6

4
4

文字

分享

6
4
4

器官移植里程碑!豬心移植成功了,然後呢?

TingWei
・2022/02/13 ・4185字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

2022/3/10 更新: 雖然本次案例中的豬心移植並未發生超級排斥反應,可謂跨過一大門檻。有了豬心,甚至讓貝內特得以回家與家人共度時光。但在進行手術兩個月後,他的病情仍舊惡化,近日報導傳出貝內特於 2022 年 3 月 8 日死亡。 目前確切的死因仍舊不明,尚待團隊發表調查結果。

新聞連結:https://www.bbc.com/news/health-60681493

2022 年 1 月,COVID-19 疫情陰影之下,器官移植的技術翻過了重大的一頁。美國馬里蘭大學宣布完成首例基改豬心移植人體的手術,至目前為止,患者尚未出現排斥現象,也創下心臟「異種移植」(Xenotransplantation)在人類身上成功的首例。

救人性命的「器官移植」面臨哪些挑戰?

細胞、組織、器官、系統,這是我們在學習人體構造的時候就耳熟能詳的層級概念。如果將動物體視作一個密切協作的機械,那麼各個器官就會像是其中的關鍵零件:心臟主要輸送血液到全身上下,肺臟從事氣體交換,腎臟將血液的雜質濾出製成尿液,肝臟則主司代謝調控身體中的各種物質。這些器官只要有一個失去功能,就會導致生物體的死亡。但既然是「零件」,現今的醫學已經可以在一定的程度上做到「更換零件」,讓生命延續下去──也就是「器官移植」。

圖/Pexels

在台灣,自從 1968 年台大醫學院李俊仁教授完成亞洲第一例活體腎臟移植手術,開啟器官移植的新頁迄今,器官的捐贈與移植已經一路擴展到心臟、肺臟、肝臟、胰臟、腸。雖然我們將器官移植比喻為換零件,然而實質上器官移植所要克服的難關,遠比機械換零件要嚴苛、複雜許多。

首先第一道難關,就是「器官排斥」。人體的免疫系統會辨識外來物質。在大多數的情況下,這些外來物屬於會讓身體生病的「病原體」,而免疫系統的工作便是不管是細菌、病毒、寄生蟲,一律加以攻擊,避免進一步感染。因此,移植時放入的器官,也會被免疫系統視作「外來物」攻擊。這樣的反應,就是一般所說的「移植排斥」(transplant rejection)或是器官排斥。

一般來說,器官移植之前,會進行幾項配對檢測,包括 ABO 血型、組織抗原(major histocompatibility complex,MHC)交叉試驗,以盡可能找到合適的配對、減少免疫反應發生的機率與嚴重程度 [註1]。而即使經過這些配對檢測,器官的受贈者也需終身服用「抗排斥藥物」免疫抑制劑,抑制原有的免疫反應,在器官排斥與外來感染間取得平衡。

此外,器官移植的另一道難關,就是如何取得合適的器官。隨著器官移植的技術發展,肝臟與腎臟尚有機會接受活體捐贈,但如心臟等器官,卻必須來自腦死判定的捐贈者,數量稀少且不穩定。以台灣 2020 年統計,共有 79 例心臟捐贈,然而全台等待移植者接近 200 人,許多患者只能坐等時間流逝,寄望大愛的遺贈能有機會降臨,拯救自己一命。

-----廣告,請繼續往下閱讀-----

捐贈的器官不夠,以至於許多病人在等待的過程中逐步邁向死亡,這也是為什麼人們把腦筋動到其他動物身上,尤其是豬。

使用豬作為器官來源有哪些缺優點?

事實上,異種移植完全不是什麼新概念,人類利用動物製劑作為醫療材料已經超過百年。早在 1930 年代,我們就使用豬胰島素治療糖尿病;而使用豬的心臟瓣膜來修補瓣膜出現問題的人心,也已經有幾十年的歷史。然而,如前面所述,人與人之間的器官尚且有排斥的情況,更何況來自豬或者狒狒的器官,其表面的組織抗原跟人體差異更大,排斥反應會更劇烈、更難以抑制。

可是,使用豬隻作為器官來源,仍有許多優點。靈長類動物(如黑猩猩或狒狒)與人的親緣較為接近,但其飼養與繁殖相對於豬困難許多,而且靈長類多為保育類,存在更多倫理上的限制。此外,豬在生理與解剖結構上與人類足夠接近,扣除排斥的問題,豬隻的器官相當有機會勝任維繫人體功能的角色。

豬在生理與解剖結構上與人類接近,其器官有機會勝任維繫人體功能的角色。圖/Pexels

因此,長久以來豬隻基因改造(genetic modification, GM)的一個重要議題,就是如何使其更「人類化」,以避免排斥 [註2]。隨著對基因體表現的瞭解逐年深入,加上近十年來 CRISPR 技術發展,因應器官移植需求而打造的「基因編輯豬」,從科幻構想,一躍而成為發展中的現實。

