Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

想瞭解基改作物嗎?先從農桿菌談起

衛生福利部食品藥物管理署_96
・2016/08/30 ・2832字 ・閱讀時間約 5 分鐘 ・SR值 560 ・八年級

本文由衛生福利部食品藥物管理署委託,泛科學企劃執行

文/葉綠舒

基改作物是什麼?它的全名是 Genetically Modified Organisms,簡稱為 GMO。基因改造生物中的植物,如作為食物,即是基因改造作物。

從 1994 年美國食品藥物管理局核准供人食用的基改作物——蕃茄一號(Flavr SavrTM)開始,到 1996 年第一個上市的耐除草劑作物,基改作物已經逐漸進入我們的生活中,由少到多,甚至可說是無所不在!根據 Clive James 2015 年的年度報告摘要,基改作物的種植面積由 1996 年的 170 萬公頃增加到 2015 年的一億七千萬九百七十萬公頃,足足增加了一百倍之多!這意味著全球二十八個不同國家,超過一千八百萬名農夫,不約而同地決定種植基改作物。

-----廣告,請繼續往下閱讀-----
AAEAAQAAAAAAAALSAAAAJDMzMGJjOTFkLTNhZTAtNGRkMC1iZWE3LWE2ZTlhNTM2NGNjZg
1994 年開發出來的莎弗番茄(Flavr Savr tomato)能較一般番茄慢腐壞。

不過,雖然全球有那麼多農民選擇基改,四大植物生技公司也努力地推展基改,但是基改作物似乎沒有那麼受歡迎?在林富士老師的《食品科技與現代文明》裡面的〈基因改造食品風險與管理〉中提到,歐洲一直不願意全面開放含有基改作物成分的食品進入;而在台灣的許多團體,無不反對基改作物引進台灣。多年來,基改這個議題不論是贊成或反對,兩方陣營在科學上的唇槍舌戰可說是絕無冷場。

在這一片喧囂之中,是否曾有在一旁觀戰的民眾思考過:究竟什麼是基改作物呢?基改作物是如何產生的?

一切開始於對抗農桿菌的奇幻旅程

這就要從農桿菌(Agrobacterium tumefaciens)開始說起了。從前從前,植物跟我們一樣,身邊圍繞著好菌與壞菌,而農桿菌就是壞菌之一。打從聖經時代開始,由農桿菌導致植物生成的冠瘤(crown gall tumor)便已經受到注意;最早對於冠瘤的文字記載,則要從 1853 年開始算起。科學家們看到同樣長在森林裡的樹木,為什麼有些長瘤、而有些則沒有呢?他們也注意到,雖然植物長瘤不致命,但是長了冠瘤的果樹產量會降低,於是便開始動手要找出造成冠瘤的禍首。

640px-Agrobacterium_tumefaciens_Forsythie
農桿菌造成的冠瘤。圖/By C-M – Own work, CC BY-SA 3.0, wikimedia commons.

Fridiano Cavara 在 1897 年從葡萄的冠瘤中分離出了農桿菌,後來的許多研究也發現,農桿菌喜歡從植物的傷口進入,所以只要在寒流來襲前妥善地將果樹接近地面的樹幹包覆起來,減少樹木表皮因凍傷造成破裂,便可以有效防止農桿菌的感染。

-----廣告,請繼續往下閱讀-----

雖說預防勝於治療,不過每次寒流來襲之前就要幫果樹穿棉襖,也實在太累了;於是有些科學家便開始尋找可以消滅農桿菌的方法。

孫子說:「知己知彼,百戰不殆。」想要消滅敵人,當然要瞭解敵人囉!於是歐洲、美國的科學家們,便開始了一場調查農桿菌的奇幻旅程~

第一個突破來自美國。1958 年,洛克斐勒大學的 Armin Braun 博士發現,冠瘤細胞可以在沒有提供植物激素的培養基裡不斷分裂生長。由於這是一般的植物組織無法獲取的技能,因此 Braun 博士便假設,農桿菌一定有給冠瘤細胞一些特殊的武器,否則這些冠瘤細胞如何能生生不息呢?

