2

5
3

文字

分享

2
5
3

從零開始的電腦入門——《普林斯頓最熱門的電腦通識課》

商業周刊
・2022/03/11 ・2456字 ・閱讀時間約 5 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!
  • 作者/ 布萊恩‧柯尼罕( Brian W. Kernighan)
  • 譯者/ 李芳齡

電腦的大腦—處理器 (CPU)

若我們可以說電腦有大腦的話,那麼,處理器就是電腦的大腦。處理器執行算術,移動資料,控制其他元件的運作,處理器能夠執行的基本運算項目有限,但它執行得飛快,每秒數十億筆。它能夠根據前面的運算結果來決定接下來執行什麼運算,因此,它相當程度地不依賴其人類使用者。第三章將對這元件有更多的討論,因為它太重要了。

若你去一實體店或在線上購買一台電腦,你將會看到產品介紹中提及絕大多數的這些元件,且通常伴隨著神秘的首字母縮略字和同樣神秘的數字,例如一個處理器被描述為「2.2 GHz dual-core Intel Core i7」,我的一台電腦的處理器就是被如此描述的,但這究竟是什麼?這台處理器是英特爾製造的,「Core i7」是英特爾的一個處理器系列產品的名稱,這台處理器是雙核心(dual-core)處理器――把兩個處理器(兩個核心)封裝在一個積體電路上,在此例中,小寫的「core(核心)」變成「processor(處理器)」的同義詞。

一個核心就是一個處理器,但中央處理器可能有幾個核心,能夠一起運作或獨立運作,使運算執行得更快,就多數用途而言,不論有多少核心,只需把這種組合想成是「處理器」就夠了。

處理器 (CPU) 圖/Pixabay

至於「2.2 GHz」,那就是更有趣的部分了。處理器的速度是以它每秒能執行的運算或指令或指令集來衡量的(至少是大致以此來衡量),處理器使用一個內部時鐘――就像心跳或時鐘的滴答聲――來計步其基本運算。衡量處理器速度的一個指標是每秒的滴答次數,每秒的跳動或滴答次數被稱為一赫茲(hetz,簡寫 Hz),以德國工程師海因里奇.赫茲(Heinrich Hertz)為命名,他在 1888 年發現如何產生電磁波,這直接引領出無線電及其他無線系統的誕生。

電台以百萬赫(megahertz,簡寫為 MHz,譯註:從以前到現在,台灣的電台都使用「兆赫」一詞,這是肇因於中文辭海中寫「百萬為兆」而衍生出來的誤譯詞,實際上,兆赫是 THz)來稱呼它們的廣播頻率,例如 102.3 MHz。現在的電腦通常以吉赫(gigahertz,十億赫茲,簡寫為 GHz)的速度運轉,我的電腦的處理器速度是相當普通的水準――2.2GHz 意指它每秒滴答 2,200,000,000 次。人的心跳大約是 1Hz,或是每天約 100,000 次,每年約 3,000 萬次,所以,我的電腦處理器的每個核心每秒跳動的次數是我的心臟在 70 年間跳動的次數。

這是我們首次遇上字首為 mega、giga 之類的數值,這在電腦運算領域是非常普遍的用字,「mega」是一百萬,或 106;「giga」是十億,或 109,發音為重音的「g」,如同「gig」中的發音。我們很快就會遇上更多的數值單位,本書最後附上的詞彙表中有完整的單位表。

電腦跑得快的秘密— 隨機存取記憶體 (RAM)

主記憶體儲存那些被處理器及電腦的其他部件活躍使用的資訊,它的內容可以被處理器更改。主記憶體不僅儲存處理器目前正在處理的資料,也儲存告訴處理器對那些資料做什麼處理的指令,以下這點很重要:藉由的記憶體中載入不同的指令,我們可以讓處理器執行不同的運算。這使得內儲程式電腦(stored-program computer)變成一種通用器材,同一台電腦可以跑文書處理 、 試算表 、 上網 、 收發電子郵件 、 在臉書上和朋友聯繫 、 執行我的稅務 、 播放音樂,全都只需在記憶體中置入適當的指令就行了。內儲程式的概念的重要性,再怎麼強調都不為過。

電腦正在執行工作時,主記憶體提供一個儲存資訊的地方,它儲存目前正在活動中的程式指令,例如 Word、Photoshop 或瀏覽器,它儲存它們的資料――被編輯的文件 、 螢幕上的相片 、 正在播放的音樂,也儲存在幕後運作而讓你同時跑多個應用程式的作業系統視窗,macOS、或其他作業系統的指令。第六章將探討應用程式及作業系統。

