Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

覓食,使我們的祖先變聰明

葉綠舒
・2015/01/20 ・1033字 ・閱讀時間約 2 分鐘 ・SR值 482 ・五年級

「等一下吃什麼?」

這個問題,據說是都市上班族的大哉問;對於我們的老祖宗來說,「等一下吃什麼?」也是一個很重要的問題。只是,角度不同。

華盛頓大學的研究團隊在哥斯大黎加研究捲尾猴(capuchin monkey)五年,發現在食物較少的淡季(lean season)裡,居住在不同地區的捲尾猴,經過長時間的演化後,有了不同的發展。

其中,沒有冠毛的捲尾猴(Cebus屬)雖然會拿蝸牛或果實在樹枝上敲破,以取得裡面的珍饈美味;但是有冠毛的捲尾猴(Sapajus屬)卻會使用樹枝做為覓食工具。

-----廣告,請繼續往下閱讀-----
Capuchin_Costa_Rica
Cebus capucinus。圖片來源:維基百科
Robust_Tufted_Capuchins
Sapajus屬捲尾猴。圖片來源:維基百科

為什麼會有這樣的差別呢?研究團隊認為,是因為這兩屬的捲尾猴棲息地的不同。Cebus屬的捲尾猴,從以前到現在都是居住在熱帶雨林中,一年四季食物豐富,不虞匱乏;而Sapajus屬的捲尾猴則一直居住在有明顯的季節變化的溫帶;淡季時,他們最愛的食物–水果–缺乏,迫使他們必需要去找藏在樹枝之間或是躲在樹皮下面的昆蟲做為「戰鬥存糧」(fallback diet)。

尋找這些昆蟲,需要發展出良好的感覺運動技能(sensorimotor (SMI) skills),包括手的靈巧度、使用工具的能力、以及解決問題的能力等。這些,都跟大腦的發育息息相關。

研究團隊利用粒線體(mitochondrion)序列發現,這兩屬捲尾猴,大概在中新世(Miocene epoch)晚期就已經在演化的道路上分道揚鑣了。

類似的覓食技巧,在猩猩上面也可以觀察到;猩猩會在淡季時挖白蟻來吃,免得自己挨餓。

-----廣告,請繼續往下閱讀-----

這些發現與人的演化有多少相關性呢?過去的一些同位素分析發現,我們的老祖宗的菜單上不只有樹葉與水果,也包括了白蟻以及植物的根莖;而同位素分析也發現,至少粗壯傍人Paranthropus robustus,生活在兩百萬到一百二十萬年前的南非)是居住在有明顯季節變化的區域。或許,需要額外花時間花力氣覓食,幫助了我們的大腦發育,對於造就如今生存在地球上的現代人也有貢獻。

所以,「等一下吃什麼?」雖然對現代人來說是個惱人的問題,但是對我們的老祖宗來說,卻是一個不僅關乎生存、也影響的演化進程的大哉問呢!

原刊轉載於作者部落格

參考文獻:
2014/7/1. Insect diet helped early humans build bigger brains: Quest for elusive bugs spurred primate tool use, problem-solving skills — ScienceDaily

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
想要減肥或控制體重?先散步評估一下吧!——《大自然就是要你胖!》
天下文化_96
・2024/07/02 ・1877字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

恢復初始體重與延長健康壽命

身體的能量大多由細胞裡的能量工廠產生,也就是粒線體。這種能量以 ATP 的形式存在,用來驅動體內種種的生物過程,維持新陳代謝。攝取果糖後,身體會產生尿酸,對能量工廠造成氧化壓力,導致 ATP 產量減少,最後果糖所含的熱量會以脂肪和肝醣的形式儲存在體內。這個過程能幫助我們儲備能量,以因應食物不足的狀況。

生存開關活化所產生的氧化壓力,可能對細胞內的能量工廠和身體其他部位造成損害。在自然界中,這種氧化壓力通常為時短暫,能量工廠很快就會恢復正常運作。相對之下,現代人體內的生存開關卻是全年無休、火力全開。原本是為了生存而暫時抑制粒線體的能量產生,沒想到卻變成一種永久的枷鎖,並帶來嚴重的後果。

長期暴露在慢性氧化壓力中,會使能量工廠的結構發生變化。粒線體會變小,功能下降。即使在生存開關並未活化的狀況下,粒線體產生的能量也不復以往。這等於重新設定了新陳代謝的基礎值,降低能量的產生和使用,隨之而來的便是體重增加。因為身體現在認定減重前的體重才是正常,所以將體重減輕視為生存威脅,於是調整新陳代謝速率做為因應。這時,你的新陳代謝就成為你的敵人!

