6

4
4

文字

分享

6
4
4

器官移植里程碑!豬心移植成功了,然後呢?

TingWei
・2022/02/13 ・4185字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

2022/3/10 更新: 雖然本次案例中的豬心移植並未發生超級排斥反應,可謂跨過一大門檻。有了豬心,甚至讓貝內特得以回家與家人共度時光。但在進行手術兩個月後,他的病情仍舊惡化,近日報導傳出貝內特於 2022 年 3 月 8 日死亡。 目前確切的死因仍舊不明,尚待團隊發表調查結果。

新聞連結:https://www.bbc.com/news/health-60681493

2022 年 1 月,COVID-19 疫情陰影之下,器官移植的技術翻過了重大的一頁。美國馬里蘭大學宣布完成首例基改豬心移植人體的手術,至目前為止,患者尚未出現排斥現象,也創下心臟「異種移植」(Xenotransplantation)在人類身上成功的首例。

救人性命的「器官移植」面臨哪些挑戰?

細胞、組織、器官、系統,這是我們在學習人體構造的時候就耳熟能詳的層級概念。如果將動物體視作一個密切協作的機械,那麼各個器官就會像是其中的關鍵零件:心臟主要輸送血液到全身上下,肺臟從事氣體交換,腎臟將血液的雜質濾出製成尿液,肝臟則主司代謝調控身體中的各種物質。這些器官只要有一個失去功能,就會導致生物體的死亡。但既然是「零件」,現今的醫學已經可以在一定的程度上做到「更換零件」,讓生命延續下去──也就是「器官移植」。

圖/Pexels

在台灣,自從 1968 年台大醫學院李俊仁教授完成亞洲第一例活體腎臟移植手術,開啟器官移植的新頁迄今,器官的捐贈與移植已經一路擴展到心臟、肺臟、肝臟、胰臟、腸。雖然我們將器官移植比喻為換零件,然而實質上器官移植所要克服的難關,遠比機械換零件要嚴苛、複雜許多。

首先第一道難關,就是「器官排斥」。人體的免疫系統會辨識外來物質。在大多數的情況下,這些外來物屬於會讓身體生病的「病原體」,而免疫系統的工作便是不管是細菌、病毒、寄生蟲,一律加以攻擊,避免進一步感染。因此,移植時放入的器官,也會被免疫系統視作「外來物」攻擊。這樣的反應,就是一般所說的「移植排斥」(transplant rejection)或是器官排斥。

一般來說,器官移植之前,會進行幾項配對檢測,包括 ABO 血型、組織抗原(major histocompatibility complex,MHC)交叉試驗,以盡可能找到合適的配對、減少免疫反應發生的機率與嚴重程度 [註1]。而即使經過這些配對檢測,器官的受贈者也需終身服用「抗排斥藥物」免疫抑制劑,抑制原有的免疫反應,在器官排斥與外來感染間取得平衡。

此外,器官移植的另一道難關,就是如何取得合適的器官。隨著器官移植的技術發展,肝臟與腎臟尚有機會接受活體捐贈,但如心臟等器官,卻必須來自腦死判定的捐贈者,數量稀少且不穩定。以台灣 2020 年統計,共有 79 例心臟捐贈,然而全台等待移植者接近 200 人,許多患者只能坐等時間流逝,寄望大愛的遺贈能有機會降臨,拯救自己一命。

-----廣告,請繼續往下閱讀-----

捐贈的器官不夠,以至於許多病人在等待的過程中逐步邁向死亡,這也是為什麼人們把腦筋動到其他動物身上,尤其是豬。

使用豬作為器官來源有哪些缺優點?

