0

4
0

文字

分享

0
4
0

油脂加米飯:能讓熱量減少60% ?

活躍星系核_96
・2015/04/18 ・4987字 ・閱讀時間約 10 分鐘 ・SR值 566 ・九年級

文/Dean Mingtze Tsai

不知道你有沒有看過這則新聞?

《中視新聞》改變米飯烹調方式 減少60%熱量

https://www.youtube.com/watch?v=icLimi6u2IQ 

-----廣告,請繼續往下閱讀-----

這如果是真的話,比減肥藥還厲害啊,腰豆素和羅氏鮮等等減肥藥就都不用賣了。以國人飲食指南建議成人一天攝取1.5-4碗全榖根莖類來算,假設一碗飯200g約300大卡,如果能減少60%熱量的話,一碗飯就只剩120大卡,等於一天最多吃四碗也只有480大卡,超划算的吃法啊!

以主食佔50-65%總熱量的比例(以平均58%來看好了),一個一天要攝取2000大卡的人,醣類熱量約1160大卡。如果醣類都是從這種油化白米攝取,瞬間就少了約700大卡,這樣吃十一天就瘦一公斤了,超棒der。

其他報導怎麼說?

由於筆者覺得這樣的一篇新聞報導有諸多不合理的地方,於是便再找了另外的中文新聞:

《華人健康網》吃白飯熱量能減半!加椰子油放冰箱

-----廣告,請繼續往下閱讀-----

內文提到:「正在努力減重的你,是否餐餐都是『菜菜族』,完全不敢碰澱粉,尤其是白飯?好消息來了,斯里蘭卡研究人員發現,將椰子油加入米飯後,烹煮40分鐘,冷卻後再放入冰箱冰半天,就能減少至少60%的熱量。讓你減重不挨餓,香噴噴的白飯照吃不誤,一樣苗條又健康。」

至少60%也太多了吧!!!???

而其內文有說到「根據美國《時代》(TIME)雜誌報導」,於是用關鍵字google:rice+coconut oil+resistant starch,果然找到《TIME》的原文了。

《時代》This Cooking Trick Cuts Rice Calories in Half

-----廣告,請繼續往下閱讀-----
source:TIME
source:TIME

內文提到:「According to research presented at the American Chemical Society’s national meeting, using coconut oil and a refrigeratorcan slash calories by as much as 60%.」

這邊的意思跟中文新聞的意思一樣,但是它最後兩段有個類似但書的補充說明:「以研究者的方式烹煮可以減少10-15%的熱量(但研究原文其實是說10-12%),但研究者如果用特定的品種可能會減少50-60%。」不過內文也有提到,重複加熱並不影響抗性澱粉的量。

在BBC也找到了相關報導:

《BBC》Eat rice cold for fewer calories

-----廣告,請繼續往下閱讀-----
source:BBC
source:BBC

「研究者找出最佳的方法是加入一茶匙的椰子油煮40分,然後放冷後,在冰箱冷藏12小時。

研究者也指出:冷藏讓溫降低是一個必須步驟,因為直鏈澱粉會在糊化的時候從顆粒滲出並形成可溶的型態。冷藏12小時會使其在直鏈澱粉分子外的氫鍵形成,也會轉變成抗性澱粉。重新加熱也是可以的,並不會影響抗性澱粉的量。

該研究團隊現在正確定哪一個品種的米可以使此試驗結果更好,也在確定是否有其他食用油可以拿來試驗。英國營養基金會的專家說抗性澱粉可能具有數種健康益處,可以促進消化和腸道健康,也可幫助調節血糖濃度。但他說還需要更多的研究來證實這類抗性澱粉的任何一種的健康效應。

英國飲食協會發言人說:這聽起來很具有潛力,然而尚無相關的人體實驗數據。我還是會建議人們煮飯時使用他們正常的方法,直到更多的有效資訊出來時。

-----廣告,請繼續往下閱讀-----

所以減重並無快速方法!!!!!!(there was no quick fix to losing weight.)

加油冷藏,米飯是怎麼形成抗性澱粉的?

這邊提到的冷藏後形成的抗性澱粉應該是第三型抗性澱粉,可以根據一篇碩士論文(探討添加離子液體[EMIM][DEP]對於酵素改質玉米澱粉的影響)的內文可以做簡單解釋。

「第三型抗性澱粉稱為回凝澱粉或稱老化澱粉,是澱粉顆粒在充足的水分下經加熱、糊化、冷卻及回生的過程所產生的澱粉,因其直鏈澱粉分子之間的氫鍵作用,形成雙股螺旋(double helix)的結晶物質,此種結晶物質不僅具有抗酶解的特性,同時熱穩定較高,能承受多次的熱加工處理,所以可以廣泛利用於食品工業。」

再繼續digging後,果然又找到了刊登在《Chemistry-World》的一篇文章:

-----廣告,請繼續往下閱讀-----

Simple cooking changes make healthier rice裡面有提到:he told delegates at the 249th ACS National Meeting & Exposition in Denver, US.ACS是美國化學協會,算是很知名的世界級組織;不過因為非學術網站,有一些相關的資料就載不下來了。

