0

0
1

文字

分享

0
0
1

特別短小的Y染色體未來會逐漸消失嗎?

科學人_96
・2014/08/22 ・692字 ・閱讀時間約 1 分鐘 ・SR值 603 ・九年級

-----廣告,請繼續往下閱讀-----

sm150-38

 

撰文/費雪曼(Josh Fischman)
編譯/ 鄭方逸

Y染色體是人類46個染色體中的小矮個兒,雖然它的角色廣為人知——哺乳動物就是靠它決定雄性性別,然而相較於其他染色體,尤其是它的夥伴X染色體,Y染色體失色不少。的確,在2~3億年前,Y染色體和X染色體共有的基因大約有600個,如今卻只剩下19個。2002年,有些遺傳學家發現,這種基因減少的現象代表Y染色體實際上正逐漸凋零。他們說,再過1000萬年,Y染色體就會滅絕了。這個消息真不知會讓男性朋友做何感想。

然而,根據最新的研究,Y染色體已經不再刪減基因了。佩奇(David Page)是美國麻省理工學院的生物學家,也是這篇發表在《自然》期刊中的論文作者之一。他說,事實上在過去2500萬年來,Y染色體已經趨於穩定。他和同事發現,近代演化物種體內的Y染色體雖然有點單薄,但基因損耗的情況在數百萬年前就已經停止了。

這個穩定性可能源自一段約含12個基因的重要區段,這些基因與性別無關,卻牽涉心臟、血液、肺部和其他組織等與維持生命有關的細胞功能。佩奇表示,「這些基因是細胞中央指揮部的重要角色」,因此會在天擇中倖存。

-----廣告,請繼續往下閱讀-----

一位擁護Y染色體正逐漸退化之說的學者對此不太信服。葛瑞夫茲(Jennifer Graves)是澳洲國立大學的遺傳學家,她認為過去數百萬年可能只是個暫時的持平時期。她指出,至少有兩種齧齒動物已經完全擺脫Y染色體了。然而最近的研究顯示,Y染色體應該會繼續維持像現在這樣的短小身材。

延伸閱讀

本文原刊於《科學人》2014年第150期8月號

SA原文:The Male Sex Chromosome Isn’t Shrinking

-----廣告,請繼續往下閱讀-----
文章難易度
科學人_96
39 篇文章 ・ 4 位粉絲
《科學人》雜誌-遠流出版公司於2002年3月發行Scientific American中文版,除了翻譯原有文章更致力於本土科學發展與關懷。

0

1
1

文字

分享

0
1
1
陸地上的首批動物是什麼?又是如何上岸的呢?——《直立猿與牠的奇葩家人》
大塊文化_96
・2023/08/19 ・3911字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

從志留紀末期到泥盆紀這段時間,地球的大陸成了首批陸生動物的家園。
狀似馬陸的呼氣蟲是最早的節肢動物先驅。
同時,蜘蛛與蠍子的早期親屬,也利用已在地球表面建立起來的植物與真菌生態系。
牠們在陸地上進食、繁殖與死亡,為陸地食物網增添了新的複雜性,也為後來從水邊冒險登陸的其他動物提供了獎勵。

動物隨著地球的演化踏上岸

隨著地球表面被植物染綠,動物跟隨植物的腳步上岸只是時間問題。

隨著地球表面被植物染綠,動物跟隨植物的腳步上岸只是時間問題。圖/envato

第一批維管束植物在地球大陸的年輕土壤中安家後不久,節肢動物踏進了這些矮樹叢。這些無畏探險家留下的最古老證據之一,是在蘇格蘭亞伯丁附近出土的一塊化石,名為呼氣蟲(Pneumodesmus)。