長期暴露在慢性氧化壓力中,粒線體會變小,降低能量的產生和使用,隨之而來的便是體重增加。因為身體現在認定減重前的體重才是正常,所以將體重減輕視為生存威脅,於是調整新陳代謝速率做為因應。圖/envato

生存開關長期處於活化狀態,不只會影響體重和能量。現在更有證據指出,慢性或反覆出現氧化壓力,也會導致人體老化,於是皮膚出現皺紋,內臟器官緩慢磨損。所有的食物攝取,多少都會對能量工廠造成氧化壓力(第一章曾說過,減少熱量攝取可能延長壽命,原因可能正是在此)。然而,與其他營養相比,攝取果糖對粒線體造成的氧化壓力要大得多。

-----廣告,請繼續往下閱讀-----

在我看來,若能在粒線體受到永久損傷之前,及早對肥胖症展開治療,效果最好。的確,我個人的經驗是,兒童和青少年的肥胖症比較容易治療,只需要改變飲食,減少攝取會活化生存開關的食物,因為年輕人仍然擁有大量功能正常的粒線體。相較之下,要治療肥胖症的長期患者挑戰就高得多,因為他們的能量工廠長期承受慢性的氧化壓力。然而,任務仍然可能達成,關鍵在於恢復粒線體。

要治療肥胖症,就得增加粒線體的產能

我們被「鎖定」在高體重和低能量的狀態,這聽來真是令人沮喪,但這種狀態並非不能改變,能量工廠是可復原的。基本上有兩大方法,首先,盡量減少對能量工廠的損害,讓它們有時間自然恢復。這種方法主要著重在中止生存開關持續活化。其次是積極修復能量工廠,甚或是增加生產粒線體,以彌補失去的數量。

評估粒線體的健康,你可以從散步開始!圖/envato

在討論如何達成這兩項目標之前,我想先提供簡單的方法,讓你評估自己能量工廠的健康狀況:觀察自己的自然步態,也就是平時的行走速度。你可以記錄自己繞行附近一個街區的時間,同時佩戴計步器計算步數,然後算出每秒行走的步數和距離。另一種方法更簡單,只要記錄繞行街區的時間,將現在的時間與之後的時間進行比較,就能判斷粒線體的健康狀況是否改變。重點在於測量時要採行自然步態;換句話說,行走時請勿故意加快腳步。正常的步行速度約為每秒 1.2 公尺,但每秒 0.6 至 1.8 公尺都算正常範圍。我建議把目標設定為每秒 1.2 公尺以上。長期超重的人步行速度通常較慢,平均約為每秒 0.9 公尺。

研究顯示,自然步行速度與粒線體的品質呈現正相關,步行速度較快的人壽命較長,整體健康狀況也較好。步行速度減慢可能是因為骨骼肌疲勞增加,或 ATP 濃度低。值得注意的是,年輕超重者的步行速度往往與其他年輕人相似,但隨著年齡增長,超重者和正常體重者之間的步行速度差異會愈來愈大。

-----廣告,請繼續往下閱讀-----

我鼓勵你去散步,評估你的自然步行節奏。這可幫助你深入了解減肥和維持體重的難易程度,不僅如此,長期監控自己的自然步行速度,還有助於評估體重控制的整體進展。

——本文摘自《大自然就是要你胖!》,2024 年 06 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

5
0

文字

分享

0
5
0
現代智人的祖先到底是誰?全人類「共同的母親」——《真的假的!奇怪知識又增加了》
晴好出版_96
・2023/08/01 ・2140字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

約在 3,000 萬年前,地球上出現了人猿總科,我們和其他猿類共同的老老老老老祖宗,從此與猴子們踏上了不同的道路。

又過了 1,000 多萬年,那些在樹梢中討生活的表祖宗逐漸演化成了如今的長臂猿,而我們的老老老祖宗,儘管還距離我們現在的樣子甚遠,但終於開始沾上了「人」字,在分類上進入了「人科」的範圍。

然而從人科到「人」還有著漫漫長路,1,600 萬年前,我們的老老老祖宗和紅毛猩猩的老老老祖宗形成了兩條不同的分支;又過了 600 萬年到 800 萬年,大猩猩的祖先進入了另一個車道。

至此,我們的老祖宗「人」的成分進一步增加,終於在分類上進入了「人族」。

-----廣告,請繼續往下閱讀-----

現代智人的祖先——露西

500 萬年前,我們的老祖宗與黑猩猩的祖先終於分離,開啟了屬於「現代人」的傳奇。

1974 年 11 月 24 日,美國古人類學家唐納德.喬納森(Donald Johanson)和他的同事在衣索比亞的阿瓦什河谷進行調查時,發現了一根暴露在沙土表面的人骨殘段。經過搜尋,他們又在周圍發現了其他骨骼碎片,還包括一塊下頜骨碎片。最終,他們花了三週時間搜尋到了 100 多件骨骼標本,在進行分析研究之後,他們得出結論,這些骨骼屬於同一個個體,他們給予了這個個體一個編號「AL288-1」。

