Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

現代人的口味改變,使我們得以嘴大吃四方

葉綠舒
・2015/02/09 ・852字 ・閱讀時間約 1 分鐘 ・SR值 451 ・四年級

-----廣告,請繼續往下閱讀-----

9009856450_7148da418d_z
credit:Bradley Gordon @ flickr

是否想過,我們為什麼無所不吃?為什麼猩猩只吃樹葉跟水果?

由三個學校組成的研究團隊,比對了現代人、尼安德塔人、丹尼索瓦人(Denisovan,生活在俄羅斯的現代人祖先)與猩猩的基因體後發現,現代人、尼安德塔人與丹尼索瓦人少了兩個感受苦味的基因:TAS2R62 TAS2R64,於是我們吃南瓜、吃蕃薯都不覺得有苦味,但猩猩卻不喜歡他們的味道。

640px-Homo_neanderthalensis_adult_male_-_head_model_-_Smithsonian_Museum_of_Natural_History_-_2012-05-17
尼安德塔人。圖片來源:wiki

除此之外,人學會了煮東西吃;這也使得食物中的苦味變淡。隨著烹煮食物所造成的影響就是現代人的咀嚼肌球蛋白基因MYH16(masticatory myosin gene)消失了。這個特徵也出現在尼安德塔人與丹尼索瓦人的基因體中。

最後,負責產生唾液澱粉酶的AMY1基因,在現代人的基因體中被大量重複了(約6-20次),而尼安德塔人、丹尼索瓦人與猩猩都只有1-2個AMY1基因。這是否意味著人可以更快速的消化澱粉?還是因為烹煮食物後所帶來的演化?或者如某些科學家說的,為了防止蛀牙?筆者認為,由於唾液澱粉酶分解澱粉的最終產物是麥芽糖(maltose),而麥芽糖的甜味是可被嚐出來的;或許也因為唾液中澱粉酶增加,使我們能更容易喜愛那些在猩猩口中感覺淡而無味的禾本科果實(稻、麥、玉米)?

-----廣告,請繼續往下閱讀-----

不管怎麼說,因為我們對苦味的靈敏度降低,使我們的食物版圖可以大大擴張,使人成為地球上少數可以遍佈全球的哺乳類動物。當然,對苦味比較不敏感,是否會使人相比於其他動物,較容易中毒呢?

參考資料:
George H. Perry, Logan Kistler , Mary A. Kelaita , Aaron J. Sams. 2015. Insights into hominin phenotypic and dietary evolution from ancientDNA sequence data. Journal of Human Evolution. 79:55-63

原文刊載於作者部落格

-----廣告,請繼續往下閱讀-----
文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

11
0

文字

分享

0
11
0
石器與傍人一同出土,誰是人之初的石器匠?
寒波_96
・2023/04/12 ・3785字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

古人類學研究中,如果挖掘現場同時出土石器和化石,多半會判斷石器的製造者,就是化石所屬的古人類。公元 2023 年發表的一項研究,卻讓智人們都很猶豫,因為與石器一起出土的死人骨頭竟然不是「人」,而是 Homo 的近親:傍人。究竟誰才是人之初的石器匠?

傍人拿著木棒,想像圖。圖/參考資料5

最早的奧都萬石器

空間上,遺址地點位於肯亞西部的 Nyayanga,非洲東部有多個大湖,這兒也是維多利亞湖的東北角,古時候算是適宜人居的優質地段。

時間上,年代不是那麼清楚。論文寫法是距今 259.5 到 303.2 萬年前之間,意思不是說延續 40 萬年那麼久,而是這段期間的某個時間點,或是某幾段時間,無法精確區分。如果簡單說一個大概年份,可以採取 290 萬年。

年代的判斷方式不只一種。原理為放射性元素的鈾釷/氦定年法((U-Th)/He dating)得到將近 300 萬年的數字,地磁反轉則判斷早於 258 萬年。地球的地磁曾經不定期反轉過好幾次,假如確認地層早於 258 萬年前的反轉,便能推測樣本比 258 萬年更早。

-----廣告,請繼續往下閱讀-----
Nyayanga 遺址的地點,附近就是維多利亞湖。圖/參考資料1

遺址總共出土 330 件人造物,195 件在地表撿到,135 件在遺址內挖到。石器數量不少,材質是當地不難取得的石英和流紋岩(rhyolite)。從形貌看來,確實是人為製作的工具,已經可以視為成熟的奧都萬(Oldowan)風格。