牠是一種多足類,與馬陸和蜈蚣屬於同一個群體。雖然原本將牠的年代界定在四億兩千三百萬年前的志留紀,但是近期研究顯示牠可能更年輕,生活在最早期的泥盆紀。

無論如何,到了泥盆紀,動物已經在陸地上站穩腳跟,而呼氣蟲更是最早在地球上行走的動物之一。

-----廣告,請繼續往下閱讀-----

發現目前唯一的呼氣蟲化石

目前出土的呼氣蟲化石只有一件,而且只是一塊一公分(○.四英寸)的身體碎片。

然而在這一小塊化石中,可以清楚看到很多隻腳,從一隻可識別的馬陸狀動物的六個體節長出來。

呼氣蟲的外觀可能和這種現代的馬陸很像。圖/大塊文化

更重要的是,呼吸結構的細節清楚可見:外骨骼角質層上有稱作氣門的孔。這些氣門讓氧氣與其他氣體進入並離開身體,這塊化石也是根據這項特徵而命名為呼氣蟲(Pneumodesmus 的「pneumo」來自希臘文的「呼吸」或「空氣」)。

這塊化石提供了第一個呼吸空氣的決定性證據,這是一種全新的演化適應,為數百萬微小的節肢動物探索者,以及追隨牠們的捕食者,開放了大陸的表面。

-----廣告,請繼續往下閱讀-----

最古老的多足類演化過程

在泥盆紀,呼氣蟲並非獨自生活在植被中。還有許多多足類和牠一起生活,最古老的多足類化石出現在志留紀與泥盆紀的岩層。

儘管不屬於任何現代的馬陸或蜈蚣群體,牠們是現存馬陸與蜈蚣的早期親戚,外表與馬陸和蜈蚣非常相似,具有分節的長條狀身體許多腳―馬陸每個體節的兩側各有兩隻腳,蜈蚣則只有一隻。

目前已知有最多腳的馬陸是全足顛峰馬陸(Illacme plenipes),擁有七百五十隻腳。現存的大多數馬陸都是食碎屑動物,以腐爛的植物為食。這些動物的化石紀錄很少,因此每一件化石對於我們瞭解生命從水裡浮現的過程都特別珍貴。

一隻有著 618 條腿的雌性 Illacme plenipes。圖/wikipedia

最早的多足類,可能是受到早期植物產生的新食物來源所吸引,才來到陸地上。

-----廣告,請繼續往下閱讀-----

最早的蛛形綱動物也充分利用了頭頂上的廣闊天地。蛛形綱動物包括蟎、蠍子、蜘蛛與盲蛛。牠們有八隻腳(不同於昆蟲的六隻腳),大多數仍生活在陸地上,儘管少數(如水蛛〔Argyroneta〕)又回到水中生活。

奧陶紀與志留紀的化石顯示,蛛形綱動物和其他節肢動物可能在更早的時候就偶爾會出現在陸地上,但是到了泥盆紀,有些已經完全過渡到能夠呼吸空氣的狀態。最早的蛛形綱動物是角怖蛛,這是一個已經滅絕的群體,看起來像是蜘蛛與蟎的雜交體。

蟎與擬蠍也很多,後來還有類似蜘蛛、具有吐絲管能製造絲的始蛛(Attercopus)。就像今天一樣,這些早期的蛛形綱動物大多是捕食者,可能以其他從水邊冒出來的節肢動物為食。

到泥盆紀末期,出現了第一批昆蟲,據估計,昆蟲構成今日地球上所有動物生命的 90%。最後,一些脊椎動物也過渡到陸地上,這或許是受到尋找新的食物來源所驅動。

-----廣告,請繼續往下閱讀-----

我們所知的陸地生命基礎終於到位了。自此之後,演化在這些群體中繼續發揮作用,創造出我們今日所見的驚人多樣與多量。

節肢動物牠們有什麼用處呢?