但還是可以看到他的做法大概是:使用傳統的煮法為燉煮40分鐘後,再以烘箱乾燥2.5小時。接著是另一種方法:加入椰子油(這邊沒提多少)於米中在沸水煮,接著冷藏12小時候,再以烘箱乾燥,最後進行微波,反覆的加熱冷卻,是會增加抗性澱粉的含量。顯然其中有兩三段內文有點被台灣ㄐㄧˋ ㄓㄜˇ 誇大。

  1. 實驗者是用其他品種(原本就是最低含量抗性澱粉的品種),如果用一般高抗性澱粉或其他品種的米,效果可能會達50-60%(但還沒做是用推測的),而他的實驗結果是減少10-12%的卡洛里。
  2. 這是體外試驗,研究者有說:目前缺乏這類文獻產生之抗性澱粉之攝取相關的數據,將來會在更做進一步的關於肥胖病患的臨床試驗。也有其他學者提出相關質疑:人體的代謝反應並不總是能夠全部預測,尤其是從體外試驗來判斷時。
  3. 研究者把這種油脂和澱粉結合的抗性澱粉稱為第五型抗性澱粉:直鏈澱粉-脂質複合物澱粉,推測這種情況下被結合的油脂和澱粉都不能吸收,但是應該有潤滑腸道和促進糞便形成的功能。

這邊記者完全省略阿!!!!!身為食品人不允許記者省略啊!!!!

什麼是第五型抗性澱粉?

這邊很重要,因為很多教科書還沒有第五型抗性澱粉。那第五型抗性澱粉到底是什麼呢?在此,為大家奉上兩篇文獻。

文獻一:Amylose-lipid complex formation during cooking of rice flour

文獻一也只能看到摘要,哭哭!不過節錄覺得重點的地方:

直鏈澱粉-脂質複合物形成率和水溶解性會隨至著於成糊烹煮(paste cooked)脂肪酸比例的增加,會使直鏈澱粉-脂質複合物的形成率增加,而水溶解性減少。水溶解性的減少可能代表被酵素作用的部分變少,因為酵素需要水相媒介來幫助分解基質。

此外也提到了藉由碘圖譜檢測有無脂質加入的米粉,可以確認確實有直鏈澱粉-脂質複合物的形成
(碘圖譜應該是一種紅外線的光學儀器所打出的圖譜)。(編按:由於作者跟編輯都不是光學領域出身,這部分還望大家指教。)

再來是文獻二,這一篇就比較友善了:Resistant Starch: Promise for Improving Human Health

dfw

根據此文獻原文,抗性澱粉分五類:

  1. 第一類:天生具有物理屏障能抵抗酵素完全作用的澱粉:如未精緻的全穀類。
  2. 第二類:伴隨著有B或C多晶型態的澱粉顆粒:如高直鏈澱粉玉米、生的馬鈴薯和香蕉澱粉。
  3. 第三類:回凝澱粉:如烹調過後冷卻回凝的澱粉食品。
  4. 第四類:化學修飾澱粉:如經化學物修飾澱粉官能基的澱粉,交鏈澱粉和辛烯基琥珀酸澱粉。
  5. 第五類:直鏈澱粉-脂質複合物:脂質和澱粉高溫糊化後形成的複合物,硬脂酸-高直鏈澱粉複合體。(澱粉經辛烯基琥珀酸(Octenyl Succinic Anhydrate, OSA)修飾後使澱粉具親水性及疏水性,可做為良好的乳化劑。)
澱粉螺旋結構與脂質結合示意圖。
澱粉螺旋結構與脂質結合示意圖。souce:University of Groningen
此篇文獻有提到這種第五類抗性澱粉如何形成的:
  1. 原料是直鏈澱粉和支鏈澱粉的長側鏈(是支鏈點α-1,6鍵結之後的直鏈澱粉)與脂肪酸(中短鏈)或脂肪醇(就是鏈很長的脂肪酸),所形成的單股螺旋複合物。
  2. 由螺旋結構的線性澱粉(直鏈澱粉和支鏈澱粉的長側鏈)中的螺旋腔室(中間的洞),脂肪酸會在此螺旋腔室內與澱粉結合,當結合完畢後,就可以抵抗澱粉酶的切!切!切!
  3. 而這種複合物也會纏繞支鏈澱粉分子,造成澱粉顆粒無法順利的被酵素水解。
  4. 這種複合物的形成是很短暫的即時性反應,而且加熱後可以重新形成,此外這種複合抗性澱粉可能也具有熱安定性!

關於抗性澱粉

而關於抗性澱粉的好處:由於人體消化困難,當抗性澱粉通過經由上部消化道到達大腸時,會被細菌發酵分解,產生許多重要的代謝產物,包括短鏈脂肪酸(SCFAs)。

-----廣告,請繼續往下閱讀-----

所以抗性澱粉也可以視為是一種益菌生(prebiotics)和膳食纖維,它可以:

  1. 降低大腸癌前驅物
  2. 巨量營養素的全身性調節
  3. 改變賀爾蒙/激素的分泌
  4. 改善心理和生理的健康

這邊的巨量營養素的全身調節,我想作者是指醣類、脂肪、蛋白質以及巨量礦物質於體內的代謝調節。

另外於台灣大學的食品科技研究所也有做過相關的研究,在油脂對米飯理化特性及澱粉消化性之影響中,其摘要有提到:

  1. 隨油脂飽和程度增加,棕櫚油具有最低的預估升糖指數 (eGI)(85.6)和含量最高的抗性澱粉(RS)(11.2%),其次依序為大豆油(87.1 和 8.5%)、亞麻仁油(90.3 和 3.8%)及白米飯(92.4 和 0.8%),結果顯示棕櫚油可形成較穩定之複合物,對酵素水解抗性較佳。
  2. 回凝米飯之消化性隨米飯貯藏時間延長而降低,以亞麻仁油增加RS之量最多。於XRD之圖譜,可觀察到米飯澱粉於回凝過程中,由V-type 轉變成 B-type,經復熱後再次轉變為V-type,結構間具熱可逆之特性。這一段話我想作者應該是想表示:用飽和脂肪形成的複合物可能比較多也比較安定,所以正常澱粉就比較少,而亞麻油酸這複合物可能比較少,正常澱粉比較多。儲存時間增加,正常澱粉會脫水回凝,但複合物澱粉不容易回凝脫水,所以正常澱粉多的亞麻油酸組別增加的老化澱粉會較多。
  3. 米飯經回凝復熱後,ALC(直鏈澱粉-脂質複合物)之解離溫度提高;復熱之米飯澱粉消化性與新鮮米飯比較,RS含量間並無顯著差異,顯示由於ALC熱可逆性,仍可保留複合物維持其酵素之抗性。經由實驗結果得知,不飽和程度越低之油脂,其形成ALC之結構也越安定,可顯著降低米飯澱粉之消化性,將有助餐後血糖之控制,並且獲得較多的RS,作為飲食之參考。

另外一篇來自Sci期刊的文獻(Effects of cooking methods and starch structures on starch hydrolysis rates of rice.),也有相似結果。

這篇文獻主要是想了解不同的烹煮方法(蒸煮、煨肉煮pilaf、傳統炒法)於米的澱粉水解程度是否會有差異。研究者選了三種品種的稻米,分別是:

根據此文獻摘要 直鏈澱粉含量 初始糊化溫度 蒸煮後RS量 煨肉煮RS量 傳統炒法RS量
(1)蓬萊米(japonica) 13.5% 56℃ 0.7% 12.1% 15.8%
(2)在來米(indica) 18.0% 71.6℃ 6.6% 13.2% 16.6%
(3)糯米(waxy) 0.9% 56.8℃ 1.3% 3.4% 12.1%

在來米於初始糊化溫度之所以較高的原因,起因於有較長的支鏈澱粉側鍊。以炒飯的形式,會有最多的抗性澱粉含量。

作者也說機制已經被研究了,那應該是要再去找其他文獻來看,因為有些文獻只能看到摘要。抗性澱粉越多,澱粉水解率越低,炒飯的形式可能是一種期望中可以製備降低飯後血糖和胰島素反應的方式,藉此方式也可以促進人體大腸的健康。

◎(這邊是假設探討)我們以傳統炒法的在來米來看,抗性澱粉增加16.6%,一般澱粉則有83.4%,以一碗飯為四份主食的單位來看,一份主食有15g的醣類和2g的蛋白質,熱量大約為70大卡。

在其中這15g的醣類有2.49g為抗性澱粉,12.51g為一般澱粉,抗性澱粉的熱量2.4-2.8大卡,取最少的2.4大卡,一般澱粉為4大卡,這樣糖類的總熱量有50.04大卡,加上蛋白質的8大卡,總共為58.04大卡。

這樣來看的話58.04大卡只佔原本70大卡的83%,等於減少了17%的熱量,再加上油脂的熱量,一份主食分配的油脂可能很少(一鍋飯配一茶匙的油,根據新聞),所以跟研究者的10-12%可能是類似的。

source:Ruocaled
source:Ruocaled

Dean say:

這種模式目前應該尚處於體外試驗,當然於生物體也可能有相似現象。煮飯加油脂,飯會比較好吃,而且鍋子和碗比較好洗XDD不過加入微量的油脂可以避免減肥者面臨長期油脂攝取不足的可能,也算是一種另類的營養均衡。加入油脂的飯也會比較香,如果有厭食的人,搞不好可以提升食慾。

但是…….並不能完全使用這種方式減肥,有技巧的吃和多動才是減肥的正解啊!

資料/文獻來源:
  1. 改變米飯烹調方式 減少60%熱量。中視新聞影片。
  2. 吃白飯熱量能減半!加椰子油放冰箱。華人新聞網。
  3. This Cooking Trick Cuts Rice Calories in Half。Time news。
  4. Simple cooking changes make healthier rice。Chemistry-World。
  5. Kaur, K., Singh, N., (2003). Amylose-lipid complex formation during cooking of rice flour. Food Chemistry, 77(4), 511-517.
  6. Birt, D. F., Boylston, Hendrich, S., Jane, J., Hollis, J., Li, L., McClelland, J., Moore, S., Phillips, G. J., Rowling, M., Schalinske, K., Scott, M. P., Whitley, E.M. (2013). Resistant Starch: Promise for Improving Human Health. Advance in Nutrition. 4, 587-601.
  7. 林奕廷 (2014):油脂對米飯理化特性及澱粉消化性之影響。碩士論文。國立台灣大學食品科技研究所。台北市。台灣。
  8. Mo, R., Leutcher, A. Y., JL, J., (2013). Effects of cooking methods and starch structures on starch hydrolysis rates of rice. Journal of Food Science, 78(7), 1076-1081.
  9. 陳佑倫(2011):探討添加離子液體[EMIM][DEP]對於酵素改質玉米澱粉的影響。碩士論文。國立中央大學化學工程與材料工程學系。桃園市。台灣。
  10. Eat rice cold for fewer calories。BBC NEWS。
  11. Katja Loos. (2012). Unraveling the lipid-amylose inclusion complex formation. Macromolecular Chemistry and New Polymeric Materials Lab, University of Groningen. Netherlands.