主記憶體被稱為隨機存取記憶體或 RAM,因為處理器可以快速存取儲存在它裡頭任何地方的資訊,而且,不論儲存於它裡頭的任何地方,存取的速度都一樣快;稍微過於簡化地說,以隨機順序進入記憶體的任何位址存取資訊,都不會有超速罰款。雖然,VCR 錄影帶早就成為老古董了,你可能還記得它們,當你想看一部電影的結尾時,你必須從最開頭的地方快速進帶(其實應該說是慢慢地進帶!),這稱為循序存取(sequential access)。

大多數的 RAM 是依電性記憶體(volatile memory,或譯「易失性記憶體」),亦即若關閉電源,它的內容就消失了,你將突然間失去當下執行中的所有資訊,所以,你應該經常儲存你正在執行中的工作,尤其是在使用桌上型電腦時,絆到電源線而導致關閉電源,可能發生慘劇。

你的電腦有固定量的主記憶體,其容量的衡量單位是位元組,一個位元組的記憶體量大到足以容納一個字符如 W 或 @,或是一個小數字如 42,或一個較大數值的一部分。第二章將說明在記憶體及電腦的其他部件中如何表述資訊,因為這是電腦運算的基本課題之一。現下,你可以把記憶體想成一個由許多相同的小盒子組成的一個大集成體,小盒子的數量上達幾十億個,每個小盒子能容納一小量的資訊。

什麼是容量?我現在使用的筆記型電腦有 80 億個位元組,或 8 個吉位元組(gigabyte,簡寫為 GB)的主記憶體,這容量可能太小了,因為愈多的記憶體通常能轉化為更快的電腦運算,對於所有想同時使用主記憶體的程式來說,容量永遠嫌不足,而且,把一個不活動的程式的某些部分移出,騰出空間給別的程式,這需要花些時間。若你想要讓你的電腦運轉得更快,最佳策略可能是購買更多的 RAM――前提是,你的電腦的記憶體可以升級的話,有些電腦的記憶體是不能升級的。

——本文摘自《普林斯頓最熱門的電腦通識課》,2022 年 2 月,商業周刊

文章難易度
所有討論 2
商業周刊
12 篇文章 ・ 3 位粉絲

0

2
0

文字

分享

0
2
0
Google Tensor 處理器是什麼?厲害在哪?
PanSci_96
・2023/04/08 ・2920字 ・閱讀時間約 6 分鐘

 Google 新出的 Pixel 7 Pro,其核心繼續沿用上一代開始自行研發的晶片,並且升級為 Google Tensor G2。

由 Google 開發、號稱專為 AI 設計打造的 Tensor 晶片,尤其著重在 TPU。打開處理器 Google Tensor 一探究竟,裡面放著 CPU、GPU,以及擁有 AI 運算能力的 TPU(Tensor Processing Unit)張量處理單元。

什麼是 TPU?與 CPU、GPU 有什麼不同?要了解 TPU,先來看看他的前輩 CPU 和 GPU 是如何運作的吧!

TPU 處理器晶片是什麼?先從了解 CPU 開始!

不論手機、電腦還是超級電腦,當代計算機的通用架構,都是使用以圖靈機為概念設計出來的馮紐曼架構,這個程式指令記憶體和資料記憶體合併在一起的概念架構,從 1945 年提出後就一直被使用到現在。

除了輸入輸出設備外,架構中還包含了三大結構:記憶體 Memory、控制單元 CU 與算術邏輯單元 ALU。在電腦主機中,控制單元 CU 和算術邏輯單元 ALU 都被包在中央處理器 CPU(Central Processing Unit)中;記憶體則以不同形式散佈,依存取速度分為:暫存器(Register)、快取(Cache)、主記憶體(Main memory)與大量儲存裝置(Mass storage)。

馮紐曼架構(Von Neumann architecture)。圖/Wikimedia Commons

算術邏輯單元 ALU 負責運算,透過邏輯閘進行加減乘除、邏輯判斷、平移等基礎運算,透過一次次的運算,完成複雜的程式。有了精密的算術邏輯單元,還有一個很重要的,也是控制單元 CU 最主要的工作——流程管理。

為了加速計算,CU 會分析任務,把需要運行的資料與程式放進離 ALU 最近、存取速度最快的暫存器中。在等 ALU 完成任務的同時,CU 會判斷接下來的工作流程,事先將後面會用到的資料拉進快取與主記憶體,並在算術邏輯單元完成任務後,安排下一個任務給它,然後把半完成品放到下一個暫存器中等待下一步的運算。

CPU 就像是一間工廠,ALU 則是負責加工的機器,CU 則作為流水線上的履帶與機械手臂,不斷將原料與半成品運向下一站,同時控制工廠與倉庫間的物流運輸,讓效率最大化。