使用 CRISPR-Cas9 培育出基因改造豬,登上 2017 年《Science》封面。圖/《Science》

現階段,有許多團隊都在發展供器官移植的基因改造豬,除了聯合治療公司(United Therapeutics)以外,還包括 eGenesis 研發的無豬內源性反轉錄病毒(PERV)豬、紐西蘭 NZeno 的迷你豬等,或許還有更多尚未浮現檯面的團隊。

第一例豬心移植可以告訴我們的事

2022 年 1 月 7 日,57 歲的大衛.貝內特(David Bennett)在馬里蘭大學醫學中心(UMMC)成功獲移植了一顆經基因改造的豬心,這顆豬心來自聯合治療公司旗下的生技公司 Revivicor 的基因改造豬。這個系列的基因改造豬有 10 個基因位點經過改造,其中剔除了 3 個豬原有的基因,以免引發人體免疫反應,然後加入 6 個人類基因,讓身體願意接受外來器官,最後一個改造則讓豬心不會對生長激素持續反應,讓心臟可以維持在人體所需的大小。

-----廣告,請繼續往下閱讀-----

在此之前(2021 年),紐約大學朗格尼醫學中心(NYU Langone Medical Center)曾將同系列豬隻的腎臟接到兩位已被判定腦死的病人身上,確認了豬腎可以在人身上運作,不但沒有發生排斥反應,而且代謝運作良好。相關研究人員曾進一步向美國 FDA 申請進行豬心的臨床試驗,但是遭到駁回。根據馬里蘭大學醫學中心移植小組外科醫師曼蘇爾.莫希丁(Muhammad Mohiuddin)的說法,團隊被要求先完成 10 次豬心移植到狒狒身上的實驗,才可以進一步進行人體試驗。以靈長類動物如狒狒作為移植模型,以瞭解潛在的副作用與改進之道,是這類研究常見的作法。2000 年國際心肺移植學會(ISHLT)曾提出綱要,認為接受移植的靈長類動物需有 60% 存活超過 3 個月,存活個體至少 10 隻,且顯然有機會繼續活下去,才能考慮進入臨床試驗。

然而,貝內特的特殊狀況讓此次的豬心移植成為可能。貝內特患有心律不整,無法外接機械式的心臟輔助裝置,加上有過不遵醫囑的醫療紀錄,使其獲准得到心臟的機會微乎極微 [註3]。而貝內特的心臟狀況若不移植就只能等死,因此 FDA 特別通過了本次的豬心使用。貝內特獲得的是死中求生的機會,而對研究人員來說,則是獲得了豬心在人類患者身上如何運作的臨床資料。

使用靈長類動物進行研究一舉,讓科學家獲得許多異種移植的重要資訊,比如從針對狒狒的研究中,獲得了不少異種移植的用藥資訊,更發現早期接受移植的狒狒,都由於豬心快速生長而死亡。然而,許多研究人員或許已經非常期待將動物實驗逐步轉向臨床,因為將豬心放到健康狒狒身上所得到的數據,仍與重病纏身的人類有很大的不同。無論是免疫或藥理方面,研究人員當然更希望獲得與人體有直接關聯的資訊。

豬心移植創下先河,進入臨床仍待研究

然而,要看到豬隻的器官正式被納入臨床移植使用,恐怕還有許多問題有待釐清。這些問題包括(但不限於)使用異種器官潛藏的感染風險,縱使這些基因改造豬可以被養在高規格的飼養環境,避開一般豬隻帶有的病毒與細菌,豬隻基因體內的「內源病毒」對人體的風險仍有待釐清 [註4]。即使豬隻經過多種基因編輯,並且順利熬過異種移植的急性排斥期後,是否還有潛在的問題需要克服,目前尚無人得以逆料。

圖/Science

此外,隨著醫療設備近二十年的發展,使用血液透析(替代腎臟)或機械輔助設備協助血液運行(替代心臟)的方法亦越來越常見。或許,在等待豬心獲得臨床認可,加入器官庫的行列的同時,醫學技術亦會有所發展,使得器官需求不再如今日這般迫切。由於腎臟或肝臟可由活體移植、不似心臟需求極端迫切;因此肝腎兩者的異種移植研發進展或許將較為緩慢。目前,豬隻的器官移植還處在動物實驗的階段,尚未步入臨床,在人體的研究資料尚且闕如的情況下,相關單位應如何考量患者需求、判斷移植風險,亦將成為倫理與制度需要克服之一大考驗。

-----廣告,請繼續往下閱讀-----

醫療技術進展,本就來自於在各種未知中承擔風險、勇敢做出前人未曾做過的事。我們感念這其中的各種參與者,不管是技術研發人員、受試者或是醫師的參與,也希望未來在器官移植的領域,能有更多的好消息,讓那些苦苦等待的人們,盡早獲得救贖。