奧都萬石器最早於 1930 年代在坦尚尼亞出土,研究領導者正是上古神獸:路易斯.李奇(Louis Leakey)。2019 年的論文報告,衣索比亞的 Bokol Dora 1 出土的石器,比 258 萬年前的地磁反轉更早一些;這回肯亞的遺址年代似乎更早,也就是最早的奧都萬石器。

東非草原,多用途的工具

過往知道超過 200 萬年的奧都萬產品,大部分位於衣索比亞的阿法地區(就是命名「阿法南猿 Australopithecus afarensis」的那個地名阿法),距離這回的遺址超過 1300 公里。看來初期奧都萬使用者,分佈範圍不小。

Nyayanga 遺址出土的石器,屬於奧都萬風格。看似簡陋,意義卻可謂當年最先進的台積電晶片。圖/參考資料4

討論這些古人類學的議題時,我們習慣統稱作「東非」,不過東非概念類似東亞,相關地區的面積實際上很大,有時候距離可能超級遠。

-----廣告,請繼續往下閱讀-----

儘管相距甚遠,遺址當年似乎都是 C4 植物為主的草地,夾雜一些樹木,也就是如今常見的東非草原地形。這應該就是奧都萬使用者喜歡的環境。

石器是工具,做什麼用呢?根據磨痕等資訊判斷,有些石器曾接觸過堅硬的植物部位,如樹幹,也有些處理過軟的植物部位;另外還切割、砍砸過動物的骨頭與肉肉。

遺址出土的動物骨頭不少,能確定遭到石器迫害過的有河馬和牛科動物(包括各款式的牛、羊),石器使用者藉此取得肉肉和骨髓,可謂充分發揮石器的作用。動物未必是擊殺,也可能是撿屍取得。

據此判斷奧都萬最初的使用者,會用石器處理各種材料,不限於植物或動物。他們不只是熟練的石器匠,也是手巧的用戶。

-----廣告,請繼續往下閱讀-----
遠觀肯亞 Nyayanga 遺址。古人類活動時,這兒的環境應該更潮濕,足以讓河馬滾動。圖/參考資料4

石器與化石的演化史

製造與使用石器的人是誰?出土石器的遺址,不少沒有死人骨頭。Nyayanga 遺址倒是有化石,可是卻不是 Homo,而是 2 個「傍人」的牙齒。

這些名詞的關係有點複雜,先來解釋人的部分。傍人(Paranthropus)是何許人也?人類演化史上,300 到 400 萬年前是南猿(Australopithecus)的時代,傍人、Homo 應該都是南猿的衍生型號。

直立人、智人、尼安德塔人所屬的 Homo,和傍人、南猿是近親,都算是古人類;至於「人」是否包含傍人與南猿,看狀況。

再結合石器與年代的資訊,已知最早有 Homo 特徵的化石(無疑的「人」)為 280 萬年,最早的石器不是奧都萬,而是作工更簡陋的拉米關(Lomekwian),存在 330 萬年前的肯亞。所以最早的石器匠不是 Homo,想來也不意外。

-----廣告,請繼續往下閱讀-----

按照之前的資訊推敲,最早的拉米關石器早於 Homo,接著 Homo 距今 280 萬年誕生,260 萬年左右研發出奧都萬石器,看似井然有序。

可是 Nyayanga 遺址的年代十分曖昧,剛好卡在 Homo 最初誕生的階段。至今缺乏直接證據,證明那時已經有 Homo 存在,有的話卻也不意外,符合奧都萬最早製造者的時程。

然而,最早的奧都萬石器,卻與傍人化石一起出土,莫非最早的奧都萬是傍人手筆嗎?

傍人的牙齒。圖/參考資料4

傍人或 Homo,誰是製造工具的石器匠?

傍人的外貌更加粗壯,或許也有更猛的咬合力。以前推測傍人的適應主要在肉體和生理,Homo 則是製作工具的行為。此前缺乏明確證據,支持傍人也使用石器,所以這回即使傍人和石器一同出土,依然不敢認定傍人就是使用者。

-----廣告,請繼續往下閱讀-----

倘若某些南猿,已經摸索出最初的石器奧義,那麼身為南猿後裔的傍人也會操弄石頭,似乎沒那麼意外。

可是其他遺址也見到過,傍人和南猿與 Homo 住在附近;所以也可能是遺址當年同時住著沒有石器的傍人,以及使用石器的 Homo,後來卻只有傍人留下化石。總之,目前難以判斷誰是石器匠。

還有個黑暗的可能性:與石器一同出土的傍人,搞不好是被石器處理的對象?