然而隨著科技發展,人們需要電腦處理的任務量越來越大。就以照片為例,隨手拍的一張 1080p 相片就含有1920*1080 共 2073600 個像素,不僅如此,在彩色相片中,每一個像素還包含 R、G、B 三種數值,如果是有透明度的 PNG 圖片,那還多一個 Alpha 值(A值),代表一張相片就有 800 萬個元素要做處理,更不用說現在的手機很多都已經能拍到 4K 以上的畫質,這對於 CPU 來說實在過於辛苦。

很多照片都有 4K 以上的畫質,這對於 CPU 來說實在過於辛苦。圖/Envato Elements

由於 CPU 只有一條生產線,能做的就是增加生產線的數量;工程師也發現,其實在影像處理的過程中,瓶頸不是在於運算的題目過於困難,而是工作量非常龐大。CPU 是很強沒錯,但處理量能不夠怎麼辦?

那就換狂開產線的 GPU!

比起增加算術邏輯單元的運算速度,不如重新改建一下原有的工廠!在廠房中盡可能放入更多構造相同的流水線,而倉庫這種大型倉儲空間則可以讓所有流水線共同使用,這樣不僅能增加單位體積中的運算效能,在相同時間內,也可以產出更多的東西,減少一張相片運算的時間。

顯卡大廠 NVIDIA 在 1999 年首次提出了將圖形處理器獨立出來的構想,並發表了第一個為加速圖形運算而誕生、歷史上第一張顯卡—— GPU(Graphics Processing Unit)NVIDIA GeForce 256。

在一顆 GPU 中會有數百到數千個 ALU,就像是把許多小 CPU 塞在同一張顯卡上;在影像處理的過程中,CU 會把每一格像素分配給不同的 ALU,當處理相同的工作時,GPU 就可以大幅提升處理效率。

這也是為什麼加密貨幣市場中的「礦工」們,大部分都以 GPU 作為挖礦工具;由於礦工們實際在做的計算並不困難,重點是需要不斷反覆計算,處理有龐大工作量的「工作量證明機制」問題,利用 GPU 加速就是最佳解。

不過,影像處理技術的需求隨著時代變得更加複雜,這就是人工智慧的範疇了。以一張相片來說,要能認出是誰,就需要有一道處理工序來比較、綜合諮詢以進行人臉辨識;如果要提升準度,就要不斷加入參數,像是眼鏡的有無、臉上的皺紋、髮型,除此之外還要考慮到人物在相片中的旋轉、光線造成的明暗對比等。

人臉辨識是人工智慧範疇。圖/Envato Elements

每一次的參數判斷,在機器學習中都是一層不同的過濾器(filter)。在每一次計算中,AI 會拿著這個過濾器,在相片上從左至右,從上至下,去找相片中是否有符合這個特徵;每一次的比對,就會給一個分數,總分越高,代表這附近有越高的機率符合過濾器想找的對象,就像玩踩地雷一樣,當這邊出現高分數的時候,就是找到目標了。

而這種方式被稱為卷積神經網路(Convolutional Neural Networks, CNN),為神經網路的一種,被大量使用在影像辨識中。除了能增進影像辨識的準確度外,透過改變過濾器的次數、移動時的快慢、共用的參數等,還可以減少矩陣的運算次數、加快神經網路的計算。

然而即便如此,工作量還是比傳統影像處理複雜多了。為應對龐大的矩陣運算,我們的主角 TPU(Tensor Processing Unit)張量處理單元就誕生了!

TPU 如何優化 AI 運算

既然 CNN 的關鍵就是矩陣運算,那就來做一個矩陣運算特別快的晶片吧!

TPU 在處理矩陣運算上採用脈動陣列(Systolic Array)的方式;比起 GPU 中每個 ALU 都各做各的,在 TPU 裡面的資料會在各個 ALU 之間穿梭,每個 ALU 專門負責一部分,共同完成任務。這麼做有兩個好處,一是每個人負擔的工作量更少,代表每個 ALU 的體積可以再縮小;二是半成品傳遞的過程可以直接在 ALU 之間進行,不再需要把半成品借放在暫存區再拿出來,大幅減少了儲存與讀取的時間。

在這樣的架構下,比起只能塞進約 4000 個核心的 GPU,TPU 可以塞進 128*128 共 1.6 萬個核心,加上每個核心負擔的工作量更小,運算速度也就更快、耗電量更低。我們經常使用的 google 服務,許多也是用了 TPU 做優化,像是本身就是全球最大搜尋引擎的 google、google 翻譯、google map 上都大量使用了 TPU 和神經網路來加速。

Google 服務大量使用了 TPU 和神經網路來加速。圖/GIPHY

2021 年,Google 更把 TPU 導入到自家手機產品中,也就是前面我們提到的 Google Tensor;今年更是在 Pixel 7 中放入升級後的 Google Tensor G2。