到了 1970 年,法國的 George Morel 發現冠瘤細胞會製造農桿菌愛吃的食物 octopine 和 nopaline。由於被不同農桿菌感染的植物的冠瘤,所產生的食物也不同,更鞏固了科學家們的想法:農桿菌提供了植物細胞生生不息的技能。

-----廣告,請繼續往下閱讀-----

植物基改元年

真正的突破來自 1977 年。華盛頓大學的「農桿菌女王」Mary-Dell Chilton 博士與她的團隊在不眠不休的努力下,證明了農桿菌在感染植物時,會將自己 Ti(Tumor-inducing,Ti)質體上的一段基因植入植物的基因體。同時她的團隊(以及另一個團隊)也建立了將 Ti 質體分裂為二,讓科學家們可以更方便的將要植入的基因放進去的方法。

如果有「植物基改元年」的話,那一定就是 1983 年了。那年的一月十八日,Chilton 博士與美國孟山都(Monsanto)公司的幾位研究員在邁阿密冬季學術研討會上,分別發表了對農桿菌的研究。

560px-Transfection_by_Agrobacterium.svg
圖/By Chandres – Own work, CC BY-SA 3.0, wikimedia commons.

原來,農桿菌在感染植物時,會將一段位於自己的 Ti 質體(上圖中的 C)上的片段(上圖中 C 之 a)插入植物的基因體內(上圖中的 7)。這段片段含有合成植物激素所需的酵素,以及合成農桿菌愛吃的食物的酵素。被感染的植物細胞,因為合成了更多的生長激素,於是細胞分裂便開始加快了。

因為植物有細胞壁,產生的腫瘤並不會轉移,所以植物的冠瘤不致命,冠瘤以外的組織也作息如常;但是插入冠瘤細胞的基因,卻會跟著這些冠瘤細胞代代相傳,永遠都不會離開了。

-----廣告,請繼續往下閱讀-----
點擊看大圖。

出乎意料的「天然基改」

由於通常在自然界被感染的植物細胞都是體細胞,而非生殖細胞,所以農桿菌的感染不會遺傳;但也有例外!

在 2015 年華盛頓大學的科學家們,在分析不同栽培種的蕃薯(Ipomoea batatas)的基因體時,卻意外地發現我們吃的蕃薯竟然是「被天然基改」的!這些蕃薯的基因體內,含有農桿菌用來合成植物生長素(auxin)的基因!

台農10 31 57 66 73號

蝦米!剛剛我們說的基因片段不會遺傳被打臉了嗎?究竟這些基因是怎麼跑到我們的蕃薯裡面去的呢?目前科學家推測最有可能的是,在「從前從前」農桿菌感染了蕃薯的塊根(農桿菌是土壤中的微生物,所以要感染植物塊根其實挺容易),後來農桿菌不見了,但是農桿菌的基因不會離開;接著因為農夫在選種時都會選擇長得快又大的,而帶有農桿菌基因片段的塊根,因為製造了額外的生長素,當然長得快又大,於是在選種時,就這麼被人擇特別保留下來了。

讀者看到這裡可能會問:這件「天然基改」的事發生多久呢?答案是:不知道,因為華盛頓大學研究團隊發現他們手上的 291 個蕃薯的栽培種,全都可以找到農桿菌的序列喔!

-----廣告,請繼續往下閱讀-----

當然,現在所謂的基改作物裡面所帶的基因,與這些蕃薯裡面帶有的農桿菌基因是不同的;基改作物裡面所含有的基因,目前大概可以分為兩大類:抗蟲(帶有蘇力菌的結晶蛋白基因)與耐嘉磷塞除草劑(glyphosate,台灣商品名稱為年年春)。

蘇力菌(Bacillus thuringiensis)的結晶蛋白簡稱為 Cry,常以 Bt(蘇力菌的簡稱)作為暱稱,會使吃下它的昆蟲腸穿孔而死,但是我們的胃因為會分泌胃酸,反而會把結晶蛋白給消化掉,使得結晶蛋白對我們無害;而嘉磷塞除草劑會抑制植物的 EPSPS 酵素,使植物無法合成必需胺基酸;但農桿菌的 epsps 基因所產生的 EPSPS 酵素不怕嘉磷塞除草劑,因此只要將農桿菌的 epsps 基因植入植物,植物便立刻獲取不怕嘉磷塞除草劑的技能了!

