C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。
從歷史看未來:AI 技術發展的 3 個高峰
其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。
藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。
第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。
-----廣告,請繼續往下閱讀-----
之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。
走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。
從現在看未來:AI 不僅是工具,也是創作者
隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。
例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。
-----廣告,請繼續往下閱讀-----
而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。
透過歷史解析引起共鳴
在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。
過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。
舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。
除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。
吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。
關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。
世界衛生組織國際癌症研究中心 (IARC) 尚未認定雙酚 A 對人類或動物具有致癌性,但科學證據已將雙酚 A 視為環境荷爾蒙,若過量暴露下,雙酚 A 將會干擾人體內分泌系統,對生殖及生長發育造成危害。在公眾嚴厲訴求下,歐盟食品安全局終於同意了,承諾於 2018 年重啟「雙酚 A 毒性再評估1」,針對雙酚 A以科學程序進行,篩選所有動物及人體研究數據,並參考美國提供的兩年期核心毒理研究及人體研究 (CLARITY-BPA project) 中所發表之數據,以全面性健康影響為基礎,完整進行雙酚 A 暴露之風險評估,並提供歐盟食品安全局重新制訂每日耐受量 (Tolerable Daily Intake, TDI) 之建議值
吃罐頭不吃罐頭皮,怎麼會吃到雙酚A?
雙酚 A 在食品接觸材質的製造主要用於生產「聚碳酸酯塑料」─製造水瓶和餐具的常見物料。此外,雙酚 A 亦可用於製造食品和飲料金屬罐內層保護層的環氧樹脂(占市場之90%)之有機塗層2,以防止金屬罐直接與食品接觸,使食品和飲料可保存其填充物風味和營養價值長達數年。
然而愈來愈多研究發現,雙酚 A 可以從聚碳酸酯塑料或環氧樹脂內層遷移到食品與飲料中。此外,金屬罐頭的儲存時間、溫度、酸鹼值及脂肪量都會影響雙酚 A 的釋出量,並透過食用、飲用途徑進入人體。
-----廣告,請繼續往下閱讀-----
罐頭製品都使用,各類濃度卻不同?
在台灣,罐頭食品每年的產值高達 76 億元3。雖然罐頭食品並非普遍大眾的主食,但不少國內外研究皆指出,肉類、海鮮、蔬菜、濃湯、水果等各類罐頭食品中皆有雙酚 A 的檢出。
各國食品包裝用的金屬罐頭內層大多採用環氧樹脂等有機塗料,在製造時皆須符合雙酚 A 遷移限值,不同的食物類別因為內含物、運送、保存、烹調方式等差異皆有不同濃度檢驗值,而脂肪含量較高的罐頭食品,檢測到的雙酚 A 濃度較高則是罐頭食品的共同特性。
即使低劑量,幼兒孕婦仍須注意
衛生福利部食品藥物管理署(以下簡稱食藥署)2016年委託成功大學環境微量毒物研究中心,針對全國 250 件食品樣本進行雙酚 A 含量調查,其中包含 45 件罐頭食品。調查結果與其他國家的調查相似,金屬罐頭食品中雙酚 A 平均濃度及範圍為 14.0 ± 11.4(1.22 – 49.4)μg/kg ww,較生鮮食品高約 2~3 倍,因此未來監測台灣市售罐頭食品中的雙酚 A 濃度相形重要。
-----廣告,請繼續往下閱讀-----
依據該計畫風險評估結果顯示,每日每公斤體重從金屬罐頭中攝取雙酚 A 劑量,各年齡層皆約佔其總雙酚 A 暴露劑量 33%。相較於其他年齡層,3-6 及 6-12 歲兒童從金屬罐頭攝入雙酚 A 劑量偏高,但綜合來說,經飲食攝取之雙酚 A 劑量遠小於歐洲食品安全局 2015 年建議的每日每公斤體重耐受量 4 微克:
0-3歲為0.015 微克
3-6歲為0.032微克
6-12歲為0.018微克
12-18歲為0.014微克
19-65歲為0.011 微克
65歲以上為0.005微克
即使對成人而言,雙酚 A 的暴露量都在每日耐受量的範圍內,但孕婦、哺乳期及食用嬰幼兒配方奶粉和副食品的嬰幼兒等族群,皆可能受到環境中低濃度雙酚 A 暴露而導致流產、腦部、生殖、代謝、神經與免疫系統的潛在健康風險,無法排除可能影響,且除了飲食之外,若長期持續暴露於化妝品、感熱紙與灰塵之下,仍可能會超過每日耐受量。
會跑的雙酚A?各國雙酚A遷移限量規範
雙酚 A 常存於聚碳酸酯塑料及罐頭內層環氧樹脂塗料,會經由與食品接觸遷移至食物上,導致消費者暴露於雙酚 A 風險中。因此除了美國及澳洲外,各國皆以限制食品接觸材質中雙酚 A 的遷移值進行管理[註1]。目前以歐盟 2018 年 9 月公告的新管制標準最嚴格,塑膠食品接觸材質中雙酚 A 的遷移限值從 0.6 修正至0.05 ppm,與食品接觸的漆和塗料中雙酚 A 遷移值,也不得超過0.05 ppm。用於嬰幼兒食品接觸材質上的漆和塗料禁用雙酚 A,亦不得用於製造嬰兒用聚碳酸酯奶瓶、嬰幼兒用飲用杯或瓶子。
在台灣,環保署已於 2009 年公告雙酚 A 為第四類毒性化學物質-疑似毒化物,相關業者在使用時需有政府核可文件。食藥署於食品接觸材質中雙酚 A 的遷移值,則限制為不得超過 0.6 ppm,日本的規範限值最寬鬆,不得超過 2.5 ppm,中國則與台灣相同。
-----廣告,請繼續往下閱讀-----
生活中隨處可見,如何降低雙酚A 的暴露風險?
雖然罐頭食品並非國人的主食,且台灣罐頭食品中的雙酚 A 濃度均低於國際罐頭食品中雙酚 A 調查結果,各年齡層的平均暴露量亦小於歐盟食品安全局的建議值,但是對於經常食用或大量食用罐頭食品者,仍可能有雙酚 A 暴露過量並對人體造成潛在健康風險。
呼籲民眾採取均衡飲食原則,分散購買的食物來源與種類,避免長期過度食用相同種類的食物,尤其是金屬罐頭食品,以降低雙酚 A 的累積暴露風險。若要加熱食用金屬罐頭食品時,切勿將金屬罐頭直接置於火上加熱、隔水加熱,或用電鍋直接加熱的方式,以避免因高溫烹煮時金屬罐塗層之雙酚 A 遷移至食品中而被吃下肚。食用罐頭食品前應先將罐內的食品取出,改使用玻璃、陶瓷或不鏽鋼等容器盛裝再加熱食用。