Google 表示新款人工智慧晶片可以加快 60% 的機器學習速度,也加快語音助理的處理速度與增加功能、在通話時去除雜音增進通話品質等,不過最有感的還是圖像處理,像是透過 AI 多了修復模糊處理,不僅可以修正手震,還能把舊相片也變得清晰。

現在新款的手機為凸顯不同,越來越強調自家晶片設計與效能的差異;除了 Google 的 TPU 外,其他公司也朝著 AI 晶片的方向前進,包括蘋果、高通、聯發科、中國的寒武紀等,也都發表了自行研發的神經網路處理器 NPU。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

1

7
1

文字

分享

1
7
1
日常生活範式的轉變:從紙筆到 AI
賴昭正_96
・2023/03/08 ・5723字 ・閱讀時間約 11 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!
  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

技術的進步是基於讓它適應你,因此你可能根本不會真正注意到它,所以它是日常生活的一部分。
——比爾.蓋茨(微軟公司創辦人之一)

幾天前與內人米天寶到一家常去的餐館,沒想到已經換了主人;找到一張桌子坐下後,好久都不見服務員上來打招呼;正覺得奇怪時,唯一的服務員終於出現了。內人迫不及待的馬上要菜單,「對不起,我們這裡沒有菜單,請掃描點菜。」內人哦了一聲,不知所措……還好有不落伍的老公在旁,因此總算沒有餓著肚子回家吃泡麵。

又半年前,與三位高中同學聚餐,餐後有位同學問怎麼從這裡到他弟弟的地方……,我回答說路就在你的口袋裡:「嘿,谷歌(Google),導航到……」。再又大約 1 年前,與一對老夫妻同事不知道怎麼談到了 228 事變,先生突然問那是哪一年發生的,沒有人能回答;我突然想到答案就在我口袋裡,拿出手機:「嘿,谷歌,228 事變是哪一年發生的?」

1970 年,林孝信等人在芝加哥大學創辦《科學月刊》時,日常所用的的工具是:紙張、鉛筆、橡皮、透過郵寄傳送的書信、及非必要不用的長途電話或傳真。在下圖中可以看到當時筆者用手寫的第 1 期文章「什麼是半導體」、審稿意見表、審稿人的修改、科學月刊專用稿紙、以及筆者在加州做論文時給總部林孝信的信封。這些工具現在都可以算是古董,早不是《科學月刊》運作模式,也已全部在筆者日常生活中退役了!

圖/筆者提供

是什麼重大科技的發展造成了這些改變呢?年輕的讀者或許不知道,但是筆者回想起來都覺得有點可怕,真不敢相信將不少筆者這一代人甩停在「石器時代」的巨大變化就在筆者後半生中發生!

讓我們在這裡一起來回顧這 40 年來的科技大里程碑吧。

個人電腦

筆者 1975 年回到清華,隔年的暑假為高中化學教師進修班開了一門相當受歡迎的(台灣非法組裝的)蘋果個人電腦程序課。那時個人電腦才剛問世不久,但已經慢慢地引起廣大群眾的注意與興趣。

因此到了 1981 年,曾經是全世界最賺錢、最受歡迎品牌的大型電腦計算機公司 IBM(International Business Machines)終於被迫進入個人電腦市場。IBM 的聲名很快地使個人電腦在消費群眾裡達到臨界量,但那時使用者必須記得電腦語言及程式名字才能執行。

圖/筆者提供

1984 年,蘋果電腦公司(Apple Computers)推出了 Macintosh 後,個人電腦市場才真正開始起飛。Macintosh 導入電腦鼠標,其「所見即所得」(WYSIWYG, what you see is what you get)界面更讓使用電腦變得非常簡單[1]:只要會按鼠標就好,不必再記那些電腦語言及程式名字。隔年,微軟(Microsoft Corporation[2])也推出了具鼠標及「所見即所得」界面的 Windows 操作系統後,儘管個人電腦成為主流還需要幾年時間,但毫無疑問地個人電腦時代已經來臨了!

在個人電腦出現之前,每到月底筆者就為了與銀行對帳搞得頭暈腦脹(時常對不起來);1993 年後,筆者便開始使用「個人賬戶管理軟體」Quicken,現在不但帳目了然,核對更大部分只是一分鐘的事情而已:它早已經是筆者日常生活中不可或缺的一部分!另一個則是微軟的「文件處理軟體」Word。但後者因間接地涉及到人工智能的應用,所以留在後面再做詳細討論。

互聯網與萬維網

互聯網(internet)始於 1960 年代,為美國政府研究人員共享信息的一種方式。它的發展有兩個原因:

  1. 60 年代的計算機體積龐大且固定不動,為了利用存儲在其它地方的計算機信息,人們必須通過傳統郵政系統發送計算機磁帶;
  2. 另一個催化劑是蘇聯於 1957 年 10 月 4 日發射人造衛星 Sputnik,促使國防部考慮即使在核攻擊後仍能傳播信息的方式,因此發展了阿帕網(ARPANET,Advanced Research Projects Agency Network,高級研究計劃署網絡)。