讀者看到這裡,應該可以從農桿菌歷史淵源的開端,瞭解基因改造的基本原理以及基因改造的歷史緣由。

註:EPSPS 酵素為縮寫,中文學名為: 5-烯醇丙酮莽草酸-3-磷酸 (EPSP)合成酶

-----廣告,請繼續往下閱讀-----

參考文獻:

  1. Clive James. 2016. ISAAA Brief 51-2016: 20th anniversary (1996-2015) of the global commercialization of biotech crops and biotech crio highlights in 2015.
  2. 林富士。2010。 食品科技與現代文明。稻鄉出版社。
  3. Tina Kyndt, Dora Quispe, Hong Zhai, Robert Jarret, Marc Ghislain, Qingchang Liu, Godelieve Gheysen, and Jan F. Kreuze. 2015. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop. PNAS. published ahead of print, doi:10.1073/pnas.1419685112
-----廣告,請繼續往下閱讀-----
文章難易度
衛生福利部食品藥物管理署_96
65 篇文章 ・ 24 位粉絲
衛生福利部食品藥物管理署依衛生福利部組織法第五條第二款規定成立,職司範疇包含食品、西藥、管制藥品、醫療器材、化粧品管理、政策及法規研擬等。 網站:http://www.fda.gov.tw/TC/index.aspx

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

5
0

文字

分享

1
5
0
打造超完美稻米,餵飽全世界!余淑美與國際 C4 水稻計畫
研之有物│中央研究院_96
・2020/08/14 ・3603字 ・閱讀時間約 7 分鐘 ・SR值 546 ・八年級

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪編輯|張容瑱;美術編輯|林洵安

國際 C4 水稻計畫

中研院分子生物研究所余淑美院士,從小對農村和農作物就有濃厚的感情。踏上研究之路後,她以水稻為一生懸命的研究主題。處處用心、事事認真的余淑美在水稻的基因研究成就斐然,獲邀參與蓋茲基金會資助的「國際 C4 水稻計畫」長達十年之久,致力於打造抗逆境、高產量的超完美水稻品種,解決越來越急迫的全球糧荒,也讓臺灣的水稻基因研究在國際占有一席之地。

「這是非常困難的挑戰,大多數植物學家都覺得做不到,壓力很大」余淑美院士說:「可是如果現在不做,就永遠沒有機會。」這位中研院院士口中的不可能任務,就是「國際 C4 水稻計畫」。

這個龐大的計畫,終極目標是打造出高產量的「超完美稻米」,以餵飽全世界不斷增加的人口——目前世界人口已經超過 77 億,預估 2050 年會超過 95 億。想要餵飽這麼多人,糧食需要再增加 60%!然而,土地大量開發、水資源不足,全球氣候環境惡劣,現有糧食增加速度已追不上人口增加速度。

在科學家擘劃的藍圖中,這種超完美稻米與我們現在栽種、食用的稻米截然不同,將會是「C4 型」的植物,能夠高效率利用太陽能,使用較少的水和肥料,卻能有很高的產量。

等等,什麼是 C3、C4 型植物?

大家都知道植物會行光合作用:利用陽光把空氣中的二氧化碳和土壤中的水轉成醣類。C3 型植物,意即光合作用轉化二氧化碳時,最先產物為三碳化合物,如水稻、小麥、大豆、馬鈴薯等等;C4 植物的最先產物則是四碳化合物,如:玉米、甘蔗、高粱、芒草等等。重點來了!C3 型植物行光合作用的效率沒有 C4 型那麼好,也比較耗水。國際 C4 水稻計畫,簡言之,即是把屬於 C3 型植物的水稻改造成 C4 型植物。

-----廣告,請繼續往下閱讀-----

C3 植物,意即光合作用轉化二氧化碳最先產物為三碳化合物, C4 植物最先產物則是四碳化合物。 C4 型植物的葉片中具有特殊的組織結構,以及複雜的酵素生化反應,可以讓二氧化碳更有效率地轉換成糖類,並且減少在蒸發作用流失水分。換句話說,以同樣的水量灌溉,C4 植物可產生的糖比較多。國際 C4 水稻計畫,簡言之,即把屬於 C3 型植物的水稻改造成 C4 型植物。 圖說設計│黃曉君、林洵安