古人類們的年代(橫軸)、飲食狀態(縱軸)。這回肯亞 Nyayanga 的化石是已知最早的傍人,和最早的 Homo 大略處於同一時期。圖/參考資料1

最早的傍人

我們對傍人的認識不多,這項研究儘管無法判斷傍人是否會使用石器,依然獲得重要的新知。

-----廣告,請繼續往下閱讀-----

傍人一度被歸類於南猿旗下,比較粗壯的南猿,後來才另立新屬 Paranthropus;para 意思是旁邊(beside 或 near),anthropus 是人。目前可分為 3 個物種,這項研究沒有斷言是哪個物種。

以前知道最早的傍人化石距今 260 萬年,出土於衣索比亞的 Omo Kibish,被歸類為衣索比亞傍人(Paranthropus aethiopicus)。

這項研究沒有特別討論,有趣的是,如果年代估計無誤,曾經於肯亞 Nyayanga 出沒的傍人極可能早於 260 萬年,那麼這就不只是最早的奧都萬石器,也是最早的傍人。距離最近的傍人化石 230 公里,也拓展了傍人的分佈範圍。

劃重點:

-----廣告,請繼續往下閱讀-----
  • 最早的傍人及奧都萬石器,在肯亞出土,年代超過 260 萬年,可能有 300 萬年。
  • 東非草原環境中,石器剛出現,用途就很廣。
  • 那時可能已經有 Homo 存在,但是石器與傍人一同出土,不確定誰是石器匠。

延伸閱讀

參考資料

  1. Plummer, T. W., Oliver, J. S., Finestone, E. M., Ditchfield, P. W., Bishop, L. C., Blumenthal, S. A., … & Potts, R. (2023). Expanded geographic distribution and dietary strategies of the earliest Oldowan hominins and Paranthropus. Science, 379(6632), 561-566.
  2. Stone Age discovery fuels mystery of who made early tools
  3. 2.9-million-year-old butchery site reopens case of who made first stone tools
  4. We found 2.9-million-year-old stone tools used to butcher ancient hippos – but likely not by our ancestors
  5. Did more than one ancient human relative use early stone tools?
  6. Ancient stone tools suggest early humans dined on hippo
  7. The “Robust” Australopiths
  8. de la Torre, I. (2019). Searching for the emergence of stone tool making in eastern Africa. Proceedings of the National Academy of Sciences, 116(24), 11567-11569.
  9. Harmand, S., Lewis, J. E., Feibel, C. S., Lepre, C. J., Prat, S., Lenoble, A., … & Roche, H. (2015). 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature, 521(7552), 310-315.
  10. Villmoare, B., Kimbel, W. H., Seyoum, C., Campisano, C. J., DiMaggio, E. N., Rowan, J., … & Reed, K. E. (2015). Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science, 347(6228), 1352-1355.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

1

4
2

文字

分享

1
4
2
人口有限的古代社會,依然盡量避免近親配對?
寒波_96
・2023/03/28 ・4848字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

現代台灣社會中,像是堂兄弟姊妹之間的近親結婚,直接受到法律禁止。不過台灣法律的標準並非舉世通用,當今世上許多人的父母,可謂血緣上的親上加親。

近親結婚與近親繁殖,是人類的「常態」嗎?近年蓬勃發展的古代 DNA 研究,讓我們有機會深入探索這些問題。

公元 2010 年時,世界各地近親婚姻的分布狀況。「大中東地區」的比例非常高。圖/Consanguineous marriages, pearls and perils: Geneva International Consanguinity Workshop Report

每個人的遺傳組成都大同小異,兩個人的血緣關係愈近,彼此 DNA 的差異愈小。例如街上隨便找兩位台灣人,即使非親非故,台灣人彼此間的血緣差異,要比台灣人與非洲人更小。

一個人的基因組,源自父母各一半。例如第十一號染色體,各有一條來自父母。父母間的血緣關係愈近,小孩的一對染色體之間也愈相似;因此,要判斷一個人的父母是否為近親,不用知道兩人各自的遺傳訊息,只需要小孩的基因組。

-----廣告,請繼續往下閱讀-----

也就是說,假如有幸獲得一位三萬年前古人的基因組,只要這個古代基因組殘留的 DNA 訊息夠多,即使完全缺乏其餘的考古脈絡,我們也能判斷他父母的血緣親疏。

最近十年來,各路科學家獲得愈來愈多古代基因組。儘管數量有限,不過目前應該足以做出初步推論:近親繁殖不是智人的天性。

尼安德塔人的父親母親,親上加親?