阿帕網雖然非常成功,但其成員僅限於某些與國防部有合同的學術和研究組織,因此創建其它網絡來提供信息共享是無可避免的……。

開始時各計算機網絡並沒有一種標準的方式來相互通信。科技學家終於在 1983 年 1 月 1 日建立了「傳輸控制協議/互聯網協議」(TCP/IP)的一新通信協議,使不同網絡上的不同類型計算機終於可以相互「交談」,現在的互聯網於焉誕生,因此當天被認為是互聯網的官方生日。阿帕網和國防數據網(Defense Data Network)後來也正式改用 TCP/IP標準,因此所有網絡現在都可以通過一種通用語言連接起來。

1989 年 11 月,第一個提供商業互聯網服務(ISP, internet service provider)公司 The World 在美國出現。儘管當時電話撥號連接只能以每秒 5 萬 6 千位元的慢得令人痛苦的速度下載[3],與現在的所謂寬帶(broadband)之至少 2500 萬位元的速度相比,真是小巫見大巫,但在兩年就產生了廣泛的消費者基礎。1991 年,美國國家科學基金會(NSF)看到該公司打開了這似乎再也關閉不了的閘門,終於解除了對商業 ISP 的禁令。

圖/筆者提供

1989 年,為了滿足世界各地大學和研究所的科學家對自動化信息共享的需求,英國計算機學家伯納斯-李(Tim Berners-Lee)爵士在瑞士歐洲核子研究中心(CERN)提出了萬維網(WWW, World Wide Web)的構想:在互聯網上建立一種可以透過「超文本鏈接」(hyperlink)將文檔連接到其它文檔的信息系統,使用戶能夠從一個文檔移到另一個文檔來搜索信息。

伯納斯-李 1990 年底成功地展示了包括 WWW 瀏覽器和 HTTP 服務器的系統,於 1991 年 1 月開始提供給其它研究機構。1991 年 8 月 23 日向公眾發布後,兩年內出現了 50 個網站。現在全世界的網站已經高達 20 億個!

1994 年 10 月 13 日第一款「商業化」網絡瀏覽器 Netscape 問世,四個月內即佔據了四分之三的瀏覽器市場上;配合了個人電腦「所見即所得」的快速發展,上網已漸成為全民運動。2000 年代初期所發展出在一條電話線中可以同時負載電話和互聯網之技術[4],更為互聯網注入了新的活力,使用戶可以同時上網和打電話,提供了可以「永遠在線」的互聯網服務。

離開學校或研究機構後,互聯網、萬維網、網絡瀏覽器、谷歌搜索引擎便成了是筆者寫作時尋求資料的必要工具。例如筆者在 2005 年寫《量子的故事》第二版時,如果不是它們的幫助,根本是不可能的工作!而現在寫這篇文章也是因為它們在陪伴著筆者才能快速完成的。

還有,筆者的所有經濟活動都已經是「無紙」(paperless)化了:水、電公司以及銀行等用電子郵件(見後)寄賬單後,自動提款;退休金、社會福利金每月自動入賬;銀行間可以隨時互相轉賬;……;因此可以整年不上銀行,也可以在遙遠的區域銀行開利息比較高的戶頭。股票的交易更是不可同日而語:以前根本看不到股票的瞬間動盪,買賣股票必須打電話給券商下單;現在都是瞬間個人操作!

生活中的所有經濟活動都已經是「無紙」了。圖/Envato Elements

電子郵件

早期的電腦使用者只能在同一台電腦裡留言。1971 年,麻省理工學院畢業生湯姆林森(Ray Tomlinson)在阿帕網工作時想出了創建一個使用 @ 符號的程序,使用戶能夠在阿帕網系統中的電腦間互發送消息。

沒過多久就有人找到了使用電子郵件賺錢的方法。1978 年,圖雷克(Gary Thurek)為當時 IBM 大型電腦勁敵 DEC(Digital Equipment Corporation)向數百名阿帕網用戶發送電子郵件推銷一款新產品,聲稱為該公司帶來了 1300 萬美元的銷售額,並為自己贏得了「垃圾郵件之父」的美名。 

1982 年,「簡單郵件傳輸協議」(SMTP)標準化了郵件服務器發送和接收消息的方式。其它協議如互聯網「消息訪問協議」(IMAP)和「郵局協議」(POP),相繼在 80 年代中期出現。1993 年,美國兩家大商業互聯網服務商(AOL 和 Delphi)將他們的電子郵件系統連接到互聯網,使用戶能夠利用這種簡單快捷的通信方式。1996 年,微軟 Hotmail 成為第一個完全基於互聯網的免費電子郵件服務;一年後,微軟發布了預裝在 Windows 中的電子郵件程序。

現在的電子郵件當然已經不再只是當初之文字的傳送而已:圖片、網站連接、語音等等都可以透過電子郵件瞬間傳送到地球的另一方;真不敢想像當初一篇文章寄到台灣後、至少兩個禮拜才能收到回音的日子是怎麼過的?!