節肢動物通常被看作是害蟲,昆蟲尤其如此。

然而,牠們在整個地球的運行中扮演十分重要的角色。現在有超過一萬六千個多足類物種、六萬種蛛形綱動物,以及大約一千萬種的昆蟲。

牠們不僅在地球最早期生態系中舉足輕重,至今對自然界及人類的世界仍然非常重要。

-----廣告,請繼續往下閱讀-----

多足類處理森林中的落葉,成為營養循環中的一個重要齒輪。蜈蚣通常是捕食者,最大的蜈蚣甚至能吃小型哺乳動物與爬蟲類。

蛛形綱動物大多也是捕食性的,因此在調節獵物的族群數量方面,發揮重要的作用。這裡所指的包括昆蟲害蟲在內,這些害蟲數量不受控制,就會損害植物的族群數量。因此,不起眼的蜘蛛對人農業非常重要。

蟎與蜱可以寄生並傳染疾病,對人類及其他動物構成威脅,其他昆蟲也會造成類似的危險。然而,昆蟲的角色變化多端,其價值確實無法估量,包括生產蜂蜜,甚至以其勤奮的活動精明操控整個生態系,例如蜜蜂、螞蟻與白蟻。

許多節肢動物都有毒,有些對人類甚至具有致命性。然而,讓獵物喪失能力和死亡的毒液也可發揮其他用處;蜘蛛毒液已被用作替代的殺蟲劑,科學家也正在研究其醫藥用途,以及在新材料上的應用。

-----廣告,請繼續往下閱讀-----
蜘蛛毒液已被用作替代的殺蟲劑,科學家也正在研究其醫藥用途,以及在新材料上的應用。圖/envato

此外,節肢動物可以為包括彼此在內的無數動物提供食物來源。許多節肢動物是人類的食物,包括狼蛛、蠍子、蚱蜢、白蟻與象鼻蟲等。

目前,世界各地有多達二千零八十六種節肢動物被當成食物,而且至少從舊石器時代開始,牠們已經成為食物的來源。

有人認為,隨著人類人口不斷增加,昆蟲尤其可能在未來提供重要的蛋白質來源―這是資源密集型肉類養殖的替代方案。

我們很難想像一個沒有節肢動物的地球;事實上,這樣的地球可能無法存在。早在泥盆紀,世界就是節肢動物的天下。

-----廣告,請繼續往下閱讀-----

但牠們冒險去到的地方,捕食者也在不遠處。節肢動物的存在,為另一個從水中出現的動物群體提供了食物,而這個動物群體在人類的演化史上特別重要:這裡講的是四足動物。

——本文摘自《直立猿與牠的奇葩家人:47種影響地球生命史的關鍵生物》,2023 年 7 月,大塊文化,未經同意請勿轉載。

大塊文化_96
11 篇文章 ・ 13 位粉絲
由郝明義先生創辦於1996年,旗下擁有大辣出版、網路與書、image3 等品牌。出版領域除了涵括文學(fiction)與非文學(non-fiction)多重領域,尤其在圖像語言的領域長期耕耘不同類別出版品,不但出版幾米、蔡志忠、鄭問、李瑾倫、小莊、張妙如、徐玫怡等作品豐富的作品,得到讀者熱切的回應,更把這些作家的出版品推廣到國際市場,以及銷售影視版權、周邊產品的能力與經驗。

0

0
1

文字

分享

0
0
1
特別短小的Y染色體未來會逐漸消失嗎?
科學人_96
・2014/08/22 ・692字 ・閱讀時間約 1 分鐘 ・SR值 603 ・九年級

-----廣告,請繼續往下閱讀-----

sm150-38

 

撰文/費雪曼(Josh Fischman)
編譯/ 鄭方逸

Y染色體是人類46個染色體中的小矮個兒,雖然它的角色廣為人知——哺乳動物就是靠它決定雄性性別,然而相較於其他染色體,尤其是它的夥伴X染色體,Y染色體失色不少。的確,在2~3億年前,Y染色體和X染色體共有的基因大約有600個,如今卻只剩下19個。2002年,有些遺傳學家發現,這種基因減少的現象代表Y染色體實際上正逐漸凋零。他們說,再過1000萬年,Y染色體就會滅絕了。這個消息真不知會讓男性朋友做何感想。

然而,根據最新的研究,Y染色體已經不再刪減基因了。佩奇(David Page)是美國麻省理工學院的生物學家,也是這篇發表在《自然》期刊中的論文作者之一。他說,事實上在過去2500萬年來,Y染色體已經趨於穩定。他和同事發現,近代演化物種體內的Y染色體雖然有點單薄,但基因損耗的情況在數百萬年前就已經停止了。

這個穩定性可能源自一段約含12個基因的重要區段,這些基因與性別無關,卻牽涉心臟、血液、肺部和其他組織等與維持生命有關的細胞功能。佩奇表示,「這些基因是細胞中央指揮部的重要角色」,因此會在天擇中倖存。

-----廣告,請繼續往下閱讀-----

一位擁護Y染色體正逐漸退化之說的學者對此不太信服。葛瑞夫茲(Jennifer Graves)是澳洲國立大學的遺傳學家,她認為過去數百萬年可能只是個暫時的持平時期。她指出,至少有兩種齧齒動物已經完全擺脫Y染色體了。然而最近的研究顯示,Y染色體應該會繼續維持像現在這樣的短小身材。

延伸閱讀

本文原刊於《科學人》2014年第150期8月號

SA原文:The Male Sex Chromosome Isn’t Shrinking

-----廣告,請繼續往下閱讀-----
文章難易度
科學人_96
39 篇文章 ・ 4 位粉絲
《科學人》雜誌-遠流出版公司於2002年3月發行Scientific American中文版,除了翻譯原有文章更致力於本土科學發展與關懷。

0

3
1

文字

分享

0
3
1
黔金絲猴物種起源,竟是近親雜交形成?
寒波_96
・2023/08/11 ・3267字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

新物種如何誕生,是演化最重要的主題之一,正如達爾文代表作的書名《物種起源》(The Origin of Species,也常譯作《物種源始》)。隨著基因體學帶來愈來愈多新知識,人們對物種的想法也不斷演變。

2023 年發表的一項研究調查多種金絲猴的基因組,意外發現有一種金絲猴,竟然直接由不同物種合體形成。這是靈長類的第一個案例,動物中也相當少見。

黔金絲猴。圖/Current status and conservation of the gray snub-nosed monkey Rhinopithecus brelichi (Colobinae) in Guizhou, China

五種金絲猴的親戚關係

金絲猴(snub-nosed monkey,學名 Rhinopithecus,也稱為仰鼻猴)主要住在中國西南部和東南亞,目前有五個物種。牠們的中文名字依照地名,英文名字則多半根據顏色。

古時候金絲猴的分布範圍更廣,像是台灣也曾經存在過,如今卻只剩下化石。現今五個物種分別為:

-----廣告,請繼續往下閱讀-----

*(雲南)滇金絲猴(black-white 黑白,學名 Rhinopithecus bieti

* 緬甸金絲猴(black 黑,學名 Rhinopithecus strykeri

*(四川)川金絲猴(golden 金,學名 Rhinopithecus roxellana

*(貴州)黔金絲猴(gray 灰,學名 Rhinopithecus brelichi

-----廣告,請繼續往下閱讀-----

* 越南金絲猴(Tonkin 越南東京,學名 Rhinopithecus avunculus

五種金絲猴。圖/參考資料1

比對五款吱吱的 DNA 差異,可知滇、緬甸金絲猴的親戚關係最近,川金絲猴則和黔金絲猴較近,但是黔金絲猴明顯介於兩者之間。黔金絲猴在自己獨特的變異之外,僅管基因組整體更接近川金絲猴,也有不少部分和滇、緬甸金絲猴相似。

見到不同物種之間共享血緣,最直覺的想法是,兩者的祖先發生過遺傳交流。但是詳細比對後,研究猿認為還有機率更高的可能性。

最滑順的劇本是,大約 197 萬年前,滇、緬甸金絲猴的共同祖先,和川金絲猴分家;又經過十幾萬年,約莫 187 萬年前,兩群金絲猴再度合體,形成一個全新的支系,也就是黔金絲猴的祖先;後來滇、緬甸金絲猴再衍生出兩個物種。

-----廣告,請繼續往下閱讀-----

這形成如今我們見到的狀態:黔金絲猴大約 75% 血緣來自川金絲猴,25% 源於滇、緬甸金絲猴的共同祖先。

四種金絲猴的親戚關係,與遺傳交流。圖/參考資料1

靈長類首見,雜交直接形成新物種

或許有人會疑惑,看起來都是共享 DNA 變異,上述說法和「不同物種之間,發生過遺傳交流」有何差別?

差別在於,所謂「不同物種之間」,指的是新物種已經誕生一段時間以後,彼此間又發生 DNA 交流,這個一點都不稀奇。例如 A、B 物種間發生關係,變成 A 的遺傳背景下,又有一點 B 血緣的物種。

但是黔金絲猴的狀況是,新物種之所以誕生,就是不同物種直接合體所致。例如 A、B 物種發生關係,衍生出差異更大,不是 A 也不是 B,足以認定為新物種的 C。

-----廣告,請繼續往下閱讀-----

假如重建的劇本為真,這就是首度在靈長類中觀察到,不同物種直接合體形成新物種的「hybrid speciation」。可以翻譯為「雜交種化」,不過「合體種化」似乎更直觀。

哥倫比亞猛獁,想像畫面。圖/wiki

經由兩個物種雜交,直接產生新物種的方式,植物較為常見,哺乳類動物極少。此前古代 DNA 研究認為,已經滅絕的美洲大象「哥倫比亞猛獁」(Columbian mammoth,學名 Mammuthus columbi)是不同猛獁象合體產生的新物種,但是證據沒那麼充分。

或許沒有那麼罕見?

直接雜交產生新物種,會很難想像嗎?仔細想想,金絲猴的案例可能沒那麼驚悚,或許還有某種程度的普遍性。

回到當初的情境,所謂「兩個物種」在當時其實只分家十萬年而已,差異應該仍很有限。是又累積 180 萬年的分歧到今日,才顯得親戚之間明顯有別。

-----廣告,請繼續往下閱讀-----

這邊 197 萬、187 萬、十萬年都是根據 DNA 變異的估計,實際數字未必如此。不過順序大概差不太多,就是首先分出兩群,很短的時間後又合體產生第三群,再經歷好幾倍的時間直到現在。

假如川金絲猴不幸滅團,缺乏樣本可供比較,那麼黔金絲猴與另外兩種近親,看起來就單純是 187 萬年前分家。

值得注意的是,我們能判斷演化樹上的不同分枝曾經合流,來自對樹形的比對。假如川金絲猴不幸滅團,這棵演化樹中我們只剩下三個物種的樣本,便會判斷黔金絲猴是跟另外兩種親戚分家而成,卻完全不會察覺有過合體種化。

這麼想來,雜交誕生新物種的現象,或許沒那麼罕見,只是時光抹去了許多痕跡。

血緣融合,猴毛也是奇美拉

另一有趣的發現是毛色演化。金絲猴現今四個物種,外表的毛色為一大差異。毛色與深色素有關,深色素愈多,毛色會顯得愈黑,相對則是愈淡,會呈現白毛、黃毛、金毛。

-----廣告,請繼續往下閱讀-----

身為不同演化支系合體的產物,黔金絲猴的毛色也混合兩邊的風格。頭和肩膀的淺色,類似川金絲猴;手腳的深色,則類似滇、緬甸金絲猴。

基因組合體以後,兼具兩群影響毛色的基因,形成混合的毛色搭配。圖/參考資料1

金絲猴毛的顏色深淺,取決於不同色素的相對比例。棕黑色素(pheomelanin)愈高,毛色愈淡;真黑素(eumelanin)愈高,毛色愈深。例如猴毛中含有大量棕黑色素、少量真黑素,便會呈現金毛。

很多基因有機會影響色素與毛色。分析得知金絲猴們有 5 個基因和毛色關係密切,黔金絲猴的基因組來自兩個支系,比對發現,三個基因 SLC45A2MYO7AELOVL4 繼承自川金絲猴,兩個基因 PAHAPC 則源於滇、緬甸金絲猴。

這些基因如何影響毛色,仍有許多不明朗之處。最明確知道的是,SLC45A2 基因表現降低,會使得棕黑色素產量上升,令顏色變淡。PAH 基因表現增加,可以讓顏色加深。

-----廣告,請繼續往下閱讀-----

同一隻金絲猴不同部位的細胞,同一批基因經由不同調控,就能控制毛色深淺。

這篇文章介紹的演化基因體學分析手法,對許多人大概不算容易,但是這些研究帶來的趣味,倒是不難體會。

延伸閱讀

參考資料

  1. Wu, H., Wang, Z., Zhang, Y., Frantz, L., Roos, C., Irwin, D. M., … & Yu, L. (2023). Hybrid origin of a primate, the gray snub-nosed monkey. Science, 380(6648), eabl4997.
  2. The Primate Genome Project unlocks hidden secrets of primate evolution
  3. Biggest ever study of primate genomes has surprises for humanity
  4. Hundreds of new primate genomes offer window into human health—and our past
  5. van der Valk, T., Pečnerová, P., Díez-del-Molino, D., Bergström, A., Oppenheimer, J., Hartmann, S., … & Dalén, L. (2021). Million-year-old DNA sheds light on the genomic history of mammoths. Nature, 591(7849), 265-269.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
193 篇文章 ・ 1016 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

1

4
3

文字

分享

1
4
3
貝多芬頭髮保存 DNA,讓台灣人肝同身受
寒波_96
・2023/04/26 ・2722字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

貝多芬,是歷史上最知名的音樂家之一。2023 年問世的論文報告貝多芬的基因組,得知他有肝硬化的遺傳高風險,另外還感染 B 型肝炎病毒,令台灣人肝同身受。

符合一般人心目中貝多芬形象的畫像。圖/GL Archive/Alamy

貝多芬留下很多頭髮,哪些是真的?

貝多芬在公元 1770 年 12 月 16 日出生,1827 年 3 月 26 日去世。他在生前就非常知名,去世後名聲歷久不衰,相關研究很多,這項研究從遺傳學切入,獲得寶貴的新觀點。

貝多芬去世後留下一些遺物,但是不見得是真品。這項研究由 8 份獨立收藏的頭髮抽取 DNA,據說源自貝多芬不同年紀留下的頭髮。

8 份樣本,有 1 份「Kessler」的 DNA 含量不足,其餘 7 份足夠分析。5 份長期由不同人保存,遺傳訊息卻完全一致,應該就是貝多芬本人的。其餘 2 份看來分屬沒有關係的 2 個人,顯然不是貝多芬的頭毛。

-----廣告,請繼續往下閱讀-----
很可能來自貝多芬的 5 份頭髮。圖/參考資料1

值得一提的是,「Hiller」頭毛之前檢驗出重金屬,有人藉此提出貝多芬去世前健康惡化,和重金屬中毒有關。但是這回得知這根本不是貝多芬的頭髮,推翻此一論點。

貝多芬的Y染色體,有點謎

從 5 個獨立來源獲得的古代 DNA,能拼湊出完整的基因組,覆蓋率高達 24。遺傳上看來是一位歐洲中部的男生,血緣上沒有特殊之處。Y 染色體型號為 I1a-Z139,也是歐洲的常見型號。

由不同頭髮中取樣拼湊而成的基因組,幾乎可以確認來自貝多芬本人。然而,和貝多芬家族如今的親戚比對,Y 染色體卻不一樣。

貝多芬整個基因組看來,與如今歐洲中部的人群最相似。圖/參考資料1

音樂家貝多芬在 1770 年出生,名字為 Ludwig van Beethoven。歷史可考有一位 1535 年出生、1609 年去世的祖先 Aert van Beethoven,比他更早好幾代,並且有男性後裔流傳至今。

-----廣告,請繼續往下閱讀-----

歐洲的姓是父系傳承,Y 染色體也是;所以同姓的人 Y 染色體應該類似,只有歷代突變累積的少數差異。然而比對發現,如今五位貝多芬的 Y 染色體皆為 R-FT446200,和音樂家貝多芬不同。

如果歷史記載正確,這五位應該都是 Aert 的直系後裔。論文推測,從 Aert 到音樂家貝多芬的兩百多年間,或許發生過某些缺乏紀錄的事。

另一方面,貝多芬類似款式的 Y 染色體,如今依然存在,而且在歐洲人資料庫中可以搜尋到 5 款,估計共同祖先能追溯到一千年前。奇妙的是,五群人的姓氏都不一樣,而且都沒有人姓貝多芬。

如今姓貝多芬的人,Y 染色體都和音樂家貝多芬不一樣。Y 染色體和音樂家貝多芬一樣的人,都不姓貝多芬。圖/參考資料1

爆肝的遺傳風險

有很明確的記載指出,貝多芬 56 歲去世前便長期健康欠佳,有腸道和肝的毛病。另外聽力問題也很出名,身為史上一流音樂家,貝多芬的聽覺竟然從 20 多歲起逐漸退化,去世前聽力極差,原因成謎。

-----廣告,請繼續往下閱讀-----

這些問題和遺傳有關嗎?人類遺傳學研究已經找到不少與疾病、健康有關的風險因子,檢查發現,聽力與腸道方面的毛病,貝多芬沒有配備哪些 DNA 變異明顯有關,後天因素的影響也許更大。

貝多芬的肝實際上大有問題,遺傳上看來,幾處基因上也具備高風險的變異。純以 DNA 來說有酗酒傾向,而他晚年確實會酗酒。

不過風險最明確的是 PNPLA3 基因,貝多芬在此基因 rs738409 位置,配備的一對變異與「肝硬化」高度相關,也就是先天上,肝硬化的機率更高。

貝多芬去世前留下的「Stumpff」頭髮,其中存在 B 型肝炎病毒的 DNA 片段。頭毛中竟然可以抓到 B 型肝炎病毒,奇怪的知識增加惹!圖/參考資料1

最終命運:肝硬化×酗酒×B型肝炎?

另一很難想像的發現是,貝多芬去世前不久留下的「Stumpff」頭髮中,偵測到 B 型肝炎病毒的 DNA 片段。

-----廣告,請繼續往下閱讀-----

儘管出乎意料,最近確實有研究報告,在病患的頭髮中檢驗到 B 肝病毒。因此頭髮中的病毒 DNA 或許不是後人汙染,而真的是曾經感染貝多芬的病毒。

B 肝病毒有很多款,貝多芬感染的型號是歐洲常見款式 D2。他在 1827 年 3 月去世,留下這些頭髮的日期則早於 1826 年冬天,由此可知去世前幾個月,貝多芬正在感染 B 型肝炎。

即使體內有 B 肝病毒,也不見得能在頭髮中偵測到,所以更早留下的頭髮中沒有病毒,不等於他當時沒有感染。貝多芬也有可能是長期感染的慢性帶原者。

無人不知的貝多芬,我們懷念他。圖/小賈斯汀 VS 貝多芬 – 經典饒舌爭霸戰 #6(正體中文)

貝多芬中年起健康明顯走下坡,去世前幾年或許同時受到肝硬化、酗酒、B 型肝炎的夾擊,才會導致嚴重的肝病問題。

-----廣告,請繼續往下閱讀-----

歷史記載 1826 年 12 月時,貝多芬出現黃疸、四肢腫脹,很像肝功能衰竭的症狀。他就此臥床,直到長眠。

貝多芬,我們懷念他。大家也要注意健康,小心肝。

延伸閱讀

參考資料

  1. Begg, T. J. A., Schmidt, A., Kocher, A., Larmuseau, M. H., Runfeldt, G., Maier, P. A., … & Krause, J. (2023). Genomic analyses of hair from Ludwig van Beethoven. Current Biology.
  2. Beethoven’s cause of death revealed from locks of hair

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 1
寒波_96
193 篇文章 ・ 1016 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。