這是一個足以震驚古人類學界的發現,喬納森和同事們為此在營地舉辦了慶祝晚宴。在晚宴的背景音樂,披頭四〈Lucy in the sky with diamonds〉的歌聲中,他們又為「AL288-1」取了一個更為大家所熟知的名字——露西。

經過進一步的研究,喬納森披露了更多關於露西的細節:

露西是生活在 320 萬年前,20 歲左右的女性南方古猿,屬於南方古猿阿爾法種(Australopithecus afarensis)。

她的腦容量不大,只有現代人類的 1/3 到 1/2。但是她已經出現了與黑猩猩明顯不同的特徵:露西已經習慣直立行走了。直立行走,一直被看作「猿向人類進化」過程中的重大事件。也正因此,露西所屬的南方古猿阿爾法種以前經常被稱為人屬物種的祖先,也就是我們現代人智人的祖先。

-----廣告,請繼續往下閱讀-----
南方古猿——露西。圖/《真的假的!奇怪知識又增加了:自說自話的總裁顛覆認知的科學奇想

不過基於化石證據進行的古人類研究經常會因為新發現的化石而顛覆。2011 年 5 月,美國克里夫蘭大學的古人類學教授約翰尼斯.海爾—塞拉西(Yohannes Haile-Selassie)在南方古猿阿爾法的分布區,又發現了一個生活在距今 330 萬年到 350 萬年的南方古猿近親種(Australopithecus deyiremeda)。這個新種類的原始人挑戰了「露西是人類的祖先」以及「在這個時期這個區域僅有一種人」的觀點。

這樣一來,曾被稱為「人類的非洲老祖母」的露西可能要地位不保,不過科學家為我們找來的那位「共同的母親」——「線粒體夏娃」的證據倒是愈發明確了。

媽媽的媽媽的媽媽⋯⋯ 粒線體的母系遺傳

每個人的細胞中都有來自母親和父親的 46 條 DNA。除此之外,我們的線粒體中還攜帶著線粒體 DNA,線粒體是為細胞提供能量的細胞器。與父母雙方各提供 23 條染色體不同,精子中沒有線粒體,因此受精卵中的線粒體全部來自卵細胞的細胞質,也就是線粒體 DNA 全部是由媽媽傳給孩子的

媽媽生了女兒,女兒再生孩子的時候,會繼續將母親的線粒體 DNA 傳遞下去;但是如果某位女性的所有後代都是男孩,因為男性不能傳遞線粒體DNA,她的線粒體 DNA 就丟失了。

-----廣告,請繼續往下閱讀-----
我們的線粒體(圖中編號 9)中還攜帶著線粒體 DNA,由於精子中沒有粒線體,因此線粒體 DNA 全部是由媽媽傳給孩子的。圖/wikipedia

粒線體夏娃 共同的母親

1987 年美國加州大學的瑞貝卡·卡恩(Rebecca Cann)艾倫·威爾遜(Allan Wilson)帶領研究小組做了全球性的實驗。他們提取了不同人種 148 個胎盤中的線粒體 DNA,並對其進行研究。

結果顯示,這些線粒體 DNA 有高度的相似性。經由計算,他們得出了一個令人震驚的結論:現代人類應該有一位共同的母親,她是生活在約 15 萬年至 20 萬年前的一位非洲女性。對此進行報導的記者羅傑·勒溫(Roger Lewin)為這位「共同的母親」取了個眾所皆知的名字——「線粒體夏娃」。

其實「夏娃」這個稱謂並不準確,「她」應該不是一個人,而是這個遺傳位點的共同祖先。牛津大學的人類遺傳學教授布萊恩·賽克斯(Bryan Sykes)是世界上第一個證明可以從古人類的遺骸中提取 DNA 的學者。1999 年,他帶領小組,在研究分析了 6,000 多份歐洲人的線粒體 DNA 後,將他們分類歸屬於七個「母系氏族」,也就是七個「夏娃」。

她們是所有歐洲人的先祖,每個歐洲人的 DNA 都可以追溯到這七位「夏娃」的身上。他為她們取了名字,並根據考古學、地質學等知識,構築出了她們的生活,寫出了一本像小說一樣的科普書《夏娃和她的七個女兒》。

-----廣告,請繼續往下閱讀-----

——本文摘自《真的假的!奇怪知識又增加了:自說自話的總裁顛覆認知的科學奇想》,2023 年 7 月,好出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----