本文轉載自作者部落格

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 129 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

1
0

文字

分享

1
1
0
粒粒皆辛苦,那些促成蓬萊米上餐桌的田間推手——磯永吉和末永仁
PanSci_96
・2023/03/17 ・3665字 ・閱讀時間約 7 分鐘

  • 撰文/邱睦容

1918 年,日本富山縣。

「請不要把米運往別處!」、「留下一升米!」在富山灣魚量枯竭、鍋子因無米可炊而被稱為「鍋割月」的八月,米商家的門口,一群漁村婦女們正在苦苦陳情。她們的求助並不完全出於貧窮之故,而是來自於,就算辛苦在碼頭工作一整天,隻身拖負著六、七俵(約 400 公斤)的米,她們勞動的工資仍不足以支付全家人一天所需的米錢。

這場陳情最終在日本遍地開花,成為引發百萬人上街頭的「米騷動」。

富山主婦的陳情,是一個引線,引爆了日本後續的社會變動,也連動了臺灣人碗中米食變革。

1918 年米騷動的一景。1918 年 8 月 11 日,神戶的鈴木商店在暴亂中被燒毀。圖/wiki

這場因米糧不足而引發的社會運動,不僅讓內閣總辭,也讓日本政府確立了帝國內糧食自給自足的目標,促進殖民地的稻米增產政策並加速稻種改良。

然而這樣的目標,並非一場社會運動就能一蹴可幾,它需要時間的積累、需要研究人員的投入,以及需要一些機運和巧合,的穿針引線,才能造就豐碩的成果。

系統性分類臺灣稻種,磯永吉解答米種改良的路線之爭

讓我們把時間倒退幾年,來到 1912 年。

-----廣告,請繼續往下閱讀-----

那是日本統治臺灣的第十七個年頭,截至那一年,總督府遴聘來臺的農業專家,已經引進了 145 個「內地種」稻米品種試種,卻屢試屢敗。

為什麼要這麼大費周章?

因為過往臺灣人吃的都是「(音ㄒㄧㄢ)」——細長、鬆散且甜度低,這種筷子一挾起就掉落好幾粒的米種,讓吃習慣了「(音ㄍㄥ)」——圓粒、具黏性與甜度品種的日本人難以適應。為了讓在臺日人也能吃到家鄉口味的白飯,也讓臺灣出產的米能夠成為日本內地糧食的來源,在臺進行米種改良一直是農業試驗場的重要工作。

秈米,是由秈稻(一種水稻的亞種)碾出的米,特色是細長、鬆散、缺乏黏度且甜度低,是台灣自明鄭時期以來廣泛栽種且食用的米種。圖/wiki
粳米,是由粳稻(另一種水稻的亞種)碾出的米。相較於秈米,粳米較為圓潤、黏度高且較甜。圖/wiki

而也在那一年,一位甫自東北帝國大學農科大學註 1畢業、有著一對濃眉的年輕人來到了臺灣。這位年輕人磯永吉(1886-1972),即將投入米種改良的工作。

-----廣告,請繼續往下閱讀-----

磯永吉抵臺之時,稻種的改良在「在來種改良註 2 」與「內地種導入」兩派方法間徘徊多年。前者致力於將臺灣原有的「秈米」改良成類似日本種的「圓粒米」,即便在口感上難以複製黏性,但至少圓粒的米型方便被混入日本米,也因此能售出較高價;而後者則試圖將日本種引入臺灣種植,卻因為對臺灣的日照敏感和稻熱病之故,十多年來始終難以在臺落地生根。

一邊是面對帝國糧食增產目標的經濟做法,一邊是試圖種出日本人真正吃的米,難以論斷兩派到底孰者較為「實際」,因此,磯永吉選擇回到學理的研究來釐清。他運用大學時所學到的傑卡德係數(Jaccard coefficient),將歷來臺灣繁多的稻種,依照其不同特性,包括日照、早晚熟、期作別⋯⋯等特徵一一整理和分類

透過此方法,磯永吉建構出一套系統,並藉此判斷到底是「在來種改良」還是「內地種導入」在未來還有發展空間。

經過七年的投入,1919 年磯永吉與研究團隊將成果出版為《臺灣稻的分類》,這是臺灣種植的五百多個米品種,首次進行系統性的分類。而研究結果也宣告了在來種的改良空間不多,投入內地種的導入才是發展之道。

-----廣告,請繼續往下閱讀-----
磯永吉。圖/wiki

磯永吉的心血,或許也鼓舞了研究團隊之一、已在實驗田裡踽踽獨行五年的夥伴末永仁(1886-1939)

田間鍥而不捨試驗改良,末永仁提出「幼苗插植法」

末永仁比磯永吉來臺的時間更早,原本是基層技術人員的他,因為能力而受到磯永吉的肯定,在 1914 年轉進到臺中州試驗農場工作,負責改良事業在田間的實務,進行稻種的雜交育種與日本稻的栽培。

