 1 與 11 / 2 盛大舉辦

2023 Arm 科技論壇(Arm Tech Symposia)即將在 11/1 台北萬豪酒店,11/2 新竹國賓飯店盛大舉辦!這是 Arm 每年最重要的實體活動之一,以【Arm is Building the Future of Computing】為主軸,探討在 AI 時代來臨之際,Arm 最新的技術如何驅動創新科技,為次世代的智慧運算、沉浸式視覺、AI 應用、自主體驗等帶來更多可能性。 

這次 Arm 科技論壇將圍繞在車用、物聯網、基礎設施、終端產品等熱門 AI 應用領域,並邀請台積公司、Cadence、瑞薩電子、新思科技、CoAsia 擎亞半導體等各領域專家,帶來產業第一手趨勢洞察。

-----廣告,請繼續往下閱讀-----

其次,也會分享 Arm 的新技術在 AI 的應用,包含如何透過軟體定義汽車降低汽車電子系統核心 EUC 整合的複雜性,同時維持汽車資安;以及介紹專為特定工作負載而設計的運算方式,如何讓企業不受外在環境與技術影響,處理更大規模的數據。

今年 11/1 在台北場的座談會,主題為 Edge computing on AI,探討邊緣運算在人工智慧上的應用,以及人工智慧對於半導體產業以及晶片研發帶來的影響,邀請 iKala 共同創辦人暨執行長程世嘉、聯發科技執行副總經理暨技術長周漁君,以及 Arm 台灣總裁曾志光與會。

Arm 科技論壇 11 月 1 日台北萬豪酒店。 圖 / Arm 

11/2 在新竹場的座談會主題為 The Keys of Automotive Transformation,探討汽車產業的轉型趨勢,邀請 Anchor Taiwan 執行長邱懷萱、友達光電執行長暨總經理/達擎董事長柯富仁、波士頓顧問公司董事總經理暨資深合夥人徐瑞廷,以及 Arm 台灣總裁曾志光與會。

Arm科技論壇 11月 2 日新竹國賓飯店。 圖 / Arm 

無論你是硬體工程師、軟體開發人員、晶圓代工、晶片設計商、OEM/ODM 還是相關產業人士,都能在這場論壇中互相交流,充實自己。

-----廣告,請繼續往下閱讀-----

2023 Arm 科技論壇報名連結

活動結束後填寫問卷的朋友,還有機會現場抽中 iPhone 15 Pro、 iRobot Roomba j7+ 掃地機器人、Sony WH-1000XM5 無線耳機、Dyson Purifier Big+Quiet Formaldehyde 空氣清淨機等精美好禮喔!

報名截止倒數中,現在就立刻報名吧!

0

4
0

文字

分享

0
4
0
看過這張腫瘤照嗎?經不起驗證的基改研究,成功用恐懼搏版面│科學家與媒體的橋樑(五)
台灣科技媒體中心_96
・2020/09/14 ・4447字 ・閱讀時間約 9 分鐘 ・SR值 569 ・九年級

-----廣告,請繼續往下閱讀-----

編按:充斥在新聞媒體或社群上的偽科學謠言,或似是而非的「新發現」,通常都以誇張聳動的標題吸引讀者的目光,並讓多數人深信不疑。誰能擔任這個破除迷思的角色,成為科學家與媒體傳播間的橋樑,為閱聽者導正視聽呢?這一系列文章,將介紹英國科學媒體中心(SMC)如何運作,打擊新聞上的偽科學、假訊息。

2012 年,法國的分子生物學家吉爾烈 ── 艾希.席哈理倪(Gilles-Eric Séralini)在《食品和化學毒理學》(Food and Chemical Toxicology)期刊上發表研究,其中宣稱,食用「耐年年春除草劑基因改造玉米」(以下簡稱 NK603 基改玉米)的大鼠,與對照組的大鼠相比,長出較多腫瘤且多重器官衰竭。[1] 席哈理倪透過記者會所公布的長了腫瘤的實驗鼠照片,在當天就以最快的速度傳播出去。

圖/原論文

實驗期為2年,著重「長期」影響的研究引注目

這項研究當然不是無中生有,也理應喚醒眾多基因研究的科學家,更審慎面對基因改造作物可能帶來的風險。尤其席哈理倪這篇研究的特殊之處,在於他的研究著重在「長期」的影響。