2012 年,湯姆林森在專門討論技術如何改變廣大群眾未來生活的「The Verge」網站裡謂:「我看到電子郵件的使用方式大體上與我預想的完全一致」。

智能手機

手機(cell phone)和車載電話(car phone)早就存在,但當時只能用來打電話(因為少見及昂貴,擁有它們事實上是一種身份的代表)。80 年代初手機網絡開始出現後,手機便慢慢取代家用電話成為無線便攜式電話。1999 年,加拿大「動態研究」(Research In Motion)公司推出可以傳接電子郵件的黑莓(BlackBerry)手機;2002 年進一步推出了一款「允許用戶管理他們所有的業務通信和信息、永遠在線、永遠連接的時尚……無線手持設備」的智能手機後,黑莓手機迅速成為商務人士必備的生活工具。

黑莓手機為商務人士必備的生活工具。圖/維基百科

2005 年 7 月,谷歌收購移動操作系統「安卓」(Android)。蘋果電腦公司於 2007 年元月推出具有應用程序功能和突破性互聯網通信工具的結合體手機 iPhone;緊接著, 台灣宏達國際電子股份有限公司於 2008 年 9 月推出第一款商用安卓操作系統的智能手機。

2010,谷歌當時的企業發展副總裁勞維(David Lawee)回憶說這是谷歌「有史以來最好的交易」。誠然也!現今,安卓及蘋果手機操作系統(iOS)幾乎已經控制了整個智能手機市場。

現在的手機已經不再只是打電話的工具,而是將巨大的計算能力置於我們的掌中,帶領廣大的群眾進入了掌上個人電腦領域,徹底地完全改變了我們的日常生活方式!

人工智能

前面提到「文件處理軟體」是筆者日常生活中不可或缺的一部分!但真正讓筆者丟掉紙張、鉛筆、和橡皮擦的並不是它,而是谷歌的「語音轉文字軟體」。說來慚愧,筆者以前國文沒學好,不會注音符號;因此雖然有「文件處理軟體」,筆者還是沒有辦法輸入中文。

因此曾有一段時間「威脅」《科學月刊》,謂如果不找人幫打字,那就不寫了。筆者當然心知肚明,隨著科普文章的作者越來越多,這「威脅」遲早會不管用的,因此很早就想用「語音轉文字軟體」。但早期的「語音轉文字軟體」似乎聽不太懂筆者的台灣國語,錯誤百出,因此只能心有餘而力不足的感嘆而已。

「語音轉文字軟體」所使用的思考方式不是寫傳統軟體的邏輯,而是「人工智能」(artificial intelligence)的運用。但中文「童因志泰掇」,因此人工智能必須比較「聰明」,相對地發展也比較慢。但今日的中文「語音轉文字軟體」已非昔比;如果沒有它,筆者在中文文章寫作以及通訊上,不是丟不了紙筆,便還是一位只能用英文的「假外國人」!

今天的「人工智能」不但是能支持語音轉文字的智能設備、還會與你下棋、幫你開車!事實上當然不止如此:如前面所說的,還可以隨時回答你的歷史與地理之無知!你想知道現在的高中生如何做數學作業嗎?只要將問題用智能手機照相下來,就可以立即得到答案!不懂中文的外孫女有一天突然用中文發簡訊給筆者問:「為什麼需要學第 2 種外國語呢?」

「人工智能」幫助我們達成日常生活中的各種事。圖/Envato Elements

去年 11 月 30 日美國舊金山 OpenAI 公司提供了一款免費的人工智能軟體 ChatGPT,它不但可以回答你任何問題、跟你聊天,還可以快速(以秒計)幫你寫散文、詩歌、文章。這不但立即引起整個教育界的震撼,也成為報章雜誌熱門討論的話題!過年後,不少公立高中學校便迫不及待地宣布禁止裝置及使用。

斯坦福大學教育學助理教授萊文(Sarah Levin)說:「如果你要它(對一些流行小說)進行文學分析,它會做得很好,幫你寫一篇會讓許多老師很高興、希望自己的學生都能夠寫出來的 B+ 文章!」寫一篇散文是美國大學「入學考試」中非常重要的一個評估標準,不知道他們以後將如何如何處理這一問題?