末永仁在 1.5 公里長的實驗田步道辛勤工作,只為了讓秧苗能順利生育、每穗稻穀粒能收穫更多。當改良工作遇到瓶頸時,他就會和磯永吉商討對策,兩人互為頭手地協作。終於,在研究發表後兩年,轉機出現。

在一次總督府官員的登山活動中,大屯山一帶的火山堰塞湖盆地「竹子湖」被磯永吉、臺北廳農務主任平澤龜一郎等人發現。竹子湖的涼爽潮濕、土壤肥沃的特性,類似日本九州,有著讓稻米生育的好條件。

-----廣告,請繼續往下閱讀-----

不出所料地,在此播種的日本稻「中村種」生長良好。

然而僅能在特定地區生長的原種田,還需要研發出適當的種植方法,才能夠將稻種推廣到全臺、滿足糧食增產的目標的。於是,末永仁在一次次鍥而不捨的試驗中,根據秧苗對於日照的反應,又提出了「幼苗揷植法」,藉由縮短秧期,改變植株的生長週期,解決了因氣候提早抽穗的問題。

自此,「中村種」水稻終於走出山中臺地,駐足平原。

「蓬萊米」誕生!推廣種植的推手李鵬儀

1926 年,對磯永吉和末永仁都是關鍵的一年,也是兩人分別投入臺灣稻作改良的第十二與十四年。為了讓更多人認識這個在臺灣所生產的米種,當時的總督伊澤多喜男,在臺北鐵道飯店召開的第十九屆「大日本米穀會」中,正式為「中村種」——這個過往被概稱為「內地種」的米,命名為「蓬萊米」。

-----廣告,請繼續往下閱讀-----
為「蓬萊米」命名的第十任台灣總督伊澤多喜男。圖/wiki

然而,蓬萊米育種成功後,還有一段漫長的挑戰等著兩人。除了找到合適的種植方法、品種之外,還得有種植的人才行。

四月,蓬萊米才風風光光地在米穀大會中亮相,同年七月就遭逢稻熱病,使得收成慘淡。為此,磯永吉和末永仁一邊推廣各地農民試種蓬萊米,一邊朝向「廣域」、「豐產」、「抗鹽」、「抗蟲」、「抗病」等方向進行改良,要讓農民對於蓬萊米的種植有信心。

然而 1927 年,「昭和恐慌」報到。那一年國際市場蕭條,米價大跌,農民種植蓬萊米的誘因減少。看到如此情況,一位臺灣米商伸出了援手,他是出生於彰化花壇的米商,李鵬儀

執彰化市米市之牛耳的李鵬儀,跳出來鼓勵農民種植蓬萊米。他願意依照種植面積全面收購,無論收穫成果如何。第一年受到稻熱病的影響、第二年又陸續碰到大旱和颱風,碾米廠空了近三年,直到 1929 年,他的相挺終於迎來了風調雨順,使得當年度新種植的「臺中 65 號註 3」大豐收。

-----廣告,請繼續往下閱讀-----

這一年的豐收,使得價錢本來就高於「在來種」的蓬萊米,又收穫了超過「在來種」的三倍數量,一舉讓李鵬儀回收過去所賠外還有盈餘,更重要的是,這次的成功給了農民信心。隔年,臺灣有 75% 的水稻田都改種蓬萊米。

這就是關於今日餐桌上,那碗帶有黏性、咬起來香甜的白米飯由來。關於蓬萊米的故事,還有很多不及說完的,像是末永仁最後是倒在臺中的實驗田間去世,而磯永吉在戰後又留臺任教多年,從培植米到教育人,將大半的人生都奉獻在臺灣。

是主婦釀成的社會運動、努力不懈的育種家、一場的登山所見、還有近百年後才發現的陸稻基因混入稻種改良⋯⋯種種的巧合、機緣相遇,才成就了你我餐桌上那碗飯的誕生。

註解

  1. 東北帝國大學農科大學:前身為「札幌農學校」,現今為北海道大學
  2. 「在來」一詞為日語,有著「向來、一直以來、既有」之意,指的是過往臺灣人慣吃的秈米。
  3. 臺中 65 號:以抗蟲品種「龜治」與生產佳的品種「神力」交配而成的新品種

參考文獻

  1. Chu, H. (2020). Tropicalizing Taiwan: the Environment, Crops, and Institutions of the Japanese Colonial Food Regime, 1895-1945 (Doctoral dissertation, State University of New York at Binghamton).
  2. 謝兆樞、劉建甫,《蓬萊米的故事》,國立臺灣大學磯永吉學會出版,2020。
  3. 李鵬儀傳,臺灣歷史人物傳記資料庫。
  4. 鄧慧純,〈尋米稻足跡 溯蓬萊物語〉,臺灣光華雜誌。
-----廣告,請繼續往下閱讀-----

0

4
0

文字

分享

0
4
0
油脂加米飯:能讓熱量減少60% ?
活躍星系核_96
・2015/04/18 ・4987字 ・閱讀時間約 10 分鐘 ・SR值 566 ・九年級

文/Dean Mingtze Tsai

不知道你有沒有看過這則新聞?