根據經濟合作暨發展組織(OECD),以及其他國際組織如歐洲食品安全局(European Food Safety Authority,簡稱 EFSA)、聯合國農糧組織(Food and Agriculture Organization,簡稱 FAO)、世界衛生組織(World Health Organization,簡稱 WHO)等機構的標準,關於基改作物的健康安全評估,在商業化之前的最後階段審核,都是基於為期 90 天的研究結果。

實驗期間的長短差異,的確讓席哈理倪的研究獲得公眾矚目,因為席哈理倪 2012 年的實驗是以 2 年為期,來觀察大鼠食用 NK603 基改玉米所帶來的健康影響。而這篇文章所要呼籲的,即是當時對基改作物的安全性評估不夠確實,以致讓有癌症風險的 NK603 基改玉米上市、供人食用。

-----廣告,請繼續往下閱讀-----

選用的實驗大鼠天生易長腫瘤,研究遭質疑

同一年,歐盟執行委員會(European Commission)就要求歐洲食品安全局重新檢視席哈理倪的研究;9 月,歐洲食品安全局做出的回應與其他批評者的觀點大多一致:實驗設計不良、樣本不足,沒有足夠證據能支持這篇研究所做之結論。[2]

最主要的爭點在於,其實驗所用的「史一道二氏大鼠」(Sprague-Dawley rat)僅適用於短期實驗,因這品系的大鼠相較於另一種常用的實驗大鼠維斯塔漢(Wistar Han),在 1 歲之後更容易產生腫瘤。[3] 另一個爭點是,實驗樣本和對照組樣本不足。

席哈理倪的實驗中,每一實驗組只有 10 隻大鼠,然而依照經濟合作暨發展組織所制定國際通用的研究標準,若是研究化學毒性,那麼每一實驗組需要 20 隻大鼠(雌雄各半);若是研究致癌性,每一實驗組需 100 隻大鼠(雌雄各半)。且每一實驗組,都應有一對照組作為比較標準。

然而,在席哈理倪的實驗設計中, 9 組實驗組僅有一組對照組。這兩項爭點,是主要的研究缺陷。因為實驗設計不嚴謹,無法排除大鼠隨機產生腫瘤的可能性,更無法獲知史一道二氏大鼠的腫瘤,是否因食用 NK603 基改玉米所致。[4]

-----廣告,請繼續往下閱讀-----
史一道二氏大鼠。
圖/wikimedia

質疑批評者受基改公司收買,研究者未正面回應爭議點

然而,針對歐洲食品安全局提出的疑問,席哈理倪不僅沒有提供更多證據,反倒另外發表了一篇針對各種批評的回應文章。[5] 內容主要認為 NK603 基改玉米缺乏長期致癌性研究,並且也質疑歐洲食品安全局的雙重標準,像是他所使用的大鼠品系和孟山都(Monsanto)提交研究所使用的品系相同(實驗期間 90 日),前者通過審核、他的研究卻受批評,以及這份研究並非「致癌性」研究,所以並不適用經濟合作暨發展組織對於樣本數所設立的實驗標準。

甚至,他在文章中質疑這些批評他的人,是因為在爭取基改作物的專利又或是受孟山都收買,從而質疑他的研究成果。

其實這篇文章的回覆,如果仔細檢視說法,並對應兩方批評與各自的證據,不難發現雙方都有部分論點站得住腳。

舉例來說,的確,在當時的規範,基改作物從實驗室到田間,從田間到餐桌,雖然做了環境評估與健康評估,的確忽略了較長期的健康影響研究,這點是席哈理倪的呼籲有理。而他的研究,就專業的科學評斷標準來看,既是處處缺失,也禁不起科學檢驗,而擁有如此缺陷的科學研究,並不值得引起國際社會的恐慌。

-----廣告,請繼續往下閱讀-----

以當時各界留下的資料與紀錄,席哈理倪恐是早早有意引起這場爭戰。

科學研究最難的就是:反覆辯證、自我更新

科學界的研究要獲得公眾賞識並不容易,因為單一科學研究的解釋力有限,要從各國各地的實驗室在不斷實驗失敗、成功、發表,再經由下一組人驗證、失敗、再發表,一路走到公眾有感,那是一段非常遙遠的路程。少至 10 年,更多是數以萬計的科學人在實驗室中漫長的研究歲月。