「這個任務必須改變水稻的組織構造,以及它所進行的生化反應」,研究水稻基因超過三十年的余淑美解釋:「其中牽涉太多基因,要把水稻完全改造成 C4 型,真的難如登天!」不過余淑美始終堅信,有做就有希望。

因為在漫長的演化長河中,C4 型植物就是從 C3 型演化過來的,換句話說,C3 型是 C4 型的祖先。如果以人為的方式加速水稻往 C4 型植物演化的路徑,或許可以把水稻的光合作用模式調整成人類需要的樣子,解決未來糧食不足的困境。

以田間試驗評估轉殖成效

國際 C4 水稻計畫,一開始全世界共有二十多個實驗室參與,隨著計畫一期一期推動,愈來愈聚焦,到了第三期時(2015~2019 年)剩下 12 個實驗室。2019 年 12 月 1 日進入第四期(2019~2024 年),只剩 7 個實驗室參與。余淑美率領的研究團隊於 2009 年獲邀加入,至今已經堅持參與超過十年,義無反顧繼續前行。

-----廣告,請繼續往下閱讀-----

圖片來源│余淑美

最近的第四期計畫,余淑美的團隊負責兩個項目:一個是從「臺灣水稻突變種原庫」篩選出與 C4 型光合作用相關的重要基因,另一項工作則是把 C4 型的光合作用基因轉殖到水稻,種植在田裡,然後評估這個基因在水稻上是否有類似在 C4 植物時的功能、可否提高光合作用的效率。

「水稻轉殖之後,一定要到田裡去種,」余淑美表示,因為要試驗的水稻數量很多,光靠生長箱或溫室培養是不夠的,而且生長箱或溫室的環境非常穩定,沒辦法看出真正的農藝性狀,必須回到田裡,經過自然環境日曬風吹雨打的洗禮,才能顯現真正的性狀。

余淑美(右二)以及來自國際稻米研究中心的 C4 計畫第一到第三期的總主持人(右一)、國際稻米研究中心訪問學者(左二)、學生羅舜芳博士(左一),於水稻實驗水田旁合影。 圖片來源│余淑美

-----廣告,請繼續往下閱讀-----

借重「水稻突變種原庫」的經驗

余淑美之所以能被國際 C4 水稻計畫委以重任,主因為團隊水稻基因轉殖的技術非常純熟,執行田間農藝性狀的評估已有十多年的經驗,這都要歸功於余淑美於 2002 年開始領導整合國內各個單位建立的「臺灣水稻突變種原庫」!

時間回到 1993 年,余淑美與博士班學生詹明才(現為中研院農業生物科技研究中心研究員)成功完成全世界第一個利用農桿菌轉殖水稻基因!此法便宜又快速,突破了水稻基因轉殖的瓶頸,目前已被廣為使用。

臺灣水稻突變種原庫,即利用農桿菌製造基因突變的水稻,作為研究水稻基因功能的材料。余淑美解釋,水稻大約有四萬個基因,想知道每個基因有什麼功能,最簡單、快速的方法就是製造突變:破壞基因或是促進基因表現,讓水稻出現不一樣的性狀,藉由性狀的改變來探討基因的功能。

舉例來說,如果利用農桿菌在水稻的基因體插入一個基因,製造突變,結果水稻長得很高,我們就知道這個基因與水稻生長的高度有關,由此著手研究,很快就能找到調控水稻高度的基因。

-----廣告,請繼續往下閱讀-----

圖說設計│黃曉君、林洵安

成立至今,臺灣水稻突變種原庫已製造、累積十萬多突變株,建立六萬筆突變基因資料,成為全世界科學家研究水稻基因功能的寶庫。

「建立水稻突變種原庫是一項非常艱鉅的任務」,余淑美回憶:「需要很多經費、很多人,和長時間的投入。」因此她遲疑了兩年,眼看基因功能研究已是全球擋不住的趨勢了,臺灣如果再不跟上潮流,水稻基因研究就會一蹶不振,失去競爭力。她決心放手一搏!