事實上,異種移植完全不是什麼新概念,人類利用動物製劑作為醫療材料已經超過百年。早在 1930 年代,我們就使用豬胰島素治療糖尿病;而使用豬的心臟瓣膜來修補瓣膜出現問題的人心,也已經有幾十年的歷史。然而,如前面所述,人與人之間的器官尚且有排斥的情況,更何況來自豬或者狒狒的器官,其表面的組織抗原跟人體差異更大,排斥反應會更劇烈、更難以抑制。

可是,使用豬隻作為器官來源,仍有許多優點。靈長類動物(如黑猩猩或狒狒)與人的親緣較為接近,但其飼養與繁殖相對於豬困難許多,而且靈長類多為保育類,存在更多倫理上的限制。此外,豬在生理與解剖結構上與人類足夠接近,扣除排斥的問題,豬隻的器官相當有機會勝任維繫人體功能的角色。

豬在生理與解剖結構上與人類接近,其器官有機會勝任維繫人體功能的角色。圖/Pexels

因此,長久以來豬隻基因改造(genetic modification, GM)的一個重要議題,就是如何使其更「人類化」,以避免排斥 [註2]。隨著對基因體表現的瞭解逐年深入,加上近十年來 CRISPR 技術發展,因應器官移植需求而打造的「基因編輯豬」,從科幻構想,一躍而成為發展中的現實。

使用 CRISPR-Cas9 培育出基因改造豬,登上 2017 年《Science》封面。圖/《Science》

現階段,有許多團隊都在發展供器官移植的基因改造豬,除了聯合治療公司(United Therapeutics)以外,還包括 eGenesis 研發的無豬內源性反轉錄病毒(PERV)豬、紐西蘭 NZeno 的迷你豬等,或許還有更多尚未浮現檯面的團隊。

第一例豬心移植可以告訴我們的事

2022 年 1 月 7 日,57 歲的大衛.貝內特(David Bennett)在馬里蘭大學醫學中心(UMMC)成功獲移植了一顆經基因改造的豬心,這顆豬心來自聯合治療公司旗下的生技公司 Revivicor 的基因改造豬。這個系列的基因改造豬有 10 個基因位點經過改造,其中剔除了 3 個豬原有的基因,以免引發人體免疫反應,然後加入 6 個人類基因,讓身體願意接受外來器官,最後一個改造則讓豬心不會對生長激素持續反應,讓心臟可以維持在人體所需的大小。

-----廣告,請繼續往下閱讀-----

在此之前(2021 年),紐約大學朗格尼醫學中心(NYU Langone Medical Center)曾將同系列豬隻的腎臟接到兩位已被判定腦死的病人身上,確認了豬腎可以在人身上運作,不但沒有發生排斥反應,而且代謝運作良好。相關研究人員曾進一步向美國 FDA 申請進行豬心的臨床試驗,但是遭到駁回。根據馬里蘭大學醫學中心移植小組外科醫師曼蘇爾.莫希丁(Muhammad Mohiuddin)的說法,團隊被要求先完成 10 次豬心移植到狒狒身上的實驗,才可以進一步進行人體試驗。以靈長類動物如狒狒作為移植模型,以瞭解潛在的副作用與改進之道,是這類研究常見的作法。2000 年國際心肺移植學會(ISHLT)曾提出綱要,認為接受移植的靈長類動物需有 60% 存活超過 3 個月,存活個體至少 10 隻,且顯然有機會繼續活下去,才能考慮進入臨床試驗。

然而,貝內特的特殊狀況讓此次的豬心移植成為可能。貝內特患有心律不整,無法外接機械式的心臟輔助裝置,加上有過不遵醫囑的醫療紀錄,使其獲准得到心臟的機會微乎極微 [註3]。而貝內特的心臟狀況若不移植就只能等死,因此 FDA 特別通過了本次的豬心使用。貝內特獲得的是死中求生的機會,而對研究人員來說,則是獲得了豬心在人類患者身上如何運作的臨床資料。