斯坦福大學「科技工數」(STEM)教學與學習實驗室的負責人李(Victor Lee)也說:「從技術層面來看,就像谷歌超越所有的網路搜索引擎,或 Netflix 改變了人們對流媒體內容的期望一樣,它(ChatGPT)將沖擊(整個)教育系統。……我們正處於一個新時代。」

這到底是好是壞? ChatGPT 回答說:「在校使用我或其他語言模型可以成為加強教育的寶貴工具;但重要的是要謹慎對待這項技術,並確保以有利於學生學習的方式使用我」。

結論

因為筆者覺得很有道理,在這裡我們就用被誤傳是愛因斯坦所說的話來結束吧:「我害怕技術與我們的人性重疊的那一天,世界上只會有一代白痴[5]。看來那一天已經離我們不遠了!?

在此先警告讀者:或許筆者下篇文章已經不是自己寫的了[6]

註釋

  1. 這兩項技術(鼠標和「所見即所得」)都不是蘋果電腦公司的創見,市場上均早已有之。SRI International 的 Douglas Engelbart 於 1960 年代初開始開發鼠標;鼠標控制計算機系統的第一次公開演示是 1968 年。因其對後來使用個人電腦的重要性發展,該次演示被稱為「所有演示之母」(the mother of all demos)。到 1972 年,從 Engelbert 得來的靈感,隔鄰 Xerox 公司的研究單位 PARC 之圖形用戶界面技術已經發展到可以支持第一個 WYSIWYG 編輯器的程度;1974 年,Butler Lampson、Charles Simonyi、及其團隊推出了世界上第一個所見即所得的文檔處理程序 Bravo。
  2. IBM 一直不看好個人電腦,也害怕個人電腦侵蝕了大型電腦的利潤,因此對個人電腦的發展一直採取消極的態度,所以將操作系統的發展工作交給了微軟。
  3. 可以看到一個接一個的英文字母在螢幕上出現。
  4. 在這之前,人們無法同時打電話和瀏覽互聯網,為了避免家庭爭執,許多家庭(包括筆者)均被強迫裝上兩條電話線。
  5. 愛因斯坦:「我們的技術已經超越了我們的人性,這一點已經變得非常明顯。」
  6. 事實上現在人工智慧的最大問題是:還沒辦法個性化!所以是寫不出這句話來了。

延伸閱讀:
「網路安全技術與比特幣」(科學月刊 2018 年 6 月號),轉載於「財團法人善科教育基金會」的網站

賴昭正_96
37 篇文章 ・ 39 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

2
0

文字

分享

0
2
0
數據塑造生活與社會,讓人既放心但又不安?——《 AI 世代與我們的未來》
聯經出版_96
・2022/12/28 ・2760字 ・閱讀時間約 5 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

數位世界已經改變了我們日常生活的體驗,一個人從早到晚都會接受到大量數據,受益於大量數據,也貢獻大量數據。這些數據龐大的程度,和消化資訊的方式已經太過繁多,人類心智根本無法處理。

與數位科技建立夥伴關係

所以人會本能地或潛意識地倚賴軟體來處理、組織、篩選出必要或有用的資訊,也就是根據用戶過去的偏好或目前的流行,來挑選要瀏覽的新項目、要看的電影、要播放的音樂。自動策劃的體驗很輕鬆容易,又能讓人滿足,人們只會在沒有自動化服務,例如閱讀別人臉書塗鴉牆上的貼文,或是用別人的網飛帳號看電影時,才會注意到這服務的存在。

有人工智慧協助的網路平臺加速整合,並加深了個人與數位科技間的連結。人工智慧經過設計和訓練,能直覺地解決人類的問題、掌握人類的目標,原本只有人類心智才能管理的各種選擇,現在能由網路平臺來引導、詮釋和記錄(儘管效率比較差)。

日常生活中很少察覺到對自動策劃的依賴。圖/Pexels

網路平臺收集資訊和體驗來完成這些任務,任何一個人的大腦在壽命期限內都不可能容納如此大量的資訊和體驗,所以網路平臺能產出看起來非常恰當的答案和建議。例如,採購員不管再怎麼投入工作,在挑選冬季長靴的時候,也不可能從全國成千上萬的類似商品、近期天氣預測、季節因素、回顧過去的搜尋記錄、調查物流模式之後,才決定最佳的採購項目,但人工智慧可以完整評估上述所有因素。

因此,由人工智慧驅動的網路平臺經常和我們每個人互動,但我們在歷史上從未和其他產品、服務或機器這樣互動過。當我們個人在和人工智慧互動的時候,人工智慧會適應個人用戶的偏好(網際網路瀏覽記錄、搜尋記錄、旅遊史、收入水準、社交連結),開始形成一種隱形的夥伴關係。