這類反覆辯證、建立、推翻,又再重頭來過的科學進程,雖然緩慢,但在現代科學的同儕審查和科學檢證之下,有其必要。能在規範之下自我更新,是科學研究最為難能之處。

有多神秘?記者拿研究文章竟要簽「保密協定」

席哈理倪在 2012 年發表這份研究之前,[6] 與其他任何一次的科學研究發表一樣,寄出了採訪邀請,但邀請中卻無研究細節與內容,記者無從在記者會之前,預先拿到資料以做準備。如果記者要求預先拿到研究文章,必須簽署保密協定:不得依此聯繫任何其他的科學研究者

-----廣告,請繼續往下閱讀-----

席哈理倪延宕了研究文章的發表時間,直到確定他的團隊所製作的影片《我們都是實驗鼠嗎?》(Are we all guinea pigs?)能及時發表。


各家媒體在不一定讀過研究內容,就算讀過也無從查證的狀況之下,接受這支影片的洗禮。而遠遠在這之前,席哈理倪就撰寫了數本書,陳述基改作物之惡。[7] 當時他的研究以及後續處理,都不正面回應實驗設計的缺失,包括樣本數遠遠不足以支撐研究結論,和使用不適宜研究設計的大鼠、讓結果無論如何傾向有利自己的論述。

相反地,他的回應中,把矛頭指向基因改造作物的跨國企業孟山都,讓自己的研究「不當」沾染道德色彩,更將所屬的研究團隊以被迫害之姿與大眾連結。

孟山都公司。
圖/wikimedia

恐懼蔓延!爭議研究影響各國基改作物進口政策

席哈理倪用聳動的方式呈現研究,意有所指某個事件內含著不公義,再包裹著科學糖衣來宣傳自我意識形態,可悲的是,這些招數都非常有效 。

若要說,透過現代媒體技術並操弄民眾心理,最成功行銷研究的例子非席哈里倪莫屬 。有人認為,在這起「新聞事件」之後,啟發了法國運動者在同一年破壞了基改黃豆的寄售店,俄國和哈薩克禁止席哈理倪研究中的基改玉米進口,肯亞全面禁止基改作物進口,秘魯則是禁止了接下來 10 年的基改作物進口。[8] 而至今,基改作物有致癌疑慮的恐懼,仍深深烙印在世界各地的民眾心裡。

-----廣告,請繼續往下閱讀-----

歐盟科學界對席哈理倪研究的回應,是在 2014 年同時啟動三個計畫,依照最嚴謹的實驗規格,重做席哈理倪的實驗,用相同的基改玉米、一樣的兩年時程,足夠的樣本數,耗費 4 年時間,想要找出一個真正可予公憑而非心證的科學答案。這三個計畫分別稱為「基改作物風險評估和證據溝通」(GRACE)、「基改作物 90+」(GMO90plus)和「基改作物兩年期安全測試」(G-TwYST)[9] 且所有的原始資料都全面公開,讓有意重複驗證的研究者能自由取用。

歐盟科學界重做同樣實驗,結論大不相同

「基改作物 90+」的成果於 2018 年 12 月發表,使用實驗長度是原本的 90 天標準。結果發現,席哈理倪的研究結果,在此研究中未被證實[10] 今(2019)年,「基改作物兩年期安全測試」成果發表,席哈理倪的研究結果再一次未被證實。[11]

席哈理倪在自己架設的網站上,駁斥這兩份駁斥他研究成果的研究,同時發布新聞稿。[12] 他攻擊的其中一個重點是 ,大鼠品系不同。他認為,他的研究所使用的史一道二氏大鼠對致癌物質較為「敏感」(sensitive),而歐盟科學家使用的維斯塔漢大鼠對致癌物質「較不敏感」。巧言令色地迴避了自己遭受的質疑,而將嚴謹的實驗設計扣上了不實指控。

試想,如果實驗選用原本就易得腫瘤的大鼠,該如何得知 NK603 基改玉米是否會對人體健康產生影響?這樣的詭辯,仍獲得一定程度的媒體曝光量。

-----廣告,請繼續往下閱讀-----

面對爭議話題,科學家如何與著急的民眾對話?