討論智人以前,先來看看我們的近親尼安德塔人。兩群人的祖先超過 50 萬年前分家後,各自在非洲與歐洲發展,總人口應該都不多。

這兒要先澄清一個概念:「族群人口少」和「近親繁殖」是兩回事。即使全體族群只有兩千人,整群人的遺傳變異加起來很有限,只要每一次配對時刻意選擇,依然能完全避免近親繁殖。相對地,就算總共有 20 萬人,還是有機會大量近親生寶寶。

-----廣告,請繼續往下閱讀-----

重現尼安德塔人 DNA 是智人的重大成就,可惜目前為止累積的基因組樣本很少,只有 30 人左右,分散在不同時間點,廣大的地理範圍。

尼安德塔人的古代基因組,地點與數量。圖/參考資料3

如今了解最透徹的尼安德塔人,位於中亞的 Chagyrskaya 洞穴(現今的俄羅斯南部,知名的丹尼索瓦洞穴在附近),估計年代為 5 萬多年。這群人中有 8 位的遺傳訊息比較齊全,比對得知,所有人的父母都是近親!

尼安德塔人主要住在歐洲,中亞的人口極少。近親生寶寶如此普遍,或許是由於能選擇的對象有限。然而也有可能,這就是尼安德塔人一般的習慣。也許尼安德塔人不會刻意避免近親繁殖,不過程度如何並不清楚。

流動的人,流動的DNA

智人約一萬年前開始定居種田以前,生活方式和尼安德塔人一樣,也習慣分為一小群一小群人活動,不長期定居在一個地點。有意思的是,舊石器時代已知少少的智人基因組,都不存在近親繁殖。

-----廣告,請繼續往下閱讀-----

依賴採集、狩獵的生產方式下,每一群的人數都不多,近親配對好像很難避免。不過移動性高的人群,應該也常有機會互相交換人口,增加配對選項。從古代 DNA 看來,這是古早智人的普遍行為。

現有證據似乎告訴我們,遠比文明誕生更早以前,智人已經習慣刻意和血親以外的對象配對,或許可稱之為智人的「天性」,但是不清楚能追溯到多早。

智人如今僅有尼安德塔人一種比較對象,而尼安德塔人好像不排斥近親繁殖。有可能兩者的共同祖先已經會避免近親配對,尼安德塔人卻不再在意;也有可能這是智人較新的性擇模式,與尼安德塔人分家以後的某個時候才形成。

捷克的 Moravia 的 Dolní Věstonice 遺址,2.6 萬年前想像畫面。當時智人人口有限,卻會避免近親配對。圖/Dolní Věstonice in Central Europe

這也可以澄清一個疑惑。有個說法是,原始人只知道媽媽,不知道爸爸,因為小孩明確由媽媽生出,爸爸的功能卻不直接。根據古代 DNA 的證據判斷,此說很顯然錯誤。

-----廣告,請繼續往下閱讀-----

如果隨機配對,一群人中勢必會有一定比例的人,父母為血緣近親。由結果反推,倘若都沒有的話,表示這群人都會刻意避免近親配對。

假如多數人都不知道爸爸是誰,實在難以想像要怎麼如此徹底的避免近親繁殖。反過來則合理得多:每個人都知道自己的爸爸媽媽是誰,擇偶時才能避開。

定居的人,設法讓 DNA 流動

一萬多年前開始,世界許多地方陸續有人定居下來,改為依靠種田營生。從流動性高的採集狩獵小群體,變成長期住在一處的小農村,人類的生活方式改變很大,這會影響配對習慣嗎?

人人採集狩獵的時期,每一群的人數都不多,但是習慣跑來跑去,有不少機會交換人口。新石器時代定居下來以後,初期的人口還是不多,卻失去流動性,只能從住在附近的有限對象中擇偶。如此一來,近親配對的機率應該會提高?