《中視新聞》改變米飯烹調方式 減少60%熱量

https://www.youtube.com/watch?v=icLimi6u2IQ 

-----廣告,請繼續往下閱讀-----

這如果是真的話,比減肥藥還厲害啊,腰豆素和羅氏鮮等等減肥藥就都不用賣了。以國人飲食指南建議成人一天攝取1.5-4碗全榖根莖類來算,假設一碗飯200g約300大卡,如果能減少60%熱量的話,一碗飯就只剩120大卡,等於一天最多吃四碗也只有480大卡,超划算的吃法啊!

以主食佔50-65%總熱量的比例(以平均58%來看好了),一個一天要攝取2000大卡的人,醣類熱量約1160大卡。如果醣類都是從這種油化白米攝取,瞬間就少了約700大卡,這樣吃十一天就瘦一公斤了,超棒der。

其他報導怎麼說?

由於筆者覺得這樣的一篇新聞報導有諸多不合理的地方,於是便再找了另外的中文新聞:

《華人健康網》吃白飯熱量能減半!加椰子油放冰箱

-----廣告,請繼續往下閱讀-----

內文提到:「正在努力減重的你,是否餐餐都是『菜菜族』,完全不敢碰澱粉,尤其是白飯?好消息來了,斯里蘭卡研究人員發現,將椰子油加入米飯後,烹煮40分鐘,冷卻後再放入冰箱冰半天,就能減少至少60%的熱量。讓你減重不挨餓,香噴噴的白飯照吃不誤,一樣苗條又健康。」

至少60%也太多了吧!!!???

而其內文有說到「根據美國《時代》(TIME)雜誌報導」,於是用關鍵字google:rice+coconut oil+resistant starch,果然找到《TIME》的原文了。

《時代》This Cooking Trick Cuts Rice Calories in Half

-----廣告,請繼續往下閱讀-----

source:TIME
source:TIME

內文提到:「According to research presented at the American Chemical Society’s national meeting, using coconut oil and a refrigeratorcan slash calories by as much as 60%.」

這邊的意思跟中文新聞的意思一樣,但是它最後兩段有個類似但書的補充說明:「以研究者的方式烹煮可以減少10-15%的熱量(但研究原文其實是說10-12%),但研究者如果用特定的品種可能會減少50-60%。」不過內文也有提到,重複加熱並不影響抗性澱粉的量。

在BBC也找到了相關報導:

-----廣告,請繼續往下閱讀-----

《BBC》Eat rice cold for fewer calories

source:BBC
source:BBC

「研究者找出最佳的方法是加入一茶匙的椰子油煮40分,然後放冷後,在冰箱冷藏12小時。

研究者也指出:冷藏讓溫降低是一個必須步驟,因為直鏈澱粉會在糊化的時候從顆粒滲出並形成可溶的型態。冷藏12小時會使其在直鏈澱粉分子外的氫鍵形成,也會轉變成抗性澱粉。重新加熱也是可以的,並不會影響抗性澱粉的量。

-----廣告,請繼續往下閱讀-----

該研究團隊現在正確定哪一個品種的米可以使此試驗結果更好,也在確定是否有其他食用油可以拿來試驗。英國營養基金會的專家說抗性澱粉可能具有數種健康益處,可以促進消化和腸道健康,也可幫助調節血糖濃度。但他說還需要更多的研究來證實這類抗性澱粉的任何一種的健康效應。

英國飲食協會發言人說:這聽起來很具有潛力,然而尚無相關的人體實驗數據。我還是會建議人們煮飯時使用他們正常的方法,直到更多的有效資訊出來時。

所以減重並無快速方法!!!!!!(there was no quick fix to losing weight.)

加油冷藏,米飯是怎麼形成抗性澱粉的?

這邊提到的冷藏後形成的抗性澱粉應該是第三型抗性澱粉,可以根據一篇碩士論文(探討添加離子液體[EMIM][DEP]對於酵素改質玉米澱粉的影響)的內文可以做簡單解釋。

-----廣告,請繼續往下閱讀-----

「第三型抗性澱粉稱為回凝澱粉或稱老化澱粉,是澱粉顆粒在充足的水分下經加熱、糊化、冷卻及回生的過程所產生的澱粉,因其直鏈澱粉分子之間的氫鍵作用,形成雙股螺旋(double helix)的結晶物質,此種結晶物質不僅具有抗酶解的特性,同時熱穩定較高,能承受多次的熱加工處理,所以可以廣泛利用於食品工業。」

再繼續digging後,果然又找到了刊登在《Chemistry-World》的一篇文章:

Simple cooking changes make healthier rice裡面有提到:he told delegates at the 249th ACS National Meeting & Exposition in Denver, US.ACS是美國化學協會,算是很知名的世界級組織;不過因為非學術網站,有一些相關的資料就載不下來了。

但還是可以看到他的做法大概是:使用傳統的煮法為燉煮40分鐘後,再以烘箱乾燥2.5小時。接著是另一種方法:加入椰子油(這邊沒提多少)於米中在沸水煮,接著冷藏12小時候,再以烘箱乾燥,最後進行微波,反覆的加熱冷卻,是會增加抗性澱粉的含量。顯然其中有兩三段內文有點被台灣ㄐㄧˋ ㄓㄜˇ 誇大。

-----廣告,請繼續往下閱讀-----
  1. 實驗者是用其他品種(原本就是最低含量抗性澱粉的品種),如果用一般高抗性澱粉或其他品種的米,效果可能會達50-60%(但還沒做是用推測的),而他的實驗結果是減少10-12%的卡洛里。
  2. 這是體外試驗,研究者有說:目前缺乏這類文獻產生之抗性澱粉之攝取相關的數據,將來會在更做進一步的關於肥胖病患的臨床試驗。也有其他學者提出相關質疑:人體的代謝反應並不總是能夠全部預測,尤其是從體外試驗來判斷時。
  3. 研究者把這種油脂和澱粉結合的抗性澱粉稱為第五型抗性澱粉:直鏈澱粉-脂質複合物澱粉,推測這種情況下被結合的油脂和澱粉都不能吸收,但是應該有潤滑腸道和促進糞便形成的功能。

這邊記者完全省略阿!!!!!身為食品人不允許記者省略啊!!!!