余淑美四處爭取經費,費盡心力整合中研院、國科會、農委會、中興大學等單位的資源,終於完成這項不可能的任務。目前,全世界只有韓國、法國、中國和臺灣有類似的水稻突變種原庫,臺灣雖然起步晚,花費的經費也比別人少,卻是目前品質最好的。

-----廣告,請繼續往下閱讀-----

臺灣水稻突變種原庫利用農桿菌轉殖技術,製造出基因缺失或活化的水稻突變株,並保存突變水稻的種子,開放全世界申請,作為研究之用。

水稻長得好的秘密基因

除了優異的轉殖技術與豐富的田間試驗經驗之外,余淑美長年專注在水稻抗逆境生長的基因研究,也是受到國際 C4 水稻計畫肯定的原因之一。像去年(2019 年),余淑美的團隊就破解了水稻糖濃度的調控機制。

「人體內的血糖要維持一定的濃度」,余淑美說:「植物也一樣,糖的濃度維持一定範圍,才能長得好。」

水稻主要是利用 α- 澱粉水解酵素 (α-amylase) 將澱粉分解成糖。余淑美團隊的研究發現:缺糖時,水稻利用調控因子 MYBS1 促進 α- 澱粉水解酵素產生,把儲存的澱粉分解成糖;糖濃度過高時,則利用 MYBS2 來抑制 α- 澱粉水解酵素的產生。兩種機制互相協調,讓水稻的糖濃度維持正常範圍。

余淑美團隊的研究發現:缺糖時,水稻利用調控因子 MYBS1 促進 α- 澱粉水解酵素產生,把儲存的澱粉分解成糖,讓水稻的糖濃度恢復正常;糖濃度過高時,則利用 MYBS2 來抑制 α- 澱粉水解酵素的產生。 圖說重製│林洵安;資料來源│余淑美

-----廣告,請繼續往下閱讀-----

當植物遭遇乾旱、高溫、病菌感染等逆境時,往往呈現糖濃度太低的狀態,就是抑制 MYBS2,讓 α- 澱粉水解酵素大量表現,維持體內糖濃度的平衡來抵抗逆境。

了解這個機制後,她利用基因編輯技術控制 MYBS2 及 α- 澱粉水解酵素的表現,果真增加水稻的生長效率、耐逆境,而且維持高產量。

圖片美化│林洵安;資料來源│余淑美

從世界看臺灣

「加入國際 C4 水稻計畫這樣的團隊,學到非常多!」余淑美說:「而且經費比較充裕,國外的博士生、博士後研究員等素質又好。」相較之下,臺灣研究人才的量和質一直在下降,「缺乏人才」已成為參與國際計畫最大的困難和挑戰。

-----廣告,請繼續往下閱讀-----

余淑美認為政府在這當中扮演非常關鍵的角色,「很多部分靠我們自己努力,還可以克服,一旦牽涉到政策,真的無能為力。」政府不鼓勵基因轉殖作物、不重視農業生技,相關科系畢業之後找不到工作,自然沒有學生想唸——沒有出路、沒有新血,臺灣的研發能力怎麼深耕?

為了讓世界免於飢餓,國際 C4 水稻計畫要逆天打造全新型態的水稻;以米為主食的臺灣,農業研究是不是也該行所當行,開創新生機?!

延伸閱讀

本文轉載自中央研究院研之有物,原文為《打造超完美稻米,餵飽全世界!余淑美與國際 C4 水稻計畫》,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3654 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
0

文字

分享

0
0
0
談基改作物:我們是花錢買健康還是花錢買安心?
葉綠舒
・2016/08/05 ・3371字 ・閱讀時間約 7 分鐘 ・SR值 517 ・六年級

-----廣告,請繼續往下閱讀-----

玉米鼠
來源:domeckopol@Pixabay

食用基改玉米的大鼠,容易長腫瘤!?