使用靈長類動物進行研究一舉,讓科學家獲得許多異種移植的重要資訊,比如從針對狒狒的研究中,獲得了不少異種移植的用藥資訊,更發現早期接受移植的狒狒,都由於豬心快速生長而死亡。然而,許多研究人員或許已經非常期待將動物實驗逐步轉向臨床,因為將豬心放到健康狒狒身上所得到的數據,仍與重病纏身的人類有很大的不同。無論是免疫或藥理方面,研究人員當然更希望獲得與人體有直接關聯的資訊。

豬心移植創下先河,進入臨床仍待研究

然而,要看到豬隻的器官正式被納入臨床移植使用,恐怕還有許多問題有待釐清。這些問題包括(但不限於)使用異種器官潛藏的感染風險,縱使這些基因改造豬可以被養在高規格的飼養環境,避開一般豬隻帶有的病毒與細菌,豬隻基因體內的「內源病毒」對人體的風險仍有待釐清 [註4]。即使豬隻經過多種基因編輯,並且順利熬過異種移植的急性排斥期後,是否還有潛在的問題需要克服,目前尚無人得以逆料。

圖/Science

此外,隨著醫療設備近二十年的發展,使用血液透析(替代腎臟)或機械輔助設備協助血液運行(替代心臟)的方法亦越來越常見。或許,在等待豬心獲得臨床認可,加入器官庫的行列的同時,醫學技術亦會有所發展,使得器官需求不再如今日這般迫切。由於腎臟或肝臟可由活體移植、不似心臟需求極端迫切;因此肝腎兩者的異種移植研發進展或許將較為緩慢。目前,豬隻的器官移植還處在動物實驗的階段,尚未步入臨床,在人體的研究資料尚且闕如的情況下,相關單位應如何考量患者需求、判斷移植風險,亦將成為倫理與制度需要克服之一大考驗。

-----廣告,請繼續往下閱讀-----

醫療技術進展,本就來自於在各種未知中承擔風險、勇敢做出前人未曾做過的事。我們感念這其中的各種參與者,不管是技術研發人員、受試者或是醫師的參與,也希望未來在器官移植的領域,能有更多的好消息,讓那些苦苦等待的人們,盡早獲得救贖。

註解

  1. 器官移植的排斥反應通常分成超急排斥反應(hyperacute rejection),發生在器官接上血管後的數分鐘到數小時內;急性排斥反應(acute rejection),發生在數周到一年內;慢性排斥反應(chronic rejeaction),發生在移植數月甚至數年之後。因此貝內特此案例之「成功」僅代表現階段並未發生排斥反應,且豬心基本上可在人體運作,未來是否可能發生慢性排斥反應尚未可知。
  2. 異種移植的排斥反應通常更劇烈也更複雜。
  3. 器官移植排序的規定各國、各州不同,有些地方的規範會考量患者遵循醫囑的程度或求生意志等。臺灣的規範可見財團法人器官捐贈移植登錄中心 – 附表(各器官分配辦法) 
  4. 2017 年已有團隊培育出內源病毒去活化的豬寶寶(詳見:豬隻器官移植新突破:CRISPR技術攻破了「豬內源病毒」的瑪利亞之牆!),但本次的移植豬心應無經過相關的處理。

參考資料

  1. 醫學與倫理:美國首例豬心器官移植面臨的三大倫理爭議 – BBC News 中文
  2. 全球首例!豬心移植人體手術完成,可望解決器官短缺問題 – INSIDE
  3. First pig-to-human heart transplant: what can scientists learn? (nature.com)
  4. In a First, Man Receives a Heart From a Genetically Altered Pig – The New York Times (nytimes.com)
  5. 豬腎成功移植人體,異種移植會成為救命稻草嗎? | GeneOnline News
  6. 《基因編輯大革命》: 「基因編輯豬」是器官移植新希望? The News Lens 關鍵評論網
  7. 豬隻器官移植新突破:CRISPR技術攻破了「豬內源病毒」的瑪利亞之牆! – PanSci 泛科學
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 6
TingWei
13 篇文章 ・ 15 位粉絲
據說一生科科的生科中人,不務正業嗜好以書櫃堆滿房間,努力養活雙貓為近期的主要人生目標。