什麼是第五型抗性澱粉?

這邊很重要,因為很多教科書還沒有第五型抗性澱粉。那第五型抗性澱粉到底是什麼呢?在此,為大家奉上兩篇文獻。

文獻一:Amylose-lipid complex formation during cooking of rice flour

文獻一也只能看到摘要,哭哭!不過節錄覺得重點的地方:

直鏈澱粉-脂質複合物形成率和水溶解性會隨至著於成糊烹煮(paste cooked)脂肪酸比例的增加,會使直鏈澱粉-脂質複合物的形成率增加,而水溶解性減少。水溶解性的減少可能代表被酵素作用的部分變少,因為酵素需要水相媒介來幫助分解基質。

此外也提到了藉由碘圖譜檢測有無脂質加入的米粉,可以確認確實有直鏈澱粉-脂質複合物的形成
(碘圖譜應該是一種紅外線的光學儀器所打出的圖譜)。(編按:由於作者跟編輯都不是光學領域出身,這部分還望大家指教。)

再來是文獻二,這一篇就比較友善了:Resistant Starch: Promise for Improving Human Health

dfw

根據此文獻原文,抗性澱粉分五類:

  1. 第一類:天生具有物理屏障能抵抗酵素完全作用的澱粉:如未精緻的全穀類。
  2. 第二類:伴隨著有B或C多晶型態的澱粉顆粒:如高直鏈澱粉玉米、生的馬鈴薯和香蕉澱粉。
  3. 第三類:回凝澱粉:如烹調過後冷卻回凝的澱粉食品。
  4. 第四類:化學修飾澱粉:如經化學物修飾澱粉官能基的澱粉,交鏈澱粉和辛烯基琥珀酸澱粉。
  5. 第五類:直鏈澱粉-脂質複合物:脂質和澱粉高溫糊化後形成的複合物,硬脂酸-高直鏈澱粉複合體。(澱粉經辛烯基琥珀酸(Octenyl Succinic Anhydrate, OSA)修飾後使澱粉具親水性及疏水性,可做為良好的乳化劑。)

澱粉螺旋結構與脂質結合示意圖。
澱粉螺旋結構與脂質結合示意圖。souce:University of Groningen

此篇文獻有提到這種第五類抗性澱粉如何形成的:
  1. 原料是直鏈澱粉和支鏈澱粉的長側鏈(是支鏈點α-1,6鍵結之後的直鏈澱粉)與脂肪酸(中短鏈)或脂肪醇(就是鏈很長的脂肪酸),所形成的單股螺旋複合物。
  2. 由螺旋結構的線性澱粉(直鏈澱粉和支鏈澱粉的長側鏈)中的螺旋腔室(中間的洞),脂肪酸會在此螺旋腔室內與澱粉結合,當結合完畢後,就可以抵抗澱粉酶的切!切!切!
  3. 而這種複合物也會纏繞支鏈澱粉分子,造成澱粉顆粒無法順利的被酵素水解。
  4. 這種複合物的形成是很短暫的即時性反應,而且加熱後可以重新形成,此外這種複合抗性澱粉可能也具有熱安定性!

關於抗性澱粉

而關於抗性澱粉的好處:由於人體消化困難,當抗性澱粉通過經由上部消化道到達大腸時,會被細菌發酵分解,產生許多重要的代謝產物,包括短鏈脂肪酸(SCFAs)。

所以抗性澱粉也可以視為是一種益菌生(prebiotics)和膳食纖維,它可以:

  1. 降低大腸癌前驅物
  2. 巨量營養素的全身性調節
  3. 改變賀爾蒙/激素的分泌
  4. 改善心理和生理的健康

這邊的巨量營養素的全身調節,我想作者是指醣類、脂肪、蛋白質以及巨量礦物質於體內的代謝調節。

另外於台灣大學的食品科技研究所也有做過相關的研究,在油脂對米飯理化特性及澱粉消化性之影響中,其摘要有提到:

  1. 隨油脂飽和程度增加,棕櫚油具有最低的預估升糖指數 (eGI)(85.6)和含量最高的抗性澱粉(RS)(11.2%),其次依序為大豆油(87.1 和 8.5%)、亞麻仁油(90.3 和 3.8%)及白米飯(92.4 和 0.8%),結果顯示棕櫚油可形成較穩定之複合物,對酵素水解抗性較佳。
  2. 回凝米飯之消化性隨米飯貯藏時間延長而降低,以亞麻仁油增加RS之量最多。於XRD之圖譜,可觀察到米飯澱粉於回凝過程中,由V-type 轉變成 B-type,經復熱後再次轉變為V-type,結構間具熱可逆之特性。這一段話我想作者應該是想表示:用飽和脂肪形成的複合物可能比較多也比較安定,所以正常澱粉就比較少,而亞麻油酸這複合物可能比較少,正常澱粉比較多。儲存時間增加,正常澱粉會脫水回凝,但複合物澱粉不容易回凝脫水,所以正常澱粉多的亞麻油酸組別增加的老化澱粉會較多。
  3. 米飯經回凝復熱後,ALC(直鏈澱粉-脂質複合物)之解離溫度提高;復熱之米飯澱粉消化性與新鮮米飯比較,RS含量間並無顯著差異,顯示由於ALC熱可逆性,仍可保留複合物維持其酵素之抗性。經由實驗結果得知,不飽和程度越低之油脂,其形成ALC之結構也越安定,可顯著降低米飯澱粉之消化性,將有助餐後血糖之控制,並且獲得較多的RS,作為飲食之參考。

另外一篇來自Sci期刊的文獻(Effects of cooking methods and starch structures on starch hydrolysis rates of rice.),也有相似結果。

這篇文獻主要是想了解不同的烹煮方法(蒸煮、煨肉煮pilaf、傳統炒法)於米的澱粉水解程度是否會有差異。研究者選了三種品種的稻米,分別是:

根據此文獻摘要 直鏈澱粉含量 初始糊化溫度 蒸煮後RS量 煨肉煮RS量 傳統炒法RS量
(1)蓬萊米(japonica) 13.5% 56℃ 0.7% 12.1% 15.8%
(2)在來米(indica) 18.0% 71.6℃ 6.6% 13.2% 16.6%
(3)糯米(waxy) 0.9% 56.8℃ 1.3% 3.4% 12.1%

在來米於初始糊化溫度之所以較高的原因,起因於有較長的支鏈澱粉側鍊。以炒飯的形式,會有最多的抗性澱粉含量。

作者也說機制已經被研究了,那應該是要再去找其他文獻來看,因為有些文獻只能看到摘要。抗性澱粉越多,澱粉水解率越低,炒飯的形式可能是一種期望中可以製備降低飯後血糖和胰島素反應的方式,藉此方式也可以促進人體大腸的健康。

◎(這邊是假設探討)我們以傳統炒法的在來米來看,抗性澱粉增加16.6%,一般澱粉則有83.4%,以一碗飯為四份主食的單位來看,一份主食有15g的醣類和2g的蛋白質,熱量大約為70大卡。

在其中這15g的醣類有2.49g為抗性澱粉,12.51g為一般澱粉,抗性澱粉的熱量2.4-2.8大卡,取最少的2.4大卡,一般澱粉為4大卡,這樣糖類的總熱量有50.04大卡,加上蛋白質的8大卡,總共為58.04大卡。

這樣來看的話58.04大卡只佔原本70大卡的83%,等於減少了17%的熱量,再加上油脂的熱量,一份主食分配的油脂可能很少(一鍋飯配一茶匙的油,根據新聞),所以跟研究者的10-12%可能是類似的。

source:Ruocaled
source:Ruocaled

Dean say:

這種模式目前應該尚處於體外試驗,當然於生物體也可能有相似現象。煮飯加油脂,飯會比較好吃,而且鍋子和碗比較好洗XDD不過加入微量的油脂可以避免減肥者面臨長期油脂攝取不足的可能,也算是一種另類的營養均衡。加入油脂的飯也會比較香,如果有厭食的人,搞不好可以提升食慾。

但是…….並不能完全使用這種方式減肥,有技巧的吃和多動才是減肥的正解啊!

資料/文獻來源:
  1. 改變米飯烹調方式 減少60%熱量。中視新聞影片。
  2. 吃白飯熱量能減半!加椰子油放冰箱。華人新聞網。
  3. This Cooking Trick Cuts Rice Calories in Half。Time news。
  4. Simple cooking changes make healthier rice。Chemistry-World。
  5. Kaur, K., Singh, N., (2003). Amylose-lipid complex formation during cooking of rice flour. Food Chemistry, 77(4), 511-517.
  6. Birt, D. F., Boylston, Hendrich, S., Jane, J., Hollis, J., Li, L., McClelland, J., Moore, S., Phillips, G. J., Rowling, M., Schalinske, K., Scott, M. P., Whitley, E.M. (2013). Resistant Starch: Promise for Improving Human Health. Advance in Nutrition. 4, 587-601.
  7. 林奕廷 (2014):油脂對米飯理化特性及澱粉消化性之影響。碩士論文。國立台灣大學食品科技研究所。台北市。台灣。
  8. Mo, R., Leutcher, A. Y., JL, J., (2013). Effects of cooking methods and starch structures on starch hydrolysis rates of rice. Journal of Food Science, 78(7), 1076-1081.
  9. 陳佑倫(2011):探討添加離子液體[EMIM][DEP]對於酵素改質玉米澱粉的影響。碩士論文。國立中央大學化學工程與材料工程學系。桃園市。台灣。
  10. Eat rice cold for fewer calories。BBC NEWS。
  11. Katja Loos. (2012). Unraveling the lipid-amylose inclusion complex formation. Macromolecular Chemistry and New Polymeric Materials Lab, University of Groningen. Netherlands.

本文轉載自作者部落格

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 129 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia