0

0
0

文字

分享

0
0
0

PET食物容器會溶出雙酚A嗎?

活躍星系核_96
・2014/10/24 ・1634字 ・閱讀時間約 3 分鐘 ・SR值 534 ・七年級

Credit: Ricardo Bernardo via Flickr
Credit: Ricardo Bernardo via Flickr

文/mlkj

拜讀PanSci葉綠舒的兩篇大作《瓶裝水安全嗎?》、《瓶裝水安全嗎?(二)》,引述資料本身有疑點,或資訊未更新,造成文章有些不足之處,想藉此釐清。另外補充一些PET酯粒之相關知識。

最明顯的疑點是《瓶裝水安全嗎?(二)》一文中,第二段說PET(polyethylene terephthalate,聚對苯二甲酸乙二醇酯)材質的水瓶在加熱時,還是會釋放出低濃度的銻和雙酚A (Bisphenol  A, BPA)。這個是錯的,PET並不會釋放出任何的BPA,會釋放BPA的僅有PC材質的水瓶。

PET的原料主要是PTA(Purified Terephthalic Acid,純對苯二甲酸)以及EG(Ethylene Glycol,乙二醇)。而PTA的原料是PX(p-Xylene,對二甲苯),EG的原料是Ethylene(乙烯);無論在原料端,或是生產過程中,都沒有添加雙酚A,所以也沒有溶出的疑慮。

-----廣告,請繼續往下閱讀-----

同樣是塑膠,含有雙酚A並且可能拿來做水瓶的,是另一種材質PC(Polycarbonate,聚碳酸酯)。PC在製程中會使用雙酚A,才有溶出的疑慮。目前食物容器會用到PC材質的,大概有加侖桶、奶瓶、戶外活動用水壺等;由於歐盟跟加拿大已經宣布PC禁止拿來製造奶瓶,且許多研究也證明BPA對人體有害,因此PC現在使用在食物容器上面的例子越來越少。比如說奶瓶多使用PP(Polypropylene,聚丙烯)或是更高價的PPSU(Polyphenylsulfone);而戶外活動的水壺,許多都改用PETG(簡單來講就是改質的PET),這種強度跟耐熱性都更好的材料。

因此文中資訊來源的Lena Ma教授,是如何讓PET瓶溶出BPA,我也很好奇。有一個可能性,是她在中國購買的16個塑膠瓶中,把PC瓶混入,而她的團隊沒有發覺,不過這沒辦法驗證。甚至《瓶裝水安全嗎?》這篇文章所引用西班牙團隊的報導第七段裡面也指出,BPA是跟PC包材連結的。

至於有關銻(Antimony)的析出,是有可能的。原因是PET酯粒的生產中,主要還是用銻作為觸媒。不過PET酯粒中,剩餘的銻含量,大約僅在100-200ppm間,且也不是那麼容易就溶出。

目前除了銻觸媒以外,市面上還有鍺觸媒、鈦觸媒、鋁觸媒(不過現在幾乎消失了)等較為「安全」的觸媒。這些觸媒除了衛生性以外,使用上還有耐熱性較好等其他優點,但這些觸媒所生產出的PET,比銻觸媒生產出的PET貴上不少。而包裝設備的改變,比如說以往需要高溫殺菌的「熱充填」設備,現在多被常溫的「無菌充填」設備所取代,也讓銻會溶出的可能性越降越低。

-----廣告,請繼續往下閱讀-----

有關可塑劑溶出的可能性也非常低。原因在於PET瓶本身並不需要添加可塑劑,來增加彈性或是韌度,因此PET瓶基本上是非常安全、乾淨的。

此外《瓶裝水安全嗎?》一文中,引用《看守台灣》的資料,說回收PET粒還需要加上7成的新料,才能生產出消費者可以接受的透明瓶。這應該是《看守台灣》的資訊並沒有更新;日本的飲料大廠Suntory早在2012年就推出百分之百回收料所製成的PET瓶了,且不是甚麼冷門產品,而是大眾產品烏龍茶。且令人訝異的是,Suntory所使用的,並不是品質較好、價格也較高的化學回收法(Chemical Recycle)rPET,而是一般機械回收法(Mechanical Recycle)所生產的rPET。日本現在國內唯一有能力生產化學回收法rPET的公司為PRT(PET Refine Technology),為包材大廠東洋製罐的子公司。

而且PET的回收料除了作瓶子,還能作纖維,本屆世界盃的許多隊伍,身上所穿的球衣便來自台灣回收PET所製成的纖維布料。能把使用完畢,準備廢棄的原料拿來再度利用,筆者並不認為這是不好的事。

簡單作結論:

-----廣告,請繼續往下閱讀-----
  1. PET不含雙酚A,含雙酚A的是PC。購買時只要標註1號塑膠的就不會有問題。
  2. PET含有非常微量的銻,但基本上不太會溶出。
  3. PET瓶製造時不需要可塑劑來增加柔韌度,所以沒有添加的必要。
  4. PET是可以100% bottle to bottle的,這是技術問題。
  5. PET除了回收可以製瓶,還可以作纖維,以再利用的角度來看,是非常良善的產品。

希望這樣的文章有助於大家了解PET酯粒以及PET瓶。

參考資料

  1. Facts on PET
  2. PET Resin Association
  3. Suntory使用100%回收PET之新聞發布(日文)
  4. PRT公司對化學回收法的介紹(日文)
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 130 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

3

18
1

文字

分享

3
18
1
善用會吃塑膠的細菌,分解寶特瓶不用再等 450 年
Sherry
・2021/04/16 ・2556字 ・閱讀時間約 5 分鐘 ・SR值 536 ・七年級

生活中總有那種到商店選購了很多商品,結帳後卻發現自己忘記攜帶環保袋的經驗,這時候銅板價的塑膠袋就是把商品輕鬆帶回家的好選擇。根據統計,每年全世界使用高達 5 億個一次性塑膠袋。

你知道塑膠袋發明是為了重複使用嗎?

瑞典工程師圖林 (Sten Gustaf Thulin) 發明了第一個塑膠袋。因為相較於紙袋,塑膠袋較不容易因為潮濕或拉扯破損,利於重複使用,能減少樹木砍伐,而且相對於紙袋,塑膠袋也較能攜帶重物。透過塑膠袋的發明,圖林希望解決紙袋造成的環境問題。不過統計至今,其中超過半數的塑膠袋並沒有達成「重複使用」這個使用初衷,有許多塑膠袋反而被隨意扔棄在大自然中,造成了另一種的生態壓力。

過去幾年來,塑膠製品嚴重影響環境生態。數年前,一支我們習以為常的吸管卡進海龜鼻子裡,短短 8 分多鐘的 Youtube 影片,驚醒了許多人的環保意識,開始拒用一次性塑膠吸管,行政院環保署也在 108 年 5 月宣布一次性塑膠吸管使用規範。除了限制一次性使用塑膠吸管,部分商店與機構也紛紛推出自備環保餐具即享折扣的優惠,對於不得不使用的一次性塑膠製品,政府也提倡回收再利用。

2018 年,台灣塑膠總回收量為 53 萬公噸,而其中寶特瓶回收量則高達 54 億支,資源回收率號稱全球第三,寶特瓶的回收量更高達 95%,即便是這樣,每年仍有 2-3 億支寶特瓶流入大自然,因此除了推行塑膠減量外,科學家也開始思考如何減短膠製品的分解週期。

-----廣告,請繼續往下閱讀-----

發現會吃塑膠的細菌

塑膠製品那麼多,那就先從民生用品最常見的 PET(苯二甲酸乙酯)說起。

PET 是一種常見的塑膠材料,在衣服、包裝及地毯都可以看到它的蹤跡,其中 PET 最廣為人知的製品就是寶特瓶。PET 價格低、輕便的特性讓他成為常見的塑膠材料,不過卻也因為結構中將兩個單體聚合在一起的酯鍵並不容易被分解,因此有著驚人的抗生物分解能力,分解一支寶特瓶至少需要長達 450 年的時間。

即便數據顯示,目前寶特瓶的回收率並不低,但在台灣每年卻還是有 2-3 億支寶特瓶沒有成功回收。這些被遺忘的寶特瓶最終被丟棄在人類的生活軌跡,好一點的丟進垃圾掩埋場,運氣不好的則被帶入山林或流進海洋,再次造成野生動物們的傷害。

PET 有著驚人的抗生物分解能力,分解一支寶特瓶至少需要長達 450 年的時間。圖/Pexels

等等!剛才說分解寶特瓶需要 450 年,那就是還有辦法分解啊,所以只要找到這些年是誰在分解寶特瓶,事情不就好喬了?

-----廣告,請繼續往下閱讀-----

沒錯!首先想到的就是來自日本的研究團隊,他們將寶特瓶回收場的底泥、濕土、廢水,只要是有接觸到分解寶特瓶殘骸的環境樣本通通帶回實驗室。研究團隊將這些帶回來的樣本培養在 PET 塑膠薄膜上,希望看看是不是有微生物在分解 PET,可以靠著分解 PET 產生能量,維持細胞中的代謝與合成反應。

結果真的有。

2016 年,日本研究團隊發現了一株愛「吃」塑膠的新型細菌,這株細菌可以在大概 6 週的時間內,將 PET 薄膜完全分解。研究團隊將它命名為大阪堺菌 (Ideonella sakaiensis)。

生物產生的催化劑——酵素

找到新細菌然後呢?想知道他可能有什麼神奇的超能力,最快的方法就是送去定序。

研究人員根據定序結果發現細菌帶有一種水解酵素,推測這種酵素可能與大阪堺菌能分解 PET 有關。為了證明這樣的推測,研究人員進行酵素純化,並測試其分解 PET 的能力,發現在攝氏 30 度的環境中,酵素有最佳的反應效率將 PET 分解,決定命名為 PETase。

-----廣告,請繼續往下閱讀-----

團隊在找出大阪堺菌分解 PET 的關鍵機制後,成功以化學方法純化 PETase,擺脫微生物實驗中的許多條件限制。不過能在 6 週內分解 PET 塑膠薄膜只能確定酵素有分解的能力,但是真正要面對 2-3 億支比薄膜更厚實的 PET 寶特瓶,這樣的實驗成果遠遠不夠,因此科學家們紛紛開始思考如何加快分解 PET 的反應速率。

找到能分解塑膠的酵素,那能再快一點嗎?

2018 年英國樸茨茅斯大學 (University of Portsmouth) 研究團隊根據先前研究分析 PETase 的結構,發現其胺基酸序列與嗜高溫放線菌 (Thermobifida Fusca) 的水解酵素 TfH 有 52% 的相似度,但是兩者之間對於受質的專一性不同,其中 PETase 的結構相似於催化角質與脂肪酸分解的 α/β 水解酵素,因此研究團隊希望透過改變 PETase 的結構,設計出一種酵素能夠更快速分解 PET。

哈里·奧斯汀 (Harry P. Austin) 研究團隊將 PETase 的結構突變為更類似於此水解酵素,嘗試讓兩個水解酵素中的兩個活性位點,由殘基突變為保守氨基酸,使結合裂變窄,優化 PETase 對於 PET 的分解能力。在實驗中將野生型 PETase 和 PETase 雙突變體 (S238F / W159H) 透過掃描式電子顯微鏡進行比較(如圖 A-C),A 為緩衝溶液(對照組),B 為野生型 PETase,C 為 PETase 雙突變體 (S238F / W159H) ,在 pH7.2 的磷酸鹽緩衝溶液培養 96 小時後,可以看到對照組的 PET 表面沒有被分解產生的孔洞,而 PETase 雙突變體的孔洞較野生型 PETase 多且明顯,應證了雙突變的 PETase 在相同條件下,能更有效的分解 PET。

PETase 雙突變體 (S238F / W159H) 相較於野生型 PETase 更有效分解 PET。圖/參考資料 6

雖然透過科學家們的努力,在未來有機會利用蛋白質工程,嘗試更多組合,找到讓塑膠分解更快速的方法。不過以根本來說,降低塑膠使用量、在未來審慎考慮各種材料的利用,照顧好地球環境,才是我們的首要目標。

-----廣告,請繼續往下閱讀-----

參考資料

  1. Bag with handle of weldable plastic material
  2. How plastic bags were supposed to help the planet – BBC News
  3. 從海龜氣管拔出塑膠吸管
  4. 環保署公告「一次用塑膠吸管限制使用對象及實施方式」
  5. 台灣成就!寶特瓶回收率高達95%、資源回收率全球第3 但真的夠了嗎?
  6. 塑膠垃圾別亂丟,海洋分解得花600年
  7. Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., … & Oda, K. (2016). A bacterium that degrades and assimilates poly (ethylene terephthalate). Science, 351(6278), 1196-1199.
  8. Austin, H. P., Allen, M. D., Donohoe, B. S., Rorrer, N. A., Kearns, F. L., Silveira, R. L., … & Beckham, G. T. (2018). Characterization and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences, 115(19), E4350-E4357.
-----廣告,請繼續往下閱讀-----
所有討論 3

0

0
0

文字

分享

0
0
0
從塑膠到罐頭,如何避免食物容器中的雙酚A?
社團法人台灣國際生命科學會_96
・2019/04/24 ・2719字 ・閱讀時間約 5 分鐘 ・SR值 568 ・九年級

  • 作者/
    李俊璋 特聘教授│成功大學工業衛生學科暨環境醫學研究所
    張偉翔 助理研究員│環境微量毒物研究中心

食品包裝容器對我們的生活不可或缺,外食人口的增加、烹煮條件及保存需求等都會影響食品接觸材質的發展,許多一次性或重複性食品容器應勢而生,卻也使民眾對這些食品接觸材質是否會影響健康產生疑慮,其中多數金屬罐頭食品內部塗層所含的雙酚 A (Bisphenol A) 就是時下熱門的例子。

多數金屬罐頭食品內部塗層所含的雙酚A ,到底對人體有沒有危害?圖/pixabay

考量雙酚 A 對人體健康具潛在影響,歐盟於 2018 年 2 月發布命令,加嚴食品接觸材質中雙酚 A 的管制,包括嬰幼兒產品禁用及限制塑膠食品接觸材質的遷移值,並已於2018 年9 月開始實施。

本期 ILSI Taiwan 專欄邀請成功大學工業衛生學科暨環境醫學研究所李俊璋特聘教授與成功大學環境微量毒物研究中心助理研究員張偉翔博士撰文,為讀者解答何謂雙酚 A?它是如何被我們吃下肚?有哪些方法能降低雙酚A的暴露風險?

-----廣告,請繼續往下閱讀-----

對發育有害?環境賀爾蒙雙酚A重啟研究評估

世界衛生組織國際癌症研究中心 (IARC) 尚未認定雙酚 A 對人類或動物具有致癌性,但科學證據已將雙酚 A 視為環境荷爾蒙,若過量暴露下,雙酚 A 將會干擾人體內分泌系統,對生殖及生長發育造成危害。在公眾嚴厲訴求下,歐盟食品安全局終於同意了,承諾於 2018 年重啟「雙酚 A 毒性再評估1」,針對雙酚 A以科學程序進行,篩選所有動物及人體研究數據,並參考美國提供的兩年期核心毒理研究及人體研究 (CLARITY-BPA project) 中所發表之數據,以全面性健康影響為基礎,完整進行雙酚 A 暴露之風險評估,並提供歐盟食品安全局重新制訂每日耐受量 (Tolerable Daily Intake, TDI) 之建議值

吃罐頭不吃罐頭皮,怎麼會吃到雙酚A?

雙酚 A 在食品接觸材質的製造主要用於生產「聚碳酸酯塑料」─製造水瓶和餐具的常見物料。此外,雙酚 A 亦可用於製造食品和飲料金屬罐內層保護層的環氧樹脂(占市場之90%)之有機塗層2,以防止金屬罐直接與食品接觸,使食品和飲料可保存其填充物風味和營養價值長達數年。

然而愈來愈多研究發現,雙酚 A 可以從聚碳酸酯塑料或環氧樹脂內層遷移到食品與飲料中。此外,金屬罐頭的儲存時間、溫度、酸鹼值及脂肪量都會影響雙酚 A 的釋出量,並透過食用、飲用途徑進入人體。

過去嬰兒奶瓶的材料會溶出微量雙酚A,為保護嬰幼兒安全,我國已修法禁止販售使用含雙酚A材料製作的奶瓶。圖/pixabay

-----廣告,請繼續往下閱讀-----

罐頭製品都使用,各類濃度卻不同?

在台灣,罐頭食品每年的產值高達 76 億元3。雖然罐頭食品並非普遍大眾的主食,但不少國內外研究皆指出,肉類、海鮮、蔬菜、濃湯、水果等各類罐頭食品中皆有雙酚 A 的檢出。

各國食品包裝用的金屬罐頭內層大多採用環氧樹脂等有機塗料,在製造時皆須符合雙酚 A 遷移限值,不同的食物類別因為內含物、運送、保存、烹調方式等差異皆有不同濃度檢驗值,而脂肪含量較高的罐頭食品,檢測到的雙酚 A 濃度較高則是罐頭食品的共同特性。

國際間各類罐頭食品中雙酚A的平均濃度。圖/作者提供

即使低劑量,幼兒孕婦仍須注意

衛生福利部食品藥物管理署(以下簡稱食藥署)2016年委託成功大學環境微量毒物研究中心,針對全國 250 件食品樣本進行雙酚 A 含量調查,其中包含 45 件罐頭食品。調查結果與其他國家的調查相似,金屬罐頭食品中雙酚 A 平均濃度及範圍為 14.0 ± 11.4(1.22 – 49.4)μg/kg ww,較生鮮食品高約 2~3 倍,因此未來監測台灣市售罐頭食品中的雙酚 A 濃度相形重要。

-----廣告,請繼續往下閱讀-----

依據該計畫風險評估結果顯示,每日每公斤體重從金屬罐頭中攝取雙酚 A 劑量,各年齡層皆約佔其總雙酚 A 暴露劑量 33%。相較於其他年齡層,3-6 及 6-12 歲兒童從金屬罐頭攝入雙酚 A 劑量偏高,但綜合來說,經飲食攝取之雙酚 A 劑量遠小於歐洲食品安全局 2015 年建議的每日每公斤體重耐受量 4 微克:

  • 0-3歲為0.015 微克
  • 3-6歲為0.032微克
  • 6-12歲為0.018微克
  • 12-18歲為0.014微克
  • 19-65歲為0.011 微克
  • 65歲以上為0.005微克

即使對成人而言,雙酚 A 的暴露量都在每日耐受量的範圍內,但孕婦、哺乳期及食用嬰幼兒配方奶粉和副食品的嬰幼兒等族群,皆可能受到環境中低濃度雙酚 A 暴露而導致流產、腦部、生殖、代謝、神經與免疫系統的潛在健康風險,無法排除可能影響,且除了飲食之外,若長期持續暴露於化妝品、感熱紙與灰塵之下,仍可能會超過每日耐受量。

會跑的雙酚A?各國雙酚A遷移限量規範

雙酚 A 常存於聚碳酸酯塑料及罐頭內層環氧樹脂塗料,會經由與食品接觸遷移至食物上,導致消費者暴露於雙酚 A 風險中。因此除了美國及澳洲外,各國皆以限制食品接觸材質中雙酚 A 的遷移值進行管理[註1]。目前以歐盟 2018 年 9 月公告的新管制標準最嚴格,塑膠食品接觸材質中雙酚 A 的遷移限值從 0.6 修正至0.05 ppm,與食品接觸的漆和塗料中雙酚 A 遷移值,也不得超過0.05 ppm。用於嬰幼兒食品接觸材質上的漆和塗料禁用雙酚 A,亦不得用於製造嬰兒用聚碳酸酯奶瓶、嬰幼兒用飲用杯或瓶子。

在台灣,環保署已於 2009 年公告雙酚 A 為第四類毒性化學物質-疑似毒化物,相關業者在使用時需有政府核可文件。食藥署於食品接觸材質中雙酚 A 的遷移值,則限制為不得超過 0.6 ppm,日本的規範限值最寬鬆,不得超過 2.5 ppm,中國則與台灣相同。

-----廣告,請繼續往下閱讀-----

國際間食品接觸物質中雙酚A規範限值。圖/作者提供

生活中隨處可見,如何降低雙酚A 的暴露風險?

雖然罐頭食品並非國人的主食,且台灣罐頭食品中的雙酚 A 濃度均低於國際罐頭食品中雙酚 A 調查結果,各年齡層的平均暴露量亦小於歐盟食品安全局的建議值,但是對於經常食用或大量食用罐頭食品者,仍可能有雙酚 A 暴露過量並對人體造成潛在健康風險。

呼籲民眾採取均衡飲食原則,分散購買的食物來源與種類,避免長期過度食用相同種類的食物,尤其是金屬罐頭食品,以降低雙酚 A 的累積暴露風險。若要加熱食用金屬罐頭食品時,切勿將金屬罐頭直接置於火上加熱、隔水加熱,或用電鍋直接加熱的方式,以避免因高溫烹煮時金屬罐塗層之雙酚 A 遷移至食品中而被吃下肚。食用罐頭食品前應先將罐內的食品取出,改使用玻璃、陶瓷或不鏽鋼等容器盛裝再加熱食用。

備註

參考資料

  1. European Food Safety Authority. BPA plan ready for new EFSA assessment in 2018.
  2. Food Packaging Forum
  3. 陳麗婷、邱盟媚、鄔嫣珊,2015,國內調理食品巿場需求變化與展望,食品研究所。
-----廣告,請繼續往下閱讀-----
社團法人台灣國際生命科學會_96
28 篇文章 ・ 8 位粉絲
創會於2013年,這是一個同時能讓產業界、學術界和公領域積極交流合作及凝聚共識的平台。期望基於科學實證,探討營養、食品安全、毒理學、風險評估以及環境的議題,尋求最佳的科學解決方法,以共創全民安心的飲食環境。欲進一步了解,請至:ww.ilsitaiwan.org