0

2
0

文字

分享

0
2
0
從門得列夫到 118 種元素:元素週期表是怎麼出現的?
F 編_96
・2025/01/04 ・2302字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

「氫鋰鈉鉀銣銫砝、铍鎂鈣鍶鋇镭…」相信很多人離開高中很多年,都還朗朗上口。

列著 118 種已知化學元素的「元素週期表」(Periodic Table),雖然唸起來像咒文,但有了它之後便能夠快速查詢原子序(proton number)、價電子(valence electrons)數量,以及元素可能的化學性質,成為各領域科學家與工程師設計實驗、預測物質反應必不可少的工具。

有趣的是,元素週期表並非一蹴可及。縱觀歷史,化學家們歷經數世紀的摸索、爭論與資料整理,才在 19 世紀後半葉逐漸確立。

我們現在看到的元素週期表,是在 19 世紀後半才逐漸確定。 圖/unsplash

週期表之父:門得列夫的突破

19 世紀中葉,已知的化學元素約有 63 種,許多化學家嘗試找出元素間的共同點,卻苦無系統性整理。當時能區分「金屬」與「非金屬」,或利用價電子概念將一些元素歸類,但要涵蓋大多數元素仍顯不足。俄國化學家門得列夫在撰寫《化學原理》教科書時,因接觸各元素的資料而產生新思路。他索性把已知元素各種性質寫在紙卡上,再一一比對它們的原子量(類似當今的原子量或原子序概念)與化學性質。

-----廣告,請繼續往下閱讀-----

確切的靈光乍現時刻,如今已無從完全重現,但我們知道門得列夫最後觀察到:「如果按照原子量(或後來的原子序)由小到大排列,某些化學性質就會呈週期性重複。」進一步來看,元素的價電子數量通常也會對應到表格的「欄位」或「族群」。於是,在 1869 年,他將研究結果發表,提出了第一版週期表的雛形,更大膽預言了尚未被發現的元素「eka-aluminium」(後來證實即鎵 gallium)及其他四種元素的性質。

讀懂週期表:原子序、符號與原子量

今日的週期表之所以能快速讓人獲得豐富資訊,關鍵在於三個核心欄位:

  1. 原子序(Atomic Number)
    代表該元素核內所含質子數。如果一原子核有 6 顆質子,就必定是碳(C),無論其他中子或電子數如何。此序號由上而下、由左而右遞增,貫穿整張表格。
  2. 元素符號(Atomic Symbol)
    多為一至兩字母縮寫,如碳(C)、氫(H)、氧(O)。但也有如鎢(W,因「Wolfram」得名)或金(Au,取自拉丁文「Aurum」)等較不直覺的符號。
  3. 原子量(Atomic Mass)
    表示該元素在自然界中各同位素的加權平均值,故通常是帶小數的數字。對合成元素則標示最常見或最穩定同位素的質量,但由於這些元素壽命極短,數值往往會被不斷修正。

舉例來說,硒(Se)在週期表中顯示原子序 34,屬於第 4 週期、第 6A 族,表示它有四層電子軌域,其中最外層(價電子層)有 6 顆電子。有了這些資訊,科學家可快速判斷硒的化學傾向、可形成何種化合物,乃至於在生物或工業應用中可能扮演的角色。

週期表的內部結構:週期、族與軌域

門得列夫最初按照原子量遞增排列元素,現代則依靠原子序(即質子數)來分類。橫向稱為「週期」(Period),從第 1 週期到第 7 週期;縱向稱為「族」(Group),目前總共有 18 組。週期數量在於顯示該元素電子軌域有幾層;而同一族則代表外層價電子數相同,故有相似化學性質。