註解

  1. 器官移植的排斥反應通常分成超急排斥反應(hyperacute rejection),發生在器官接上血管後的數分鐘到數小時內;急性排斥反應(acute rejection),發生在數周到一年內;慢性排斥反應(chronic rejeaction),發生在移植數月甚至數年之後。因此貝內特此案例之「成功」僅代表現階段並未發生排斥反應,且豬心基本上可在人體運作,未來是否可能發生慢性排斥反應尚未可知。
  2. 異種移植的排斥反應通常更劇烈也更複雜。
  3. 器官移植排序的規定各國、各州不同,有些地方的規範會考量患者遵循醫囑的程度或求生意志等。臺灣的規範可見財團法人器官捐贈移植登錄中心 – 附表(各器官分配辦法) 
  4. 2017 年已有團隊培育出內源病毒去活化的豬寶寶(詳見:豬隻器官移植新突破:CRISPR技術攻破了「豬內源病毒」的瑪利亞之牆!),但本次的移植豬心應無經過相關的處理。

參考資料

  1. 醫學與倫理:美國首例豬心器官移植面臨的三大倫理爭議 – BBC News 中文
  2. 全球首例!豬心移植人體手術完成,可望解決器官短缺問題 – INSIDE
  3. First pig-to-human heart transplant: what can scientists learn? (nature.com)
  4. In a First, Man Receives a Heart From a Genetically Altered Pig – The New York Times (nytimes.com)
  5. 豬腎成功移植人體,異種移植會成為救命稻草嗎? | GeneOnline News
  6. 《基因編輯大革命》: 「基因編輯豬」是器官移植新希望? The News Lens 關鍵評論網
  7. 豬隻器官移植新突破:CRISPR技術攻破了「豬內源病毒」的瑪利亞之牆! – PanSci 泛科學
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 6
TingWei
13 篇文章 ・ 15 位粉絲
據說一生科科的生科中人,不務正業嗜好以書櫃堆滿房間,努力養活雙貓為近期的主要人生目標。

0

1
0

文字

分享

0
1
0
海廢問題怎麼解?竟然有人回收漁網做筆電!?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/17 ・4433字 ・閱讀時間約 9 分鐘

本文由 HP 委託,泛科學企劃執行。 

海廢問題怎麼解?竟然有人回收漁網做筆電!?

你知道嗎?地球上最大的垃圾場,就是我們的大海。全世界一般依據位置,將海洋廢棄物分為海岸、海漂與海底三大類。英國麥克阿瑟(Ellen MacArthur)基金會曾預測,我們的海洋,到 2050 年會變成垃圾比魚多的塑膠濃湯。其中,最有名的就是太平洋垃圾帶(Great Pacific Garbage Patch),它的面積有 3 個法國和 44 個台灣那麼大。

到底是誰在亂丟垃圾?垃圾與它們的產地在哪裏?

科學家發現,漁業大國貢獻了不少垃圾,台灣更是榜上有名!雖然從陸地而來的垃圾量也很可觀,但來自漁業活動、源於海洋的廢棄物如漁網漁具,更難回到岸邊,因此成為海上最主要的垃圾。科學家推算,每年大概總計有四成的漁網漁具會掉到海中。

從太平洋垃圾帶撈回來的垃圾分析,其中 46% 就是廢棄漁網。科學家還一一檢視垃圾上的標籤字眼,發現源頭是五個北太平洋的漁業大國——日本、中國、韓國、美國及台灣。更別説全球還有另外四個海洋垃圾帶,所有垃圾量加起來勢必會更驚人。

-----廣告,請繼續往下閱讀-----

但也先別急著怪漁業從業人員,因為他們也不一定是故意要亂丟垃圾的。瞬息萬變的大海,本來就不是一個好作業的地方,破壞、遺失設備是常有的事。不過海洋垃圾問題如此棘手,難道就沒有解決方案嗎?

圖/shutterstock

人類與垃圾帶的對決,勝算到底有多大?

其實已經有不少人投身清除海洋垃圾的工作。大家還記得太平洋上的海洋吸塵器嗎?這個由「海洋清理行動( The Ocean Cleanup )」發起、號稱史上最大海廢清除計劃,雖然一開始出師未捷身先死,下水沒幾個月就故障,但後來升級調整後,已在今年 5 月完成執行第 100 次的任務。

除了清除海上的垃圾,從河川攔截也很重要。The Ocean Cleanup 還研發了攔截者(The Interceptor),它是一艘太陽能自動船,船頭設有一道垃圾集中屏障,能將垃圾引導進入船上的收集系統再集中處理。

其他活躍在海洋垃圾清除前線的,還有來自澳洲的全自動海洋垃圾桶 Seabin,被裝設在港口碼頭的它,透過底部幫浦製造水流,讓海廢可以從水面被吸入,小至 2 毫米的微塑膠也可被收集到其纖維網袋內。印度的 AlphaMERS 團隊,則設計了攔截漂浮垃圾的柵欄與串聯清掃系統,可以清除河川與湖泊表面的廢棄物。有標誌性大眼、水車造型的 Mr. Trashweel,被設置在美國巴爾的摩港口,結合太陽能與水力發電,使用清除海上油污的攔油索,將垃圾引導到它的垃圾箱中,每年可攔截 500 噸垃圾。荷蘭的泡泡屏障 the Bubble Barrier ,設計原理也相當聰明,它會從水底產生「氣泡簾」,引導塑料垃圾到水面上,再利用水流把垃圾推向捕獲系統,克服了大型撈網會阻擋船隻或海底生物,以及高維護更替成本的問題。

-----廣告,請繼續往下閱讀-----

廢漁網改頭換面?

不過要讓海廢界的奪命殺手——廢棄漁網「洗心革面」,在技術上有一大難關,因為漁網主要是以尼龍製作的。尼龍是聚硫胺高分子(Polyamide),在分子主鏈上因為有大量高極性的化學基,分子鏈間作用力較强,還能在產生氫鍵的同時,使結構排列整齊,造就了它優秀的韌性强度。

圖/HP

但如果用回收寶特瓶的「物理回收」,即沒有改變其聚合型態的方式來回收尼龍,尼龍的分子鏈就會斷裂,大幅影響纖維的機能性,走上被降級使用一途。好在如今已有廠商研發出「化學回收」尼龍的技術。收集來的廢棄漁網先被清洗、切碎成段,接著被高溫熔融,再透過像「術式反轉」的解聚(depolymerization)、分解、精煉及純化工序,讓尼龍從聚合物還原到單體狀態。這些原料單體會再被聚合,製造成尼龍再生粒子。被混煉改質、强化性能的粒子重新進行紡絲後,會形成全新的尼龍纖維,就可以被無限循環利用啦!

這種做法,可以大大節省原本用來製作原生尼龍的石化資源、減少碳排放,還可以讓廢棄漁網重獲新生。再生尼龍可以拿來做衣服、眼鏡,甚至可以搖身一變,變成你桌上的筆電!

「親愛的,我把漁網做成筆電了!」是誰這麼瘋?

是誰想到要把廢棄漁網做成筆電?早在 2019 年,HP 就領先全球,推出全球第一款使用海洋回收塑料的筆記型電腦,打破我們對海洋廢棄物的想象。在 2023 年,更進一步海洋垃圾中難以忽視的狠角色廢棄漁網,打造出 HP EliteBook 1040 G11頂級輕薄商務筆電!

-----廣告,請繼續往下閱讀-----

HP EliteBook 1040 G11 貫徹環保永續理念,是世界上第一款採用從海洋中回收的廢棄漁網製作成鍵盤的筆電。除了讓廢棄漁網重獲新生,外殼也採用部分回收鎂合金製作,外盒包裝 100% 採用可回收材質。而且我敢保證大家絕對想不到,這台筆電的材質,竟然還包括回收的家庭用油!

是的,你沒聽錯,就是 cooking oil!食用油經過回收,可以製成生質材料聚羥基烷酸酯 (Polyhydroxyalkanoates,PHA)。PHA 是目前市面上唯一可在海洋分解之生質塑膠,可謂是新興生質塑膠材料中的明日之星!雖然使用回收材質會提高成本,但 HP 持續以實際行動,支持減碳、森林復育及循環經濟,創造永續發展。

圖/HP

你也許有疑問,用海洋廢棄物製作的筆電,性能靠不靠得住?別擔心,HP 重視環境保護,效能也不馬虎!HP EliteBook 1040 G11 完美展現 AI 潮流下劃時代的超效能,搭載 Intel® Core™ Ultra7 H 處理器,再搭配 Intel® Arc™內顯,3 大 AI 引擎實現高效能低功耗,大大提升生產力。

使用筆電時最怕遇到兩大痛點,第一是筆電太重,第二就是續航力。如果為了縮小電池、減輕筆電重量,又不得不犧牲筆電的續航力。不過這些問題,在 HP EliteBook 1040 G11 身上能同時迎刃而解,兩全其美。AI 效能與電力的平衡密不可分,透過 HP Smart Sense 智慧軟體,搭配優秀的散熱功能管理,再加上全新高密度渦輪電扇,筆電續航力不僅大大提升,更能降低機身溫度 40%,機身還能維持 1.18 KG 的優雅輕薄,讓你無論通勤出差,都輕鬆隨行。

-----廣告,請繼續往下閱讀-----

這台筆電,還有什麽神奇的地方?

你是不是還在擔心電腦被駭客入侵、行蹤被偷窺,所以逼不得已,在筆電的視訊鏡頭上貼上醜醜又黏糊糊的膠帶呢?那一定是因為你還不認識 HP 全新的防窺功能!

HP EliteBook 1040 G11 搭載了全新的 Sure View Gen 5 Panel,它經過五個 Generation 的進化,終於達成完美防窺使用體驗。一鍵防窺的功能,只要一 off 就可以分享視訊,一 on 就可以確實防窺,成為你個人隱私的最佳守衛。

除了駭客病毒,你可能也害怕筆電上沾染讓你生病的病毒!這台全新冰川白配色的筆電,不只是外形設計靚麗,更採用防污油墨塗層技術,可以抗指紋沾附,而且全機殼都可以使用酒精擦拭,中看又中用,還是筆電界的衛生扛壩子!

圖/HP

HP EliteBook 1040 G11  還不止這些!

想了解更多商品 ► https://www.hp.com/tw-zh/laptops/business/elitebooks/1000-series.html
它可以搭配操作體驗超直覺觸控面板,讓你一 Touch 即通,用過的人都説他們再也回不去了。
不僅如此,HP EliteBook 1040 G11 還是你拼事業的好夥伴!標配 5 百萬畫素IR人臉辨識鏡頭,完全是為了專業會議協作而生。無論你在什麼地方、什麼時候進行線上會議,它的動態色彩調校功能,可以在背光或低光源時,自動追蹤取景,配置 Poly Studio 及 HP 的 AI 降噪技術,最佳化你的視訊會議體驗。你再也不必擔心那些視訊會議畫面模糊、聲音不清楚的尷尬時刻,可以在客戶或老闆面前自在表現。

步入 5G 萬物聯網的時代,HP EliteBook 1040 G11 也搭載 5G 廣域無線網路 (Wireless Wide Area Network,WWAN),使用者可以透過 SIM 卡或是 eSIM 服務直接連網。5G WWAN 的內建,讓整套資訊安全迴路更加穩健,是你追求資安的最安心選擇。

參考資料:

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
207 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
物理學四大神獸「薛丁格的貓」,其實是在嘲諷量子力學?物理學家對波函數機率詮釋的爭辯
PanSci_96
・2024/07/27 ・2152字 ・閱讀時間約 4 分鐘

在上一篇,我們探討了德布羅意提出物質波的概念,指出微觀粒子如電子也具有波的特性,這一點已被實驗所證實。

延伸閱讀:量子革命的開端——物質波的發現

然而,故事並未因此結束。隨著相關研究的深入,物理學家對物質波的啟示展開了激烈辯論。一些在量子力學發展初期做出卓越貢獻的物理學家並不認同量子理論的主流觀點,甚至提出了薛丁格的貓這一思想實驗,愛因斯坦也曾言道:「上帝不會擲骰子。」

究竟,發生了什麼事情呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從確定性到不確定性

在 20 世紀以前,古典物理學基於決定論,認為掌握某一時刻系統中所有物體的狀態,就能根據物理定律預測系統未來的演變。比如,當一顆蘋果從樹上掉下,我們可以根據物理法則計算出它掉到地面的時間和速度。

-----廣告,請繼續往下閱讀-----

然而,量子力學的觀點則不同,認為量子系統的行為無法完全確定,只能用機率描述。這一觀點源自德布羅意提出的物質波概念。

1926 年,奧地利物理學家薛丁格發表了薛丁格方程式,用來描述物質波的波函數。他成功地用該方程式解釋了氫原子的光譜能量,開啟了量子力學的新篇章。然而,波函數的物理意義一度難以被理解。

幾個月後,德國物理學家玻恩提出了波函數的機率詮釋,認為波函數與量子系統的狀態機率有關。當我們測量量子系統時,系統可能呈現不同狀態,其機率由波函數決定。這一觀點對當時的物理學界造成了巨大衝擊。

決定論的終結?波函數的機率詮釋與衝擊

玻恩的機率詮釋表明量子系統在測量後呈現的狀態無法事先確定,只能了解系統可能狀態的機率大小。這種理解框架革命性地挑戰了決定論的世界觀,部分物理學家因此感到不滿。德布羅意和薛丁格對此持保留態度,而愛因斯坦則認為量子力學還不夠完備,堅信「上帝不會擲骰子」。

-----廣告,請繼續往下閱讀-----

儘管有反對聲音,量子力學的機率詮釋在經過多次驗證後成為主流觀點。量子系統在測量前的狀態是未確定的,所有可能狀態以疊加形式同時存在,而測量後才會呈現其中一種。這一觀點對傳統的決定論提出了挑戰。

根據量子力學的主流說法,量子系統的狀態在測量之前是未確定的,所有可能狀態以疊加形式同時存在,測量後才會呈現其中一種。這就像在抽卡時,不同的卡都有一定機率會出現,但具體出現哪一張卡,要等抽取後才知道。

此外,在量子系統中,有些物理量無法同時精確測量,例如粒子的位置和動量,這稱為不確定性原理。對愛因斯坦等支持決定論的科學家來說,無法確切預測和精確測量物理系統狀態的量子理論是不夠完備的。他們認為在量子力學背後,應該還有一些隱藏的變量,導致我們無法完整預測和測量量子系統。

1935年,愛因斯坦在與薛丁格的通信中,提出一個想法來質疑量子理論的疊加態概念:想像一桶品質不穩定的火藥,經過一段時間後,可能會爆炸,也可能不會爆炸,那麼這桶火藥豈不是處於爆炸與未爆炸之間的疊加狀態?

-----廣告,請繼續往下閱讀-----

受到愛因斯坦的啟發,薛丁格進一步提出了「薛丁格的貓」思想實驗:把一隻貓放進鐵製房間,裡面有測量輻射的偵測器和少量放射性物質。放射性物質衰變是隨機的,處於衰變與未衰變的疊加態。如果放射性物質衰變,偵測器會觸發機關釋放毒氣,貓就會死亡;如果沒有衰變,貓則活著。整個系統的波函數處於貓活著和貓死亡的疊加狀態。

薛丁格提出了著名的思想實驗「薛丁格的貓」,反駁量子力學的疊加態說法。圖/Envato

這一思想實驗引發了人們對量子理論的深刻思考。薛丁格提出這個實驗,是為了強調量子疊加態的荒謬性,反對量子理論的測量詮釋。對愛因斯坦和薛丁格來說,物理真實應該是確定的,而不是機率和疊加的。

世界是決定論還是機率論?

薛丁格的貓思想實驗提出後,引發了更多的討論和質疑。例如:既然量子系統的狀態要測量之後才會確定,那麼貓的死活是要我們打開房間觀察後才會知道嗎?還是說,貓自己本身就可以是一個測量者呢?需要有一個生命意識去測量它嗎?到底,貓的死活是在什麼時候確定的呢?

儘管目前學界對測量問題還不算有一致公認的答案,但我們對量子力學的認知,已經比薛丁格那個時候增加許多,所以愛因斯坦和薛丁格對量子力學的質疑,以及薛丁格的貓引發的疑竇,我們已有能力給出大致確定但不完全塵埃落定的答覆。

-----廣告,請繼續往下閱讀-----

在下一集,我們將繼續探討這些問題,「上帝真的不玩骰子嗎?」

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1238 篇文章 ・ 2376 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

20
0

文字

分享

1
20
0
不抽菸也會得肺癌?PM2.5 如何「叫醒」沉睡的癌細胞?
PanSci_96
・2024/06/25 ・4403字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

不好意思,你很可能會得這種癌症。其實,我也是。

它就是台灣十大癌症榜首,肺癌。

現在,根據 2023 年 11 月衛福部發布的最新統計數字,肺癌一年的新增病人數已經超越大腸直腸癌,成為台灣每年癌症發生人數之最,堪稱臺灣人的「國民病」。

可怕的是,肺癌在癌症之中有三個之最:死亡率最高、發現時已經是晚期的比例最高、醫藥費也最高。現在再加上發生人數最高,堪稱從癌症四冠王。

-----廣告,請繼續往下閱讀-----

你說肺癌是抽菸的人的事?錯!台灣抽菸人口比例在全球排名 30,比日本、韓國、中國和多數歐洲國家都還低!顯然抽菸並不是肺癌的唯一主因!那難道是二手菸?還是空污惹的禍?還是台灣人的基因天生脆弱?我們到底要怎麼做才能遠離肺癌?

臺灣人的肺癌特別在哪?癌症和基因有關嗎?

根據衛福部國健署的說法,肺癌人數的增加,其實與 2022 年 7 月開始推動肺癌篩檢的政策有關。

隨著篩檢量的上升,近年內肺癌的確診人數預期還會再往上。

原來是因為篩檢量啊,那就不用擔心了。但換個角度想,這才是肺癌最可怕的地方,它可能已經存在在很多人身體裡,而我們卻沒能發現它。肺癌早期幾乎沒有症狀,高達 50% 的患者發現時已經是第 4 期。屆時不只肺部遍布腫瘤,癌細胞可能還轉移到大腦、骨頭等器官,讓治療變得加倍困難。

-----廣告,請繼續往下閱讀-----

對付肺癌,最關鍵點是愈早發現愈好。按照國健署統計,如果第 1 期就發現,5 年存活率可達九成以上,第 2 期發現降為六成,第 3 期存活率大約三成,一旦到第 4 期,僅僅剩下一成。

當然,最好的方法,就是做好預防,打從一開始就不讓癌細胞誕生。

那麼我們就要先了解問題到底是出在環境,還是你、我身體中的基因? 過去關於肺癌的遺傳研究,多半以歐美國家為主,套用到我們身上總有些牛頭不對馬嘴。幸好,我這裡一份以臺灣人為主角的大規模研究報告,將為我們揭露答案。

這份研究是由中央研究院團隊主導,結合臺灣大學、臺北醫學大學、臺中榮總等單位的研究,還登上生物領域頂尖期刊《Cell》2020 年 7 月的封面故事。非常具有權威性,不能不看。

-----廣告,請繼續往下閱讀-----

同時,這也是全球第一次完整剖析東亞地區肺癌的成因。他們的主題很明確:「為什麼不吸菸也會得肺癌?」

在西方,肺癌病人裡面只有 20% 左右的人不吸菸。但是在臺灣,卻有超過一半的肺癌病人都不抽菸,顯示有其他致癌要素潛伏在基因裡作怪。另外,臺灣肺癌病人的男女比例和西方人也大不同,臺灣女性通常更容易罹患肺癌。 為了瞭解肺癌,研究團隊取得肺癌病人的腫瘤和正常組織,解讀 DNA 序列和蛋白質表現量,最後鑑定出 5 種和西方人明顯不同的變異特徵。

其中最受關注的,是一種 APOBEC 變異,因為它有可能是臺灣女性為什麼容易罹患肺癌的關鍵。

這種變異特徵屬於內生性的,也就是人體機制自然產生的 bug。

-----廣告,請繼續往下閱讀-----

APOBEC 不是指單一基因,它是細胞內負責編輯 mRNA 的一組酵素,包含 11 個成員。主要功用是把胞嘧啶核苷酸(C)轉變尿嘧啶核苷酸(U)。簡單來說,APOBEC 原本是細胞正常活動的一環。但因為它有改寫核酸序列的能力,在 DNA 修復過程同時活躍時,就很有可能出事。這就像是一個創意豐富的阿嬤,看到破損的古畫,就在沒和別人討論的情況下上去東湊西補,用自己的方式重新修復了這件藝術。一個與原本不同的突變細胞可能就這樣產生了。

APOBEC 變異在臺灣女性病人身上特別明顯,舉例來說,60 歲以下沒有吸菸的女性患者,就有高達四分之三有這種變異特徵。研究團隊認為,APOBEC 出錯造成的基因變異可能是導致女性肺癌的關鍵。 除了內生性變異,另外一個容易導致肺癌發生的,就是周遭環境中的致癌物。

致癌物有哪些?

研究團隊總結出 5 種肺癌危險物質:烷化劑、輻射線、亞硝胺(Nitrosamine)、多環芳香烴(PAHs),還有硝基多環芳香烴(Nitro-PAHs)。

其中,亞硝胺類化合物主要來自食品添加物和防腐劑,多環芳香烴大多來自抽菸和二手菸,硝基多環芳香烴則是透過汽機車廢氣和 PM2.5 等毒害肺部。

-----廣告,請繼續往下閱讀-----
圖/unsplash

他們進一步分析,大略來說,女性在不同年紀,致癌因素也有差異。60 歲以下的女性肺癌病人,APOBEC 特徵的影響比較明顯;70 歲以上的女性患者,和環境致癌物的相關度比較高。 既然找到致癌原因,我們該如何著手預防呢?你知道肺癌,其實有疫苗可打!?

空氣污染和肺癌有關嗎?有沒有癌症疫苗?

想預防肺癌,有 2 種對策,一種是「打疫苗」,一種是「抗發炎」。

是的,你沒聽錯,英國牛津大學、跟佛朗西斯.克里克研究所,還有倫敦大學學院在 2024 年 3 月下旬公布,他們正在研發一款預防性的肺癌疫苗,就叫 LungVax。它所使用的技術,和過往牛津大學協同阿斯特捷利康藥廠製造 COVID-19 AZ 疫苗時的方法相似。

他們已經募到一筆 170 萬英鎊的經費,預計未來兩年資金陸續全數到位,第一批打算先試生產 3000 劑。不過,關於這款肺癌疫苗,目前透露的消息還不多,我們挺健康會持續追蹤這方面研究的進展。

-----廣告,請繼續往下閱讀-----

在疫苗出來之前,我們還有第二個對策:抗發炎。發炎和肺癌有什麼關係呢?這就要先回到一個問題:為什麼空污會提高得肺癌的機率呢?

一個很直觀又有力的推測是,空污會導致肺部細胞 DNA 突變,因此而催生出腫瘤。

圖/unsplash

但是修但幾勒,科學要嚴謹,不能只看結果。科學史上發生過很多次表象和真實截然不同的事件,空污和肺癌會不會也是這樣?