這些年來,關於含有基改作物的食品,是否會對人類健康造成威脅,最重要的論文大概就是 Séralini 等人發表的有關大鼠研究的論文了(原文連結請點此,中文改寫請點此)。在這篇論文中,研究團隊將大鼠分為 10 組,每組 10 隻,攝取不同的食物;簡而言之,大概就是以基改玉米噴灑年年春、基改玉米不噴灑年年春、非基改玉米噴灑年年春、非基改玉米不噴灑年年春等組別,對大鼠進行大約二年的測試。

實驗結果發現,食用基改玉米的大鼠,雌性都在食用一年以後出現乳腺癌(雄性則是以肝臟病變居多),而等到他們長到兩歲時,有八成都出現了腫瘤(控制組只有三成)。實驗結果發表後,真的是舉世震驚,許多反基改的團體們無不爭先引用這篇論文。

3-rats-seralini
Séralini 論文研究結果的大鼠/來源:Republished study: long-term toxicity of a Roundup herbicide and a Roundup-tolerantgenetically modified maize (論文文章)

-----廣告,請繼續往下閱讀-----

但是…慢著!如果基改作物的確有致癌性,那麼為什麼從那時(2012)到現在,基改作物還可以販賣呢?有幾個原因,讓這篇研究充滿爭議,使得有些學者無法採信他們的結果。

第一,這種大鼠(簡稱為 SD rat)原本就容易長瘤。在 1973 年的論文中,研究團隊用了 360 隻這種大鼠,發現牠們在飼養18個月(年齡大約是 19 到 20.5 個月)時,有 45% 都長了腫瘤;而且雌性是雄性的兩倍。也是因為這麼容易產生腫瘤,所以一般以這種大鼠進行測試,都是測試三個月,不會進行長達兩年的測試。

當然,讀者可能會說,但是實驗組的腫瘤發生率還是比對照組高得多啊?在這裡要注意,因為在這篇論文中每組只用了 10 隻大鼠,對於癌症發生率如此之高的動物來說,只用了 10 隻,其實個別組的結果很難完全認定的確與實驗相關;就如在中文改寫下面的意見,就有讀者認為,這些組別中只有一組可以被認為牠們的腫瘤發生率與實驗的處理有關。

第二,大鼠本來就不是很長壽的動物。絕大部分使用大鼠進行的「長時間」測試的研究,僅觀察三個月而不觀察一至兩年,是因為大鼠們的平均壽命就是兩年!也就是說,這些大鼠在長到兩歲時,很多都長出腫瘤,其實跟人老了就會開始有很多大大小小的毛病是一樣的。

-----廣告,請繼續往下閱讀-----

第三,在實驗組中並不是只單純的添加了年年春,還有組別添加了其他的物質來模擬受污染的自來水。而實驗結果顯示,並不是吃越多(添加基改玉米的含量分為11%、22%、33%)基改玉米的大鼠,癌症發生率就跟著提高。

因此,雖然在學術界有些學者選擇相信這篇論文,但質疑者也不在少數。筆者個人的意見是,人吃五穀難免會生病,但是要如實驗中的大鼠天天吃玉米,即使只是11%,應該也不大容易。畢竟人會有口腹之慾,早餐吃麵包,午餐就會想吃米飯,晚餐可能又想換換口味…要我們餐餐、頓頓、天天都吃一樣的,有誰會受得了呢?

主食
來源:condesign @ Pixabay

當然,我們也有可能會吃到玉米、大豆而不自知!例如高果糖玉米糖漿(又名果糖液糖、豐年果糖)以及大豆沙拉油等。但是,這些加工食品中到底有多少含有基改作物的基因呢?

-----廣告,請繼續往下閱讀-----

首先筆者要提醒大家的是,我們每天吃的食物,除非是加工食品,否則蔬菜、水果、魚、肉、蛋、奶、豆等等……,全部都是跟著它們的基因一起吃下肚的(而且,還連著在它們表面的細菌、病毒等等) 。如果吃基因是危險的,我們每天都活得很危險。

加工食品因為透過精煉,如高果糖玉米糖漿,玉米磨碎後加入酸分解澱粉,再以酵素將葡萄糖轉化為果糖,這中間經過許多純化過程,殘留於其中的基因微乎其微(更何況抗蟲或抗殺草劑的基因僅佔植物基因體約萬分之一);而大豆沙拉油則經過壓榨、萃取接著精煉,可說幾乎不含有植物的基因了。

抗殺草劑年年春對人體有危害嗎?

或許會有讀者說:那麼抗殺草劑的基改作物,不都是噴灑年年春(嘉磷塞,glyphosate)嗎?年年春是否對人體有危害呢?