-----廣告,請繼續往下閱讀-----

目前對此問題的探討不多。資訊比較多的案例,來自安那托利亞(現今的土耳其)一萬多年前,人口頂多數百的小農村遺址 Boncuklu、Pınarbaşı。這兒新石器時代初期的居民,多數在本地長大;可是遺傳上看來,都會避免近親繁殖。

新石器時代小型農村,概念圖。圖/Paint The Past

具體狀況不明,本地與否是透過「鍶」的穩定同位素判斷,涵蓋的地理範圍不算太小。幾十公里遠的隔壁村,只要鍶同位素仍屬同一範圍,仍然會辨識為本地人。

不過我想這些線索應該足以支持,安那托利亞的人們邁入定居時代後,依然保持舊日的擇偶習慣,在有限的選項中盡量避免血親。但是近親繁殖也出現了。肥沃月灣西側的 Ba’ja 遺址(現今的約旦),至少有 1 位居民的父母為近親。

要提醒各位讀者,不同地方邁入定居的年代與狀況都不一樣,有時候差異很大,不可一概而論。

-----廣告,請繼續往下閱讀-----

從城市到文明

隨著人口增長加上工作分化,漸漸有大型聚落誕生,有些或許可稱之為城市。人類發展可謂來到另一階段。

例如前述 Boncuklu、Pınarbaşı 遺址附近,就形成知名的加泰土丘(Çatalhöyük),數千年來都有數千人口居住。由鍶穩定同位素判斷,這兒多數人是土生土長,也有少量外來移民。

加泰土丘和我們習慣的「城市」有不少差異,卻昭示人類進入大量人口群聚的階段,各地一座又一座城市興起又衰落。長期保持數千人口的城市生活圈中,即使一輩子不出遠門,似乎也不難找到近親以外的異性配對。

大城市人口多,即使一輩子留在一個地方,也有不少機會找到血親以外的結婚對象。圖/IMDB

當然在現代以前,世界各地的大部分人類並不住在人擠人的城市,而是人口密度更低的郊區與鄉村。不過倘若有心避免近親配對,應該不難達成。

-----廣告,請繼續往下閱讀-----

目前為止重現於世的古代基因組,不論何時何地,大部分不是近親繁殖的產物。某文化的眾多樣本中,有時候能見到零星幾位,甚至是兄弟姊妹或親子間的極近親,但是都不普遍。

人口有限的海島,近親繁殖好像更容易發生。義大利南方的馬爾他島,在新石器時代確實如此;但是不列顛北部的奧克尼島,青銅時代僅管人口很少,依然能幾乎避免。

是人性的扭曲,還是財富的累積?

至今所知近親繁殖最常見的古代社會,是青銅時代的愛琴世界,也就是希臘及其外島,距今 3000 到 5000 多年前,愛琴海一帶的米諾斯等文化。薩拉米斯島(Salamis)等小島的比例較高,希臘大陸相對低,整體比例約 30% 之高。

取樣一定有偏差,真正的近親比例不好說,但是大概足以判斷青銅時代的愛琴世界,堂表兄弟姊妹等級的近親婚配習以為常,不只少量統治家族,而是全民普及的現象。

愛琴在青銅時代的橄欖種植。圖/Marriage rules in Minoan Crete revealed by ancient DNA analysis

有史以來智人都會避免近親繁殖,為什麼愛琴人改變婚配方式?目前沒有答案。考古學家提出一個可能,種植橄欖之類的經濟作物,最好不要分割土地,而近親配對有助於保留土地,讓產業留在大家族內傳承。這聽起來合理,可惜缺乏更直接的證據。

社會中有人累積土地等資產,是人類發展的趨勢之一,而不論王公貴族或小地主,時常都有集中資產的需求。目前缺乏古代基因組的其他文化,是否也會見到類似愛琴世界的現象?我猜頗有可能,應該是有趣的探索方向。

隨著不同時空的樣本累積,加上容易操作的父母親緣分析軟體,未來「父母是否為近親」也許能成為古代基因組的標準化分析步驟,讓我們更方便認識人類的性擇。

延伸閱讀

參考資料

  1. Scott, E. M., Halees, A., Itan, Y., Spencer, E. G., He, Y., Azab, M. A., … & Gleeson, J. G. (2016). Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery. Nature genetics, 48(9), 1071-1076.
  2. Genomic landscape of the Greater Middle East
  3. Skov, L., Peyrégne, S., Popli, D., Iasi, L. N., Devièse, T., Slon, V., … & Peter, B. M. (2022). Genetic insights into the social organization of Neanderthals. Nature, 610(7932), 519-525.
  4. Sikora, M., Seguin-Orlando, A., Sousa, V. C., Albrechtsen, A., Korneliussen, T., Ko, A., … & Willerslev, E. (2017). Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science, 358(6363), 659-662.
  5. Svensson, E., Günther, T., Hoischen, A., Hervella, M., Munters, A. R., Ioana, M., … & Jakobsson, M. (2021). Genome of Peştera Muierii skull shows high diversity and low mutational load in pre-glacial Europe. Current Biology, 31(14), 2973-2983.
  6. Pearson, J., Evans, J., Lamb, A., Baird, D., Hodder, I., Marciniak, A., … & Fernández-Domínguez, E. (2023). Mobility and kinship in the world’s first village societies. Proceedings of the National Academy of Sciences, 120(4), e2209480119.
  7. Yaka, R., Mapelli, I., Kaptan, D., Doğu, A., Chyleński, M., Erdal, Ö. D., … & Somel, M. (2021). Variable kinship patterns in Neolithic Anatolia revealed by ancient genomes. Current Biology, 31(11), 2455-2468.
  8. Wang, X., Skourtanioti, E., Benz, M., Gresky, J., Ilgner, J., Lucas, M., … & Stockhammer, P. W. (2023). Isotopic and DNA analyses reveal multiscale PPNB mobility and migration across Southeastern Anatolia and the Southern Levant. Proceedings of the National Academy of Sciences, 120(4), e2210611120.
  9. Cassidy, L. M., Maoldúin, R. Ó., Kador, T., Lynch, A., Jones, C., Woodman, P. C., … & Bradley, D. G. (2020). A dynastic elite in monumental Neolithic society. Nature, 582(7812), 384-388.
  10. Fowler, C., Olalde, I., Cummings, V., Armit, I., Büster, L., Cuthbert, S., … & Reich, D. (2022). A high-resolution picture of kinship practices in an Early Neolithic tomb. Nature, 601(7894), 584-587.
  11. Rivollat, M., Thomas, A., Ghesquière, E., Rohrlach, A. B., Späth, E., Pemonge, M. H., … & Deguilloux, M. F. (2022). Ancient DNA gives new insights into a Norman Neolithic monumental cemetery dedicated to male elites. Proceedings of the National Academy of Sciences, 119(18), e2120786119.
  12. Dulias, K., Foody, M. G. B., Justeau, P., Silva, M., Martiniano, R., Oteo-García, G., … & Richards, M. B. (2022). Ancient DNA at the edge of the world: Continental immigration and the persistence of Neolithic male lineages in Bronze Age Orkney. Proceedings of the National Academy of Sciences, 119(8), e2108001119.
  13. Ariano, B., Mattiangeli, V., Breslin, E. M., Parkinson, E. W., McLaughlin, T. R., Thompson, J. E., … & Bradley, D. G. (2022). Ancient Maltese genomes and the genetic geography of Neolithic Europe. Current Biology, 32(12), 2668-2680.
  14. Freilich, S., Ringbauer, H., Los, D., Novak, M., Pavičić, D. T., Schiffels, S., & Pinhasi, R. (2021). Reconstructing genetic histories and social organisation in Neolithic and Bronze Age Croatia. Scientific Reports, 11(1), 16729.
  15. Gnecchi-Ruscone, G. A., Szecsenyi-Nagy, A., Koncz, I., Csiky, G., Racz, Z., Rohrlach, A. B., … & Krause, J. (2022). Ancient genomes reveal origin and rapid trans-Eurasian migration of 7th century Avar elites. Cell, 185(8), 1402-1413.
  16. Fernandes, D. M., Sirak, K. A., Ringbauer, H., Sedig, J., Rohland, N., Cheronet, O., … & Reich, D. (2021). A genetic history of the pre-contact Caribbean. Nature, 590(7844), 103-110.
  17. Zhang, F., Ning, C., Scott, A., Fu, Q., Bjørn, R., Li, W., … & Cui, Y. (2021). The genomic origins of the Bronze Age Tarim Basin mummies. Nature, 599(7884), 256-261.
  18. Skourtanioti, E., Ringbauer, H., Gnecchi Ruscone, G. A., Bianco, R. A., Burri, M., Freund, C., … & Stockhammer, P. W. (2023). Ancient DNA reveals admixture history and endogamy in the prehistoric Aegean. Nature Ecology & Evolution, 1-14.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
所有討論 1
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。