-----廣告,請繼續往下閱讀-----

例如,第 18 族常被稱作「貴氣體」或「惰性氣體」,如氦(He)、氖(Ne)、氬(Ar)等皆不易與其他元素起反應。另一個顯著群體是位於第一族的鹼金屬(Alkali Metals),如鋰(Li)、鈉(Na)等,因外層只有 1 顆電子,極容易失去該電子而形成帶 +1 價的陽離子,故與水猛烈反應。

此外,在表格中央有一塊「過渡元素」(Transition Metals)區域,包括鐵(Fe)、銅(Cu)、鎳(Ni)、金(Au)、銀(Ag)等。它們具有部分填充的 d 軌域,使得該區域的元素呈現多樣性質,例如具有金屬光澤、可塑性或導電性等,被廣泛應用於工業及工程領域。

同一族的外層價電子數相同,因此大多有著相似化學性質。圖/unsplash

再進化:從 63 種到 118 種

當門得列夫在 1869 年發表週期表時,已知元素只有 63 種,表格中甚至留有空白以預留「未來或存在尚未發現的元素」。他果然預測到了鎵(Ga)以及日後證實的日耳曼ium(Ge)等新元素性質,贏得舉世矚目。隨後,有越來越多元素透過科學發展,尤其是光譜分析與放射性研究而被發現,例如鐳(Ra)和氡(Rn)等。

到 20 世紀後期,隨著粒子加速器的誕生,人類可以合成更重的超鈾元素(Atomic Number > 92)。這些人工合成元素往往極度不穩定,壽命僅能以毫秒或微秒計,但仍證實存在、並填補週期表後段空白。如今,週期表已收錄到第 118 號元素「鿆(Og,Oganesson)」,但科學家預測或許還能繼續向上延伸;只要能合成更重、更穩定的原子核,我們就能拓展週期表的新邊境。

-----廣告,請繼續往下閱讀-----

一般認為,隨原子序遞增,原子核內部的質子數目激增,原子愈趨不穩,往往在極短時間內衰變成較輕元素。然而,一些理論物理學家提出「島狀穩定性」(Island of Stability)的概念:也許在某特定質子與中子數量組合下,能出現意外長壽的「穩定」重元素。

是否真能在表格上方再增添「第八週期」甚至更高週期的列,仍有待更多實驗來驗證。但無法否認的是,週期表一直是科學家檢驗自然規律的試驗場,也見證了人類探索未知的無盡熱情。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
21 篇文章 ・ 0 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
0

文字

分享

0
1
0
人類的「長跑」很厲害?靠「跑」在荒野中脫穎而出
F 編_96
・2024/12/26 ・3048字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

在美國加州死亡谷(Death Valley)「魔鬼鍋爐」般的炙熱溫度下,每年夏天都舉行一場被稱為「世上最極端越野賽」的經典賽事:Badwater 135。選手需在攝氏 49 度、下方為北美洲海拔最低的地帶上,跑步或走完 217 公里的山路,一路衝向位於美國本土最高峰(聖女峰)附近的終點。這聽來猶如天方夜譚,但每年仍有近百人勇敢挑戰。許多四足動物在此高溫下可能早已中暑倒地,為何人類卻能憑藉一雙腳在此環境中堅持下去?

事實上,速度上我們遠不及同等體型的動物,例如豹或馬,然而要比拼耐力,人類卻常能大放異彩。我們能在大草原中與野生動物「天荒地老」地消耗,即使我們在短程衝刺中會被輕易超越,仍可以憑藉馬拉松般的堅韌一路追趕,最終讓速度更快的對手因高溫與疲勞而甘拜下風。究竟人類為何會進化出這般特殊的耐久力?。

在跑步上,人類以耐力著稱,可透過拉長距離讓速度更快的動物因高溫與疲勞而屈服。圖/envato

人類長程奔跑的演化起源

人類的體質在遠古時期並非天生就能輕鬆長跑。據一種假說推測,大約 700 萬年前,類人猿的祖先於非洲開始「離開樹梢」,轉而在地面上覓食、移動。早期的兩足行走雖然看似笨拙,卻逐漸在持續的氣候變遷與草原化過程中展現優勢:

  1. 更廣闊視野:直立行走時,頭部位置提高,有利於觀察周遭環境,提早發現危險或獵物。
  2. 省力遷徙:兩足步態下,移動同樣距離所需能量相對降低,足以在開闊平原上長距離跋涉。

隨著數百萬年的進化,人科動物(hominids)在骨骼、肌肉與生理機制上更趨於適應長時間行走和奔跑。他們在廣袤的非洲大地上,並非以速度壓倒對手,而是依靠「耐力與持久追蹤」取得優勢。考古學家曾提出「持久狩獵」(Persistence Hunting) 的假設:古人類可能利用高溫時段在大草原上追趕羚羊或其他動物,待獵物體溫過熱而力竭之際,人類再上前制伏。一方面依靠長距離奔跑耐力,另一方面倚仗強大的散熱能力。

-----廣告,請繼續往下閱讀-----

足部與下肢結構:為奔跑而生的細節

哈佛大學的人類演化生物學家丹尼爾‧李伯曼(Daniel Lieberman)指出,人類的奔跑能力「從腳趾到頭頂」都有演化專門化的痕跡,稍加留意便能發現許多奧祕。

  1. 短腳趾與足弓結構
    • 人類的腳趾較短,是為了減少長距離奔跑時的折損機率。若腳趾過長,每次著地都更容易造成骨折或扭傷。
    • 足弓(包括足底肌腱與韌帶)則具備彈簧般的功能,可在踩踏地面時儲存彈性能量,接著釋放推力,減少肌肉能量消耗。
  2. 強力肌腱與韌帶
    • 跟腱(Achilles tendon)和髂脛束(IT band)都能吸收並釋放大量彈力,在跑步時有效節省體力。
    • 透過肌腱的彈性能量回饋,跑者在每一步落地與蹬地之間,都能減少額外的肌肉耗損。
  3. 臀部肌群的角色
    • 人類相較於猿類擁有更發達的臀大肌(gluteus maximus),能夠穩定軀幹,使身體不致向前傾斜或晃動得過於劇烈。
    • 這種「穩定性」非常關鍵,它能支撐直立姿勢,維持跑步時的協調和平衡。
人類發達的臀大肌穩定軀幹,得以支撐直立姿勢,提升跑步時協調與平衡的能力。圖/envato

軀幹與上肢:不容忽視的穩定器

奔跑並不只是腿部的事。上半身及頭部在跑動中也扮演著不可或缺的穩定與協調角色。

  1. 擺臂對頭部穩定的影響
    • 當我們在跑步時,雙臂自然擺動,有助於平衡腿部擺動帶來的轉動力矩;換言之,手臂的擺動能對沖下肢動量,讓我們在快速移動時仍保持穩定,頭部不至於過度搖晃。
    • 猿類上肢肌肉發達,卻沒有像人類一樣的大範圍肩關節「解耦」特性(能讓肩膀與骨盆分開晃動、頭部保持前方視線),這使得牠們在直立奔跑時更顯笨拙。
  2. 脊椎靈活度與呼吸節奏
    • 人類的脊椎與骨盆並非僵直連接,跑步時,骨盆能與肩部做出相對扭轉運動,使軀幹整體更靈活。
    • 這種結構也幫助人類在奔跑過程中匹配呼吸節奏:腳步落地的頻率能自然與肺部換氣形成同步節拍。

冷卻系統:靠「排汗」征服烈日

人類藉遍布全身的汗腺大量排汗散熱,透過蒸發有效降低體溫。人類藉遍布全身的汗腺大量排汗散熱,透過蒸發有效降低體溫。圖/envato

在非洲大草原上奔跑,面臨的最大挑戰之一便是高溫。人類為何可承受長時間高溫壓力,甚至能在午後與動物「耐力大戰」?

  1. 排汗與體溫調節
    • 大多數動物主要依賴氣喘(如狗的哈氣)或有限的汗腺冷卻。人類則擁有遍布全身、數量龐大的汗腺;這使我們可藉由大量流汗帶走熱量,再透過汗液蒸發達到降溫效果。
    • 雖然我們也會因此流失水分與電解質,但只要能適度補充,便能持續散熱。而某些大型哺乳動物,在持續奔跑一段時間後,往往因過熱而只能停下休息。
  2. 無毛皮膚與蒸發效率
    • 相較於其他哺乳類,人體毛髮主要集中在頭部與部分身體區域,大片皮膚裸露,有助於排汗時的蒸發散熱。
    • 這種「裸皮」極可能是長距離奔跑與日間活動的選擇性演化結果,確保人類能在炎熱的白天進行移動或狩獵,而不因過熱而必須在陰涼處長時間停留。

呼吸方式:維持長距離的關鍵

另外值得注意的是人類高效率的呼吸節奏。四足動物在奔跑時,呼吸通常與四肢步態高度耦合,比如馬或犬類在衝刺中必須配合四肢的震動節奏吸氣和吐氣,較難隨意變換節拍。而人類因直立姿態,使得呼吸與跑步步伐能保持更大程度的自主調控。

-----廣告,請繼續往下閱讀-----
  • 獨立呼吸調節
    • 能依跑者自主需求來決定吸氣與吐氣的頻率,不一定要剛好配合腿部的落地次數。
    • 這讓人類在長時間奔跑或耐力賽中,能以相對節能的方式調節氧氣和二氧化碳的交換量。
  • 嘴巴與鼻子的雙重進氣
    • 為支撐長時間有氧運動,跑者多半會同時用鼻子與嘴巴呼吸,以便快速補充氧氣並排出二氧化碳。
    • 相較之下,某些動物在喘氣散熱時犧牲了進氣效率,一旦體溫飆升,便難以同時維持高強度奔跑。

即使進入現代社會,大多數人不必再於烈日下持久追蹤獵物,我們仍可在馬拉松、越野超馬等各式比賽中看見古老遺傳「跑步基因」所迸發出的潛力。從波士頓馬拉松、超級鐵人三項,到極端氣候下的 Badwater 135,人類透過持續的鍛鍊與後勤補給,一次又一次突破極限。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
21 篇文章 ・ 0 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
1

文字

分享

0
1
1
運動員的大腦跟一般人不一樣?從腦科學看體力之外的奪冠秘笈
F 編_96
・2024/12/17 ・2098字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

是不是常聽人家講「運動天賦」?這種天賦到底是什麼?運動員哪裡跟我們不一樣?這個問題現在科學家或許可以給你一個答案。近年透過腦科學研究發現,運動員的大腦與普通人的大腦存在顯著差異,這些差異塑造了他們在比賽中的敏捷反應、精確動作及卓越判斷能力。

所以現在運動選手不只比體力,還要比腦力了嗎?這些差異具體差在哪裡?

快速反應:視覺處理能力

在團隊運動如足球或籃球中,快速處理視覺資訊並作出決策對勝負至關重要。一項 2013 年發表於《Scientific Reports》的研究發現,職業運動員比起業餘運動員或一般人更擅長處理動態視覺場景,例如追蹤快速移動的物體。這種能力能夠幫助運動員在瞬間解讀賽場上的複雜資訊,並迅速做出反應。

擁有快速的視覺處理能力,對團體運動來說至關重要。圖/envato

視覺處理能力的測試還可用於判斷運動員是否適合回歸賽場,例如在傷後復健階段,確保運動員在完全恢復判斷能力之前不會貿然上場。

-----廣告,請繼續往下閱讀-----

肌肉記憶:動作的自動化編程

對於體操選手或跳水運動員而言,肌肉記憶是完成複雜動作的關鍵。2023 年《Journal of Neuroscience》的一項研究表示,大腦如何通過訓練快速「壓縮」和「解壓縮」動作資訊,最終將動作序列整合成一個流暢的過程。這種訓練過程使運動員能夠無需刻意思考,便能完美執行複雜動作。