「科學界的爭辯」在各種簡化之後,被呈現在媒體上,吸引了大眾目光。一份禁不起科學檢驗的研究報告,如同謠傳麻疹腮腺炎德國麻疹混合( MMR ) 疫苗會導致自閉症的偽科學資訊,傳遞至世界各個角落,再利用民眾的直覺想像與恐慌,透過社群網路散播出去。

事實上,無論是支持基改作物,又或反對基改作物的雙方論述,不僅需要公眾辯論,更需要雙方支持者願意理解與溝通。善用大眾語言一向不是多數科學家的專長,理解公眾的擔憂與科學研究之間存在著鴻溝,而如此鴻溝必須被回應,更是多數科學家仍然需要再進修的課題。

英國科學媒體中心(Science Media Centre,簡稱SMC)紮紮實實打了基改作物這場仗,至於成效如何,請待下一篇文章再來爬梳英國的科學家,是如何在 SMC 的協助之下,進入大眾溝通的媒體場域。而基改作物的支持者與反對者,屏除席哈理倪無法被重複驗證的科學研究與話術之外,又是根據何種理由繼續論辯。

註釋

  1. 該篇研究引起社會重視後,在 2012 年因歐盟食品安全局重新評估該研究,並認為其實驗設計與數據,難以達成該研究宣稱的結論,而於 2013 年遭到期刊撤回,2014 年又由《歐洲環境科學期刊》(Environmental Sciences Europe)重新刊登。
  2. EFSA (2012). “Statement of EFSA. Final review of the Séralini et al. (2012a) publication on a 2-year rodent feeding study with glyphosate formulations and GM maize NK603 as published online on 19 September 2012 in Food and Chemical Toxicology.”EFSA Journal 10(11): 2986.
  3. Weber K. (2017). “Differences in types and incidence of neoplasms in Wistar Han and Sprague–Dawley rats.” Toxicol Pathol 5:64–75.
  4. 同前引註 2。
  5. Seralini, G. E.,Mesnage, R.,Defarge, N., Gress, S., Hennequin, D., Clair E, Malatesta, M., and Vendômois, J.S. ( 2013) “Answers to critics: why there is a long term toxicity due to NK603 Roundup-tolerant genetically modified maize and to a Roundup herbicide.” Food and Chemical Toxicology 53: 461–468.
  6. Gerasimova, K. 2018. Advocacy science: Explaining the term with case studies from biotechnology. Sci Eng Ethics 24:455–477. Accessed: 2018-10-14.
  7. 同前引註。
  8. 同前引註。
  9. G-TwYST (2014). “About G-TwYST.” 2019/07/26 檢閱。
  10. Coumoul, X. et al. (2018). “The GMO90+ project: absence of evidence for biologically meaningful effects of genetically modified maize-based diets on Wister rats after 6-months feeding comparative trial.” The Journal of Toxicological Sciences 168(2): 315–338.
  11. Steinberg, P. et al. (2019). “Lack of adverse effects in subchronic and chronic toxicity/carcinogenicity studies on the glyphosate-resistant genetically modified maize NK603 in Wistar Han RCC rats” Archives of Toxicology 93(4): 1095-1139.
  12. GMOSeralini (2018) “EU Funded Rat Feeding Studies Do Not Refute the Séralini Study.” 2019/07/26 檢閱。
台灣科技媒體中心_96
46 篇文章 ・ 328 位粉絲
台灣科技媒體中心希望架構一個具跨領域溝通性質的科學新聞平台,提供正確的科學新聞素材與科學新聞專題探討。

0

0
0

文字

分享

0
0
0
原來我們一直在吃基改蕃薯?!
葉綠舒
・2015/05/13 ・1912字 ・閱讀時間約 3 分鐘 ・SR值 528 ・七年級

-----廣告,請繼續往下閱讀-----

基改作物(Genetically modified organism,GMO)在過去這些年一直被追打,當然有一部份原因是因為生技公司硬推,堅持GMO是安全的,不需要額外的檢驗來確認其安全性等等;另一部份則是有些民眾與專家堅持GMO是「把細菌的基因放在植物裡」,是不自然的。

筆者認為基改作物還是需要審慎的檢驗,畢竟雖然天然的食物也有人對它過敏,但過敏的人有權利不去食用會產生過敏的食物,而食品中也都會列出這些可能的過敏原(如花生、核桃等)。以目前有些國家容許食品可不列出含有基改成分,其實是不安全也罔顧消費者的權利的。

農桿菌(Agrobacterium tumefaciens) credit:wiki
農桿菌(Agrobacterium tumefaciens)
credit:wiki

但是細菌的基因出現在植物中,真的就不自然嗎?別忘了農桿菌(Agrobacterium tumefaciensAgrobacterium rhizogenes)本來就是植物的病原菌喔!