年年春在過去一直被認為是低毒性的農藥。不過,先前的一些發現,又讓歐盟重新開啟了研究,但也在 2015 年的 11 月 12 日再度下了結論,認為年年春的致癌性不高(中文改寫請點此)。當然,歐盟還是建議了年年春的每日容許量(就是吃一輩子也不會有事的量)為每公斤體重 0.5 毫克。

-----廣告,請繼續往下閱讀-----

抗蟲的基改作物,雖然過去曾發生過含有結晶蛋白 Cry9C 星鏈玉米的過敏事件,但這個版本的結晶蛋白已經不能再使用囉!身為地球上最厲害的轉轍掠食者的我們,天上飛的、地上走的、水裡游的,常常都是先吃再說,因此遇到的過敏與中毒事件,又少過了嗎?花生算是天然食物吧,但是 0.6% 的美國人對它過敏;而在美國國家過敏與傳染病研究所的「常見的過敏食物」網頁上,花生與堅果(如核桃)也是榜上有名的,而且大人小孩都會過敏喔!

有些讀者看到這裡可能會說:我為了嚐鮮吃到過敏的東西怪不了別人,但是廠商添加了我不知道的東西害我過敏,這可不行!筆者也同意這觀點。我們因為好奇心所吃下去的,當然應該要自己一肩扛起責任;但是廠商怎麼可以在我不同意的狀況下亂加東西到我的食物裡呢?

從基改的角度來看,目前台灣的法令,含有基改成分的食物是需要標示的;不過對於大豆沙拉油等精煉過的產品,就如前面所說,基改的成分應該是趨近於零,所以就不用列出了。既然已經有標示,不管您覺得基改安全不安全,反正不放心就別買含有基改成分的產品就好。當然,也別忘了在前一篇文提到的,因為目前主流的基改都是降低生產成本,要買非基改,就要有花錢的心裡準備喔!

從 1994 年的蕃茄一號到現在,其實基改還算是相當新的發明;很多新發明,一開始的目的與後來產生的結果,似乎都有不小的差距。而基改作物從當初 Mary-Dell Chilton 發現農桿菌可以把自己的基因植入植物的基因時,研究團隊只是為了可以證明第一個跨生物界(原核生物與真核生物)的基因轉移而興奮,接著也意識到這是一個非常強大的生物科技工具。孟山都也是從那時開始投入植物生物技術的研發,一開始或許只是為了要推展年年春的銷路?但是後來為了牟利,開始與農夫們斤斤計較、研發終結者基因,使他們成為許多人口中的「邪惡企業」,甚至禍延了可以真正為民眾帶來健康的黃金米,真的讓人不知要從何說起?

-----廣告,請繼續往下閱讀-----

在基改之外

最後,還是不能不提一下抗蟲與抗殺草劑作物對生態的影響。由於抗除草劑的作物不怕年年春,農夫便放心地使用,造成農地周圍的雜草大量減少、影響到附近的生態;而抗蟲作物究竟會不會影響到其他昆蟲呢?

在 1999 年,曾有一篇研究發現,帝王斑蝶(monarch butterfly)的幼蟲吃了含有結晶蛋白的玉米花粉會死亡。消息一出,真的也是把大家都驚呆了!但是後來發現,其實在這篇研究裡面使用的花粉量相當多,在自然界,任一株植物葉片上要有那麼多的花粉,還真的需要一點奇蹟。不過,由於玉米是風媒花,雄花開在整株玉米的最高點,種植的時候的確有可能使得轉殖基因污染到周圍的作物;因此各國也都定下規定,在基改作物種植區的周圍,需要有隔離區,隔離區的面積需達到20%的面積才行。目前的經驗,能夠認真執行隔離的國家(澳洲),不論是轉殖基因的污染或是抗性昆蟲的出現,都幾乎無法觀察到。

其實,不論是抗蟲或抗年年春的作物,雖然可以降低生產的成本,但是就跟抗生素一樣,如果使用者不接受規範、任意濫用,到最後也會漸漸失去神效(詳見抗性雜草抗性昆蟲)。人們不應該只是想著要控制自然,而應該找出與自然和平相處的方式,這樣才有可能永續生存在地球上,不是嗎?

參考文獻:

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----