肌肉記憶的形成依賴於大腦皮層神經元的網絡活動,這種神經編程能力也同樣適用於訓練有素的音樂家或舞蹈家。

預測能力:球場上的決策利器

運動員擁有卓越的預測能力,例如棒球擊球手能根據投手的動作,快速判斷球的速度與方向。2022 年發表於《Cerebral Cortex》的研究發現,當擊球手預測投手的投球軌跡時,大腦左腹側顳葉皮質的神經元活動會根據預測結果而改變。

這種高效的預測能力源來於運動員在比賽中,學會透過關聯視覺線索與物體運動軌跡的技能。研究還發現,潛水選手等專業運動員的大腦中與動態運動解讀相關的區域,如上顳溝(STS),比普通人更厚,這也反映了運動訓練對大腦結構的塑造。

-----廣告,請繼續往下閱讀-----

平衡與空間感:身體控制的高峰

對體操選手來說,擁有非凡的平衡感與空間感知能力,兩者缺一不可,而這在科學上被稱為「本體感覺」(proprioception)。位於小腦的神經網絡讓運動員能迅速調整身體姿態,即使在空中失誤也能及時修正動作。

對體操選手來說,平衡感與空間感知能力非常重要。圖/envato

然而,當這套「安全網」失靈時,可能導致嚴重後果。如 2020 年東京奧運中,體操選手西蒙·拜爾斯(Simone Biles)因「扭轉失靈」而一度無法控制動作,凸顯了平衡能力在高風險運動中的重要性。

注意力與認知靈活性:多任務處理的關鍵

團隊運動要求運動員能快速在不同思維模式間切換,例如足球選手需在控球時預測對手動作並調整策略。2022 年《國際運動與運動心理學期刊》的一項研究顯示,運動員,特別是參與高強度間歇訓練的選手,擁有更強的認知靈活性和注意力分配能力。

研究也指出,這些能力的提升可能與長期訓練相關,但確切機制仍需進一步研究。

-----廣告,請繼續往下閱讀-----

抗衰老的秘密:運動對老年大腦的保護

這些運動訓練對大腦的影響,可不是只有相關區域的提升。運動對大腦健康的影響,可能會持續一生。一個典型例子是加拿大田徑選手奧爾加·科特爾科(Olga Kotelko),她在 95 歲時仍保持驚人的腦部健康,其白質結構完好程度甚至接近比她年輕三十多歲的普通人。科學家認為,持續的運動訓練可能是她保持記憶力與認知敏銳的原因之一。

運動不只是對身體的鍛鍊,對維持大腦健康也有影響。圖/envato

下一代的訓練策略:腦力與體力並重

隨著運動科學的不斷進步,科學家也開始呼籲教練更注重對年輕運動員的腦部訓練,例如提升記憶力與決策能力。西悉尼大學的運動科學家凱莉·斯蒂爾(Kylie Steel)指出,運動員的身體或許會訓練至極限,但在認知能力上仍擁有巨大的潛力提升。例如,足球訓練中可以鼓勵球員使用非慣用腳進行射門,以提升大腦靈活性,幫助他們在成年後更加出色地應對比賽挑戰。

近年研究讓我們重新認識了體育訓練對人體的深遠影響,運動改變的不僅是肌肉,還包括大腦。從視覺處理到肌肉記憶,再到抗衰老的腦部結構,透過運動與科學的結合,將為未來的運動員開啟全新可能性,也提醒我們,持續鍛煉不僅益於身體,也有助於大腦的健康。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
21 篇文章 ・ 0 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