個人用戶逐漸依賴這樣的平臺來完成一串功能,但這些功能過去可能由郵政、百貨公司,或是接待禮賓、懺悔自白的人和朋友,或是企業、政府或其他人類一起來完成。

網路平臺和用戶之間是既親密又遠距的聯繫。圖/Envato Elements

個人、網路平臺和平臺用戶之間的關係,是一種親密關係與遠距聯繫的新穎組合。人工智慧網路平臺審查大量的用戶數據,其中大部分是個人數據(如位置、聯絡資訊、朋友圈、同事圈、金融與健康資訊);網路會把人工智慧當成嚮導,或讓人工智慧來安排個人化體驗。

人工智慧如此精準、正確,是因為人工智慧有能力可以根據數億段類似的關係,以及上兆次空間(用戶群的地理範圍)與時間(集合了過去的使用)的互動來回顧和反應。網路平臺用戶與人工智慧形成了緊密的互動,並互相學習。

網路平臺的人工智慧使用邏輯,在很多方面對人類來說都難以理解。例如,運用人工智慧的網路平臺在評估圖片、貼文或搜尋時,人類可能無法明確地理解人工智慧會在特定情境下如何運作。谷歌的工程師知道他們的搜尋功能若有人工智慧,就會有清楚的搜尋結果;若沒有人工智慧,搜尋結果就不會那麼清楚,但工程師沒辦法解釋為什麼某些結果的排序比較高。

要評鑑人工智慧的優劣,看的是結果實用不實用,不是看過程。這代表我們的輕重緩急已經和早期不一樣了,以前每個機械的步驟或思考的過程都會由人類來體驗(想法、對話、管理流程),或讓人類可以暫停、檢查、重複。

人工智慧陪伴現代人的生活

例如,在許多工業化地區,旅行的過程已經不需要「找方向」了。以前這過程需要人力,要先打電話給我們要拜訪的對象,查看紙本地圖,然後常常在加油站或便利商店停下來,確認我們的方向對不對。現在,透過手機應用程式,旅行的過程可以更有效率。

透過導航,為旅途帶來不少便利。圖/Pexels

這些應用程式不但可以根據他們「所知」的交通記錄來評估可能的路線與每條路線所花費的時間,還可以考量到當天的交通事故、可能造成延誤的特殊狀況(駕駛過程中的延誤)和其他跡象(其他用戶的搜尋),來避免和別人走同一條路。

從看地圖到線上導航,這轉變如此方便,很少人會停下來想想這種變化有多大的革命性意義,又會帶來什麼後果。個人用戶、社會與網路平臺和營運商建立了新關係,並信任網路平臺與演算法可以產生準確的結果,獲得了便利,成為數據集的一部分,而這數據集又在持續進化(至少會在大家使用應用程式的時候追蹤個人的位置)。

在某種意義上,使用這種服務的人並不是獨自駕駛,而是系統的一部分。在系統內,人類和機器智慧一起協作,引導一群人透過各自的路線聚集在一起。

持續陪伴型的人工智慧會愈來愈普及,醫療保健、物流、零售、金融、通訊、媒體、運輸和娛樂等產業持續發展,我們的日常生活體驗透過網路平臺一直在變化。

網路平台協助我們完成各種事項。圖/Pexels

當用戶找人工智慧網路平臺來協助他們完成任務的時候,因為網路平臺可以收集、提煉資訊,所以用戶得到了益處,上個世代完全沒有這種經驗。這種平臺追求新穎模式的規模、力量、功能,讓個人用戶獲得前所未有的便利和能力;同時,這些用戶進入一種前所未有的人機對話中。

運用人工智慧的網路平臺有能力可以用我們無法清楚理解,甚至無法明確定義或表示的方式來形塑人類的活動,這裡有一個很重要的問題:這種人工智慧的目標功能是什麼?由誰設計?在哪些監管參數範圍裡?

類似問題的答案會繼續塑造未來的生活與未來的社會:誰在操作?誰在定義這些流程的限制?這些人對於社會規範和制度會有什麼影響?有人可以存取人工智慧的感知嗎?有的話,這人是誰?

如果沒有人類可以完全理解或查看數據,或檢視每個步驟,也就是說假設人類的角色只負責設計、監控和設定人工智慧的參數,那麼對人工智慧的限制應該要讓我們放心?還是讓我們不安?還是既放心又不安?

——本文摘自《 AI 世代與我們的未來:人工智慧如何改變生活,甚至是世界?》,2022 年 12 月,聯經出版公司,未經同意請勿轉載。

聯經出版_96
27 篇文章 ・ 17 位粉絲
聯經出版公司創立於1974年5月4日,是一個綜合性的出版公司,為聯合報系關係企業之一。 三十多年來已經累積了近六千餘種圖書, 範圍包括人文、社會科學、科技以及小說、藝術、傳記、商業、工具書、保健、旅遊、兒童讀物等。