2023 年 4 月《Nature》的一篇封面故事,明確地說:Yes!肺癌真的和我們想的不一樣。

-----廣告,請繼續往下閱讀-----

其實早在 1947 年,就有以色列生化學家貝倫布魯姆(Isaac Berenblum)質疑主流觀點,他提出的新假設是:除了 DNA 突變以外,癌細胞還需要其他條件才能坐大。用白話說,就是肺癌是個會兩段變身的遊戲副本頭目,正常細胞先發生變異,接著再由某個條件「扣下扳機」,突變細胞才會壯大成腫瘤。

也就是説,只要攔住任一個階段,就有機會能防範肺癌。假如這論點正確,全球肺癌防治的方向將會直角轉彎。

《Nature》的研究支持這個假說,扭轉了過去 70 多年來的看法。在這項里程碑研究中,臺灣也是要角。

時間回到 2020 年,《Nature Genetics》上發表了一份針對 20 種致癌物質的研究報告,包括鈷、三氯丙烷和異丙苯等,但注意,這研究指出這些致癌物大多沒有增加實驗鼠的 DNA 變異量。

這個現象實在太違反直覺,過了 3 年,疑團還是懸而未決。直到《Nature》的跨國研究出爐,才解開部分謎底。

英國倫敦佛朗西斯.克利克研究所主導 2023 年的一項研究,他們鎖定對象為肺腺癌。肺腺癌是典型「不吸菸的肺癌」,台灣每 4 個肺癌病人就有 3 人是肺腺癌,尤其是女性肺腺癌患者有高達九成不抽菸。 為了抽絲剝繭探明空污和肺癌的關係,研究團隊聚焦在肺腺癌患者常發生的表皮生長因子受體基因變異,縮寫 EGFR。他們收集英國、加拿大、韓國和臺灣四國大約 3 萬 3 千名帶有 EGFR 突變的病人資料,進行深入分析,並且發現 PM2.5 和肺腺癌發生率有顯著關聯。研究團隊進一步用小鼠做試驗,把小鼠分成吸入和未吸入 PM2.5 兩組,結果發現吸入組更容易長出惡性腫瘤。

圖/pexels

到目前為止都還不算太意外,然而,團隊切下肺部細胞、分析 DNA 以後發現,DNA 的突變量居然沒有明顯增加!但是有另一件事發生了:堆積在肺的 PM2.5 顆粒會吸引免疫細胞從身體各處聚集過來,並分泌一種叫做 IL-1β 的發炎因子,導致肺組織發炎。

這下子有趣了,根據克利克研究所團隊的檢驗結果,估計每 60 萬個肺部細胞有 1 個帶有 EGFR 突變,這些細胞在發炎環境裡會快馬加鞭生長。相反的,當他們給小鼠注射抑制 IL-1β 的抗體,肺癌發病率就跟著下降。 《Nature》一篇評論引述美國加州大學舊金山分校分子腫瘤學專家波曼(Allan Balmain)的看法。他總結說,空污致癌的主要機制,可能不是因為空污誘發了新突變,而是持續發炎會刺激原本已帶有突變的細胞生長。換句話說,本來在熟睡的壞細胞會被發炎反應「叫醒」。

這會給肺癌防治帶來巨大衝擊,這樣一來,問題就從「用公衛或醫療方法防止 DNA 變異」變成了「如何抑制發炎」。

人體的細胞每天不斷分裂,用新細胞替換老舊細胞。但是這就像工廠生產線,良率無法百分百,組裝幾十萬產品難免會做出幾件瑕疵品,也就是帶有基因突變的細胞。換句話說,從自然界角度來看,DNA 變異是一種自發現象,醫療手段實際上幾乎不可能阻止。

但是,降低發炎卻是有可能做到的,例如注射抑制 IL-1β 因子的抗體。不過,就公共衛生來說,要給幾千萬人施打抗發炎因子藥物根本不切實際,因為太花錢,而且也可能造成其他的副作用。 波曼在《Nature》評論裡建議,透過簡易可行的飲食方式來降低體內發炎,或許有機會減少某些癌症的風險。這也就是說,科學家應該重新回來審視,怎樣把每天的生活點滴點石成金變成防癌手段。

圖/unsplash

這也等於預告了肺癌的下一階段研究方向,除了內科、外科醫療科技持續精進,尋求預防惡性疾病的最佳飲食要素,也成為聚焦重點。

也想問問你,關於肺癌,你最看好的下一個突破是什麼呢?

  1. 希望有篩檢技術 2.0,不但百發百中,如果連X光都不必照,只要抽血就能順便驗出有沒有癌細胞,那該多好。
  2. 當然是癌症疫苗,最好是能一勞永逸。
  3. 科學證實有效的抗發炎防癌食物組合,我一定立刻加入菜單,不過還是希望味道要好吃啦。

留言告訴我們你的想法吧,如果你覺得這集的內容特別實用,記得分享給你的親朋好友!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1
PanSci_96
1238 篇文章 ・ 2376 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。