-----廣告,請繼續往下閱讀-----

農桿菌平常生活在土壤中,當植物的表皮出現傷口時,農桿菌很容易便隨著風被帶到傷口,而後便開始感染、繁殖(過程可參考「農桿菌的不確定性」一文)。由於農桿菌的感染需要將自己質體上的一段基因(即T-DNA)插入到宿主的基因體中,而一旦插入便不會移出,這段DNA便永久地留在植物的基因體中了。

可能有讀者問,如果是這樣,為何過去沒有在植物中發現農桿菌的序列呢?

這是因為,農桿菌感染的只是一小部分植物的細胞,而這些細胞是「體細胞」,所以不會遺傳下來。現代生物科技製作基改作物,雖然也是感染體細胞,但接下來的篩選卻會將不帶有農桿菌基因的體細胞給去掉。

怎麼去掉的呢?原來科學家們為了方便篩選,在轉殖基因中加入了抗生素耐受性標籤(ARM,antibiotics resistant marker)。因此,在轉殖完成後,接下來只要把植物組織放在有抗生素的培養基上培養,便可以殺死沒有接受到轉殖基因的植物細胞了!

-----廣告,請繼續往下閱讀-----

當然,在自然界,當農桿菌感染植物時,並不會帶有ARM基因。所以,我們只能以植物是否長瘤來做為辨別這株植物是否受到農桿菌感染;因為農桿菌插入植物的T-DNA中含有可以製造更多的生長素(auxin,包括吲哚乙酸等)以及細胞分裂素(cytokinin),使得帶有T-DNA的植物細胞可以加速分裂增生。當局部的植物細胞分裂速度比其他細胞要快得多結果當然就是長瘤囉!而T-DNA還帶有合成農桿菌的食物的基因,所以這些植物的瘤其實就是農桿菌的殖民地,農桿菌在此建立農場,生產他們需要的食物、繁衍子孫呢!

不過,如果植物在被農桿菌感染後,在某個時間點農桿菌消失了(不要問我怎麼消失的),而所有的細胞還是都帶有T-DNA,因為大家都長得一樣快,所以就不會看到長瘤的現象囉!

講了這麼多,其實是因為最近華盛頓大學(University of Washington, Seattle)在進行蕃薯(Ipomoea batatas)的RNA定序時發現了一些與農桿菌非常相似的序列。接著他們便進行基因體的定序,結果發現了更多農桿菌的基因:包括了合成生長素的酵素基因等等。

而後續的實驗也證明了這些農桿菌的基因確實是位於蕃薯上,而且也有表現出來。這些農桿菌基因分成兩段,其中第一段在研究團隊偵測的291個蕃薯的栽培種中都可以找到,但在野生種中沒有發現;第二段則分佈得較不廣泛,在217個蕃薯品種(包括栽培種與野生種)中,只有45個找到。

-----廣告,請繼續往下閱讀-----

這些好吃的蕃薯,原來也都是「基改」作物? credit:農委會
這些好吃的蕃薯,原來也都是「基改」作物?
credit:農委會

為什麼第一段農桿菌基因不出現在野生種中呢?筆者認為,由於第一段農桿菌基因中包括了製作生長素的酵素基因,這可能會使蕃薯長得很快,但是在野地裡因為土壤的養分不可能一直都很充足,長得快當然也意味著需要更多養分,這可能會使得這些蕃薯在自然界反而競爭不過他們長得慢一點的兄弟們。但是長得快卻是人類喜歡的特點,於是就在選種中被特意地留下來了。第二段農桿菌基因可能因為與生長速度無關,但也與蕃薯本身的生存競爭力無關,所以雖然還存在於野生種與栽培種中但分佈的並不十分廣泛。

基改作物的定義是什麼?如果以「帶有農桿菌序列」來做為標準,那麼我們已經吃天然基改蕃薯數千年(臺灣大約在明清時接觸到蕃薯,所以應該是五六百年);而這些蕃薯因為帶有農桿菌的基因,所以長得特別快,也受到人類的喜愛而在選種的過程中被保留了下來。

筆者無意為基改作物辯解,也不是基改作物的擁護者;只是覺得這個例子可以讓我們再思考一下。在漫長的人類演化過程中,我們一直在嘗試新的事物/食物;有些對大部分的人都有害,有些則對大部分的人有好處。在二十一世紀,每天都有新事物被發明出來的時刻,我們除了立法規範外,是否應該用較為開放的心胸去評斷這些新事物呢?

-----廣告,請繼續往下閱讀-----

原刊轉載自作者部落格

參考